
Visual Inertial Odometry with Event Cameras

José Pedro Ribeiro Gomes

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors

Professor José António da Cruz Pinto Gaspar
Professor Alexandre José Malheiro Bernardino

Examination Committee

Chairperson: to be filled later
Supervisor: Professor José António da Cruz Pinto Gaspar

Member: to be filled later

July 2021

Declaration

I declare that this document is an original work of my own authorship and that it fulfils all the requirements of
the Code of Conduct and Good Practices of the Universidade de Lisboa.

ii

Acknowledgments

It is with great pleasure and a sense of accomplishment that I write this last part of my thesis. It has been a
long and difficult journey, that would not have been possible without a large group of people that supported me
throughout, and I would like to acknowledge their help along the way.

First, I want to thank my supervisors, Prof. José Gaspar and Prof. Alexandre Bernardino, for guiding me
through this journey (during these particularly unusual circumstances), for their support and insight, and for toler-
ating my idiosyncrasies and side projects throughout this journey. Also, a word of appreciation for the members
of the ORIENT project and fellow students working on their respective thesis, in particular Prof. John Opstal,
Gonçalo, Duarte and Bernardo.

I also wish to thank my friends and colleagues, in particular Gil Serrano, Teresa Alves, Renato Dias, Afonso
Luís, Pedro Martins, Gonçalo Pereira, André Ribeiro, and Francisco Lopes, for their friendship and support
throughout multiple periods of my life, and for making this journey far more fun and enjoyable (and keeping
my mental health during the periods of lockdown).

I want to thank my school and university teachers, which, by showing me their passion for their respective
subjects, have allowed me to discover my areas of interest and have provided the knowledge to keep studying them.
In particular, I want to thank Prof. Luísa Falcão for her constant motivation and genuine interest in the students,
which far surpassed the 90-minute classes, and Prof. Rui Marreiros, who has allowed me to start tinkering with
robotics and participate in competitions early on.

Through my internships, I have come into contact with many interesting people who have taught and influenced
me greatly, of which I want to highlight the group at Ericsson Stockholm, in particular José, Ananya, Amir, and
Diego, for their support, allowing me to delve into a myriad of topics (many of which eventually ended up in this
work, either directly or indirectly, without realizing at the time), as well as multiple discussions regarding areas of
interest and possible future academic and professional paths.

Last, but most certainly not least, I want to express my profound gratitude towards my family, in particular my
parents, Ana and Luís, and my brother, David, whose constant support, motivation and advice has allowed me to
open many doors and make the most of many different situations. Words fall short to explain my gratitude.

To all, a sincere and heartfelt Thank You!

iv

Resumo

Câmaras de eventos são sensores de imagem inspirados pelo funcionamento da retina dos animais, reportando
mudanças de brilho ao nível de cada pixel, denominados “eventos”, que são reportados de forma assíncrona, com
um ritmo de amostragem variável e dependente da cena, com uma resolução temporal muito elevada. Com efeito,
estas câmaras permitem contrastes claro/escuro elevados numa dada cena e não sofrem de motion blur (distorção
causada por movimento). Trabalhos recentes mostram a viabilidade do uso deste tipo de câmaras no contexto
de odometria visual-inercial, podendo mesmo ultrapassar o desempenho de câmaras convencionais, em particular
em cenas com movimento elevado. Neste trabalho, propomos e analisamos o desempenho de câmaras de eventos
no contexto da estimação de pose, tirando proveito de fotogramas, eventos, e uma Unidade de Medida Inercial
(UMI/IMU). Mostramos que o nosso método proposto, usando um Unscented Kalman Filter com representação de
estado baseado em grupos de Lie é comparável, e pode mesmo superar um sistema convencional equivalente. Pelo
que entendemos, este é o primeiro trabalho propondo a fusão de informação visual e inercial usando câmaras de
eventos usando um Unscented Kalman Filter, bem como o seguidor de Kanade-Lucas-Tomasi baseado em Eventos
(EKLT) no contexto de estimação de pose. Para além da proposta inicial apresentada, propomos uma segunda
abordagem, em jeito de melhoria da primeira, onde a pose estimada atual é realimentada no seguidor e detetor de
caracteríticas (features), desta forma ajudando o estimador. Apesar de a ideia não ser particularmente inovadora,
a utilização no contexto de câmaras de eventos, é. As propostas feitas são validadas com simulações geradas para
o efeito, bem como datasets disponíveis publicamente e disponibilizados pelo Robotics and Perception Group de
ETH Zurich, que se têm vindo a tornar um padrão para comparação de métodos no contexto de câmaras de eventos,
e gravações recorrendo ao braço robótico Kinova para trajetórias precisas.

Palavras chave: Câmaras de eventos, câmaras neuromórficas, Sensores de Visão Dinâmicos (DVS), estimação
de pose, Localização e Mapeamento Simultâneo (SLAM), Odometria Visual e Inercial (VIO), Unscented Kalman
Filter (UKF), Grupos de Lie.

vi

Abstract

Event cameras are image sensors inspired by animal’s retina, reporting pixel-wise changes in brightness in-
dependently, called “events”, which are streamed asynchronously, and at a varied refresh rate, with very high
temporal resolution. Furthermore, these cameras allow for high contrasts within a scene (high dynamic range) and
do not suffer motion blur. Recent works have shown the viability of these cameras in providing visual-inertial
odometry information, that may even outperform conventional cameras in high-movement scenes. In this work,
we propose and analyse the performance of event cameras in the context of pose estimation, by leveraging frames,
events and Inertial Measurement Unit (IMU) information. We show that our proposed method using an Unscented
Kalman Filter with Lie group embedding for state representation is comparable to, and can even outperform, an
equivalent conventional approach to pose estimation. To the best of our knowledge, this is the first work proposing
the fusion of visual with inertial information using events cameras by means of an Unscented Kalman Filter, as
well as the use of the Event-based Kanade-Lucas-Tomasi tracker (EKLT) in the context of pose estimation. Fur-
thermore, we propose a second approach, as an improvement to the previous method, where the current estimate of
the state is fed back into the feature extractor in order to better track the features, which in turn helps with the pose
estimation. Though the idea is not novel, its use in the context of pose estimation with event cameras, to the best of
our knowledge, is. The proposed approaches are validated using a set of computer generated simulations generated
for this work, as well as public event camera datasets available online from the Robotics and Perception Group
from ETH Zurich, which have gradually become a benchmark for comparison in the context of event cameras, and
a dataset created using a Kinova robot arm for precise trajectories that we created for this work.

Keywords: Event cameras, Neuromorphic camera, Dynamic Vision Sensor (DVS), Pose estimation, Simultaneous
Localization and Mapping (SLAM), Visual Inertial Odometry (VIO), Unscented Kalman Filter (UKF), Lie groups.

viii

Contents

Declaration i

Acknowledgments iii

Resumo v

Abstract vii

Acronyms xvii

Glossary xix

Nomenclature xxiii

1 Introduction 1
1.1 Overview of Related Works . 2

1.2 Problem Formulation . 3

1.3 Motivation for our Approach . 4

1.4 Contributions . 6

1.5 Thesis Structure . 6

2 Background and State of the Art 7
2.1 Camera Projection Model and Imaging Features . 7

2.1.1 Camera Model . 7

2.1.2 Feature Detection and Tracking . 9

2.2 Event Cameras . 13

2.2.1 DVS240 and DAVIS240 Event Cameras . 14

2.2.2 Feature Detection and Tracking on Event Cameras . 15

2.3 Inertial Measurement Unit (IMU) . 21

2.4 Pose Estimation . 23

2.4.1 Camera Motion and Motion Field . 23

2.4.2 Visual Odometry . 25

2.5 State of the Art . 26

x CONTENTS

3 Visual Odometry and Visual Inertial Odometry 33
3.1 System Model . 33

3.2 Inertial Odometry . 34

3.3 Visual Odometry . 35

3.4 Visual Inertial Odometry . 37

3.4.1 Proposed Approach . 37

3.4.2 Filter Structure . 38

3.4.3 Measurement Model . 40

3.4.4 Implementation of UKF based on Lie Groups . 41

3.4.5 Implementation . 42

3.4.6 Filter Initialisation . 43

3.4.7 Special Note - DVS Cameras . 44

4 Closed Loop Integration of Sensor and Pose Filter on Event Cameras 45
4.1 Motivation for Improved Approach . 45

4.2 Ego Motion and Optical Flow . 47

4.3 Features Tracking complemented by the Pose Filter State . 50

4.4 Set of Backup Features . 51

4.5 Implementation . 52

5 Experiments and Results 55
5.1 Datasets and Experimental Setups . 55

5.2 Experiment Plan . 61

5.3 Experiment 1, Integrated Experiment with a DAVIS Camera Dataset 61

5.4 Experiment 2, Integrated Experiment on Simulation . 66

5.5 Experiment 3, DVS Camera Mounted on the Kinova Arm . 73

5.6 Results Analysis and Experiments Comparison . 75

6 Conclusion and Future Work 79
6.1 Conclusion . 79

6.2 Future Work . 80

A Camera and IMU Calibration 81
A.1 Camera Calibration . 81

A.1.1 Event camera calibration . 82

A.2 IMU calibration . 84

B Lie Groups and the Unscented Kalman Filter 85
B.1 Lie groups and Lie Algebra . 85

B.1.1 Algebraic groups . 85

B.1.2 Lie algebra . 85

B.1.3 Particular Lie groups . 86

B.2 Sensor Fusion and Filtering . 88

CONTENTS xi

B.2.1 Kalman Filter . 89
B.2.2 Extended Kalman Filter (EKF) . 89
B.2.3 Unscented Kalman Filter (UKF) . 90
B.2.4 Square-Root Unscented Kalman Filter (SR-UKF) . 92

C Latency evaluation of switching between event and frame modes 97
C.1 Method . 97
C.2 Results . 98

D Computing Optical Flow given the Ego-motion 99
D.1 Derivation of the Brightness Constancy Equation . 99
D.2 Effect of Ego-motion on Optical Flow . 100

xii CONTENTS

List of Figures

1.1 Outputs of event cameras . 2

1.2 Vestibulo-ocular pathways . 5

2.1 Pinhole camera model . 8

2.2 Projective geometry . 8

2.3 Harris corner detector . 10

2.4 Gaussian curvature around different points . 11

2.5 ICP example . 12

2.6 Event camera and operation principle, and newer DVS240 cameras 14

2.7 Comparison of the output of a standard camera and an event camera, and space-time representation
of events . 15

2.8 Distance calculation from event to plane, and plane fitting . 16

2.9 Corner detection using space-time approach . 16

2.10 Corner detection through SAE . 17

2.11 Block diagram of EKLT and comparison of the brightness change from event integration with the
brightness change from image gradient . 19

2.12 Acceleration of a body and corresponding measurement reading 21

2.13 Effect of noise on IMU . 22

2.14 Motion field . 24

2.15 Barber pole motion field and optical flow . 24

2.16 Overview of ORB-SLAM architecture . 26

2.17 Spatiotemporal window . 28

2.18 Motion corrected event frames . 28

2.19 EVIO approach for VIO . 29

2.20 Feature detection on frames and event frames . 31

3.1 System model . 34

3.2 Estimating rotation using Procrustes . 37

3.3 First proposed approach . 38

3.4 Overview of the proposed approach . 42

4.1 Proposed closed loop integration . 46

xiv LIST OF FIGURES

4.2 Reference frame for motion model . 47
4.3 Evolution of features’ position over time due to ego-motion . 48
4.4 Drift in expected feature position from bigger timestep . 49
4.5 Overview of the proposed approach . 53

5.1 ESIM architecture . 56
5.2 Comparison of sampling approaches for the simulator . 56
5.3 Trajectory obtained through simulator, provided trajectory, and comparison of sensor readings

provided by simulator and the second derivative of the trajectory 58
5.4 Sample ESIM scene . 59
5.5 Example of scenes on public datasets . 60
5.6 Kinova robot arm, setup for dataset recording, and sample scene 60
5.7 Input to the experiment . 62
5.8 Results of the experiment . 63
5.9 Evolution of features over time using the shapes dataset . 63
5.10 Input to the experiment . 64
5.11 Results of the experiment . 65
5.12 Evolution of features over time using boxes dataset . 65
5.13 Results from boxes dataset with closed loop . 66
5.14 Input to the visual only approach experiment . 67
5.15 Feature trajectory over time . 68
5.16 Number of features over time and visual inertial odometry results 69
5.17 Position estimation over time in ESIM with open loop . 70
5.18 Lower event rate in change of direction and results using visual information only 71
5.19 Closed loop approach on simulation . 73
5.20 Sample scenes captured on the Kinova dataset . 74
5.21 Results of experiment 3 . 75
5.22 Comparison of number of features over time . 76

A.1 Comparison of possible radial distortions . 81
A.2 Explanation for tangential distortion . 82
A.3 Example images used for focus adjustment . 83
A.4 Setup for event camera calibration . 83
A.5 Calibration of IMU through Allan standard deviation fitting . 84

B.1 Lie Algebra and mappings . 86
B.2 The principle of the Unscented Transform . 91
B.3 Comparison of propagation between EKF and UKF . 92

C.1 Setup used, showing a rotating wood bar attached to a stepper motor 97
C.2 Angle after switch, and corrupted first image . 98

List of Tables

5.1 Results obtained running the open loop approach in the shapes scene 62
5.2 Results obtained running the open loop approach in the boxes scene 64
5.3 Results obtained running the open loop approach in the boxes scene 65
5.4 Result for ESIM in z axis . 67
5.5 Error of position estimation on ESIM with open loop approach 69
5.6 Results with ESIM for remaining axes . 70
5.7 Results with ESIM for closed loop approach . 72

xvi LIST OF TABLES

Acronyms

DOF Degrees of Freedom.
DoG Difference of Gaussian.

EKF Extended Kalman Filter.
EKLT Event-Based Kanade–Lucas–Tomasi (EKLT) fea-

ture tracker.

fps Frames per Second.

HDR High Dynamic Range.

ICP Iterative Closest Points.
IMU Inertial Measurement Unit.

KF Kalman Filter.
KLT Kanade–Lucas–Tomasi (KLT) feature tracker.

RMSE Root Mean Square Error.

SAE Surface of Active Events.
SIFT Scale Invariant Feature Transform.
SLAM Simultaneous Localization and Mapping.
SSD Sum of Squared Distances.
SURF Speed-Up Robust Features.

UKF Unscented Kalman Filter.

VIO Visual-Inertial Odometry.

xviii Acronyms

Glossary

Ego-motion Estimation The problem of trying to understand the movement
of a system, in particular a camera, by how the fea-
tures being captured by said camera move over time.
It is particularly relevant for the concept of odome-
try.

Ego-motion The movement of a system, in particular a camera,
which produces changes to the way the world is cap-
tured. It is particularly relevant for the concept of
odometry.

Event-based Kanade–Lucas–Tomasi (EKLT) feature tracker Event-based approach to feature extraction and
tracking, based on the KLT. The same method of
patch comparison is used, but their origin is differ-
ent. In particular, mixing frames with events.

Event cameras Also called neuromorphic cameras, and dynamic
vision sensors, are a type of camera that reports
changes in brightness in a pixel level, rather than
outputting a stream of frames at a constant frame
rate, with the whole scene captured, as conventional
cameras do.

Harris corner detector Corner detector operator that extracts corner fea-
tures from an image.

Image Reconstruction Image reconstruction refers to the possibility of gen-
erating “conventional” frames based on event cam-
eras, usually by accumulation of events over a pe-
riod of time, with some further optimization applied.

xx Glossary

Inertial Measurement Unit (IMU) Sensor that measures and reports a body’s specific
force (by means of accelerometers), angular rate (by
means of gyroscopes), and sometimes the orienta-
tion of the body (by means of magnetometers). As
such, reports information on the movement of the
body being measured.

Kanade–Lucas–Tomasi (KLT) feature tracker KLT is an approach to feature extraction and track-
ing, by means of comparing patches of images
(around a feature of interest) between two consec-
utive frames. It can also be used to estimate the op-
tical flow.

Motion field Corresponds to the projection of 3D relative velocity
vectors onto the 2D image plane. It is not necessar-
ily measurable.

Odometry Odometry refers to the use of data from motion sen-
sors to estimate the change in position of a system
over time.

Optical flow Corresponds to the observed 2D displacements of
brightness patterns in the image (that can result from
the motion field (movement in the image), as well as
moving light sources, for example).

Pseudo-frame Image frames provide features at a constant rate.
Event cameras do not. In this work, we call pseudo-
frames to an accumulation of features from events
over time, to create an analogous to conventional
features to frames. One can think of it as a batch
of features that are given the same timestamp.

Simultaneous Localization and Mapping (SLAM) Simultaneous Localization and Mapping is a prob-
lem in mobile autonomous systems that tries to con-
struct or update a map of the surrounds of the sys-
tem, while simultaneously placing this system in
said map.

Skew Symmetric Matrix Square matrix whose transpose is equal to its nega-
tive

(
AT = −A

)
, where A is a square matrix. Use-

ful to represent cross products and rotations as ma-
trices multiplications .

Glossary xxi

Surface of Active Events (SAE) Surface of Active Events is a visual method of repre-
senting events such that each entry in a frame of di-
mensions (W,H) contains the timestamp of the most
recent acquired event at that location. This frame is
then discretised and each pixel given a color based
on how old the latest event received is. Some ap-
proaches use this representation for computer vision
algorithms..

Visual Inertial Odometry (VIO) Visual Inertial Odometry (VIO) refers to the use of
visual (cameras) and inertial (accelerometers, gyro-
scopes, IMU) sensors, in particular, to estimate the
change in position of a system over time.

xxii Glossary

Nomenclature

δt Time interval between two instants

R Set of real numbers

RN Real vector space of dimension N

IN Identity matrix of size N ×N

G General Lie Group

TxG Tangent space of Lie Group G at point x ∈ G

se(3) Lie Algebra associated with SE(3)

se2+p(3) Lie Algebra associated with SE(3)

so(3) Lie Algebra associated with SO(3)

SE(3) Special Euclidean Group of dimension 3

SE2+p(3) Special Euclidean Group used in this work

SO(3) Special Orthogonal Group of dimension 3

xxiv NOMENCLATURE

Chapter 1

Introduction

“Begin at the beginning,” the King said gravely, “and go on till

you come to the end: then stop.”

— Lewis Carroll, Alice in Wonderland

Vision plays a very important role in the animal kingdom, and virtually every higher order animal has developed
some sort of visual system to improve their chance of survival. Eyes (in particular the retinal layer) possess a layer
of cells that are sensitive to light (photoreceptor cells that perceive colours - cones - and brightness - rods) which
give the organism the sense of sight.

As such, it is only natural that sensors that can imbue artificial systems with the sense of sight have been
created, in particular cameras (what we call throughout this work as “conventional cameras”, to distinguish from
event cameras, explained briefly). However, conventional cameras do not exactly mimic animal’s visual system.
They are much slower (typically conventional cameras produce around 20-30 fps), produce redundant information
and are much more energy-costly. Furthermore, they are not very good with scenes with high contrast (as detail is
lost in bright and dark areas), or with high movement (as images produced suffer from motion blur).

Neuromorphic hardware appears as a bio-inspired approach to hardware development that tries to replicate
the advantages of animal systems, either in speed, energy efficiency, or any other positive or desirable attribute.
Examples of such hardware are audio sensors ([Liu et al., 2013]), signal processors ([Giulioni et al., 2015] and
[Qiao et al., 2015]), and vision sensors ([Mead and Mahowald, 1988]).

The work described within this dissertation focuses on the Dynamic Vision Sensors type of neuromorphic
cameras (DVS cameras [Lichtsteiner et al., 2008]), which are a type of event cameras that report changes in the
brightness captured by each pixel (precisely, the log-intensity of the brightness captured by each pixel). Unlike
conventional cameras (that record a sequence of the intensity of all pixels in the scene, and therefore produce
redundant information, and are not energy efficient), event cameras produce “events”, which contain the timestamp,
pixel location, and polarity of the change in the pixel.

This approach has multiple advantages, such as 1) lower latency (because there is no need for camera compres-
sion at the camera level), 2) higher energy efficiency, 3) no redundant information, 4) higher temporal resolution
(in the order of microseconds (as opposed to milliseconds of conventional cameras)), and 5) higher dynamic range,
to name a few.

Of course, it is not without its disadvantages. First of which is the different mindset that needs to be embraced.

2 Introduction

Data is not received at a constant rate, for starters, and the nature of data itself (events) is foreign and takes some
time to adapt. Conventional cameras “like” to be still in the sense that there is no movement contaminating the
readings, and allows for feature extraction and initialization of the system, for instance. This is the complete
opposite for event cameras: no movement means no data (assuming constant brightness in the scene), and output
is dominated by (salt and pepper, mostly) noise. Furthermore, though it is possible to produce frames from events
by means of image reconstruction, the result is not perfect (see Fig. 1.1 for an idea). Lastly, a new type of noise
appears - time noise - where events have some deviation from the exact moment at which it was generated.

With the advantages of event cameras in mind, we set out to develop a system that is able to estimate the
pose (position and orientation) of a system based on event cameras. Though this problem is well-documented and
studied using conventional cameras, approaches using event cameras are still being researched, and no solution is
exactly “trivial”, as events are not yet very familiar, and how to use them is not obvious. For reference, Fig.1.1
shows the accumulation of events produced when a pen is moving in front of a camera, and when a person is
waving their hand.

(a) (b)

Figure 1.1: Outputs of event cameras under various situations.(a) shows a pen moving in front of the camera. (b)
shows a person’s hand waving in front of the camera. White and black denote the polarity of the event being
represented, in particular positive and negative, respectively.

This work appears integrated in the ORIENT project, that focuses “[· · ·] on Neuroscience, with a goal to better
understand how the brain coordinates movements in the eyes and head, in order for humans to orient themselves
in the world and in relation to any object that might be around” 1. In particular, this work appears as a study on the
possibility of using an event camera to estimate the orientation of the eye.

1.1 Overview of Related Works

Event cameras have demonstrated to be useful in multiple tasks where speed is paramount, of which quadro-
tor control comes immediately to mind ([Mueggler et al., 2014], [Falanga et al., 2020], [Sun et al., 2021], and
[Sanket et al., 2020]). They have also been adopted in areas such as flow estimation ([Akolkar et al., 2018] and
[Ieng et al., 2017]), image and video reconstruction ([Rebecq et al., 2019]), and depth estimation ([Rebecq et al., 2018a]),

1https://welcome.isr.tecnico.ulisboa.pt/orient-project-collaboration/

https://welcome.isr.tecnico.ulisboa.pt/orient-project-collaboration/

1.2 Problem Formulation 3

to name a few areas.

The problem of pose estimation shares some goals and similarities with SLAM (Simultaneous Localization
and Mapping), as one of the problems is that of localization, which relies on a correct estimation of the pose of the
system. According to [Gallego et al., 2019], the first work on camera tracking with an event camera was presented
in [Weikersdorfer and Conradt, 2012], and proposed an implementation based on particle filters, but was limited
to a planar motion. [Censi and Scaramuzza, 2014] proposed an approach based on Bayesian filters, and the use of
a second, conventional camera, but subject to the same limitations of planar motions.

[Cook et al., 2011], [Kim et al., 2008], [Gallego and Scaramuzza, 2017], and [Reinbacher et al., 2017] proposed
several implementations which, event though limited to rotation, and therefore without the need of translation or
depth, paved the way for more complex implementations, as the ones in [Gallego et al., 2018], [Kim et al., 2016],
[Rebecq et al., 2017], and [Vidal et al., 2018], of which we consider the last to be the state of the art in terms of
localization using event cameras.

Multiple authors have opted for approaches that try to rely on bridging the “classic” approaches with event
cameras. For example, [Zihao Zhu et al., 2017] relies on features tracked by [Zhu et al., 2017], and combines them
with IMU information by means of the Extended Kalman Filter (EKF) presented in [Mourikis and Roumeliotis, 2007].
Our proposed approach borrows from this idea.

Other methods ([Rebecq et al., 2017]) rely on image reconstruction from [Gallego and Scaramuzza, 2017], and
then use classical approaches ([Lucas et al., 1981] and [Rosten and Drummond, 2006]).

The lack of a standardised dataset for event cameras makes it difficult to compare different methods, however
[Mueggler et al., 2017b] introduces a public dataset that can be used to compare methods, that some authors have
chosen to use.

On the “conventional” side of pose estimation, multiple SLAM approaches based on vision (Visual SLAM, or
vSLAM) are worth mentioning, such as FastSLAM ([Montemerlo et al., 2002]), ORB-SLAM ([Mur-Artal and Tardós, 2017]),
EKF-SLAM, and GraphSLAM ([Thrun, 2002]). These approaches rely on conventional cameras to provide fea-
tures that are used to construct a map and also be used as reference for the estimation of the pose of the system.

1.2 Problem Formulation

This work appears in the sequence of the previous works in the ORIENT group (in particular [Martins, 2019])
where the orientation of an eye is estimated by means of visual odometry. The eye produces very fast (under
200 ms) and short (usually under 25 deg) movements, called saccades, on the order of 700 deg/s ([Luo, 2015]).
This poses some challenges for conventional cameras, that are susceptible to motion blur.

It is the goal of this work to design and suggest methods that may be used to solve this problem of eye
orientation, by focusing on the larger problem of localization using event cameras. For instance, though not relevant
in the context of an eye, we decided to include translation estimation in the state, not only to allow comparisons
of our approaches with others, but also to try and contribute with a more versatile approach, eventually even to the
state of the art.

We propose an approach that leverages visual and inertial information, by means of events cameras with frames,
events and Inertial Measurement Unit (IMU), in order to estimate the pose of the system using an Unscented
Kalman Filter (UKF) based on Lie groups. We then propose a second approach as an improvement of the first, that
leverages the information of the current estimated pose to improve the quality of the visual information.

4 Introduction

1.3 Motivation for our Approach

Our approach is inspired by SLAM approaches, that simultaneously create a map while localizing the system
in it, of which ORB-SLAM and EKFSLAM are common examples. Though our implementation is not that of
SLAM, since no map is being generated (only a local map relevant for localization), most concepts are still valid,
in particular we borrowed the idea of a state that contains the pose of the system (and some other useful variables)
that is constantly being estimated.

Multiple formulations could have been used to tackle this problem, so why did we choose the approach here
presented? In particular, why combine visual and inertial information, why use event cameras, why the choice for
Kalman filtering, ..., the list goes on. We want to explain some of our choices in a few paragraphs.

Why event cameras? The first question that is interesting to address is why use event cameras. Throughout
Section 2.2, many of the advantages (and current limitations) of event cameras are presented. This work chose
to use event cameras as a way to analyse what is currently possible, and try to contribute to the state of the art.
Part of the reason for event cameras has to do with the working principle, and the high temporal resolution, which
becomes an important factor in the context of eye saccades.

Part of this work’s objective is to evaluate the feasibility of using event cameras in the context of the estimation
of saccadic movement. Saccades have a very high angular velocity (in the order of hundreds of degrees per second).
Normal cameras cannot keep up with this speed, and the resulting images are corrupted by motion blur.

As such, event cameras appear as an interesting alternative that helps solve this limitation of conventional
cameras (at the expense of the need for newer (or, at least, different) methodology).

Why visual inertial odometry? As stated, this work is part of the ORIENT project, where there is a strong
emphasis placed on modelling, describing and/or mimicking biologically inspired systems, both to gain insight
into the biological system itself, in particular the eye, and to leverage as much of natural evolution as possible into
artificial systems.

With this in mind, we turn to the biological solution that animals (in particular humans) have converged to.
Oversimplifying, humans have multiple ways to know where they are in relation to the world. We have proprio-
ception, which means we have a sense of where our limbs are even when we are not actively observing them (we
do not need to look at our legs to know how much we have walked), we have much prior information (we know
how fast we move based on our gait, leg length, walk/run), acquired through years of learning, and we have some
other “tricks” to accurately position us in the world.

However, we want to highlight two systems in particular: the vestibular system, and the visual (ocular) system,
both of which are partially explained (Sections 3.2 and 3.3).

The interesting aspect of these two systems is that they are not isolated, and evolution has coupled them together
through the vestibulo-ocular pathway (evidenced in the vestibulo-ocular reflex). This reflex is easy to demonstrate:
if a person focuses a point in the world, and moves their head, the point remains in focus, and our eyes move to
compensate the head movement. This happens because the vestibular system detects the movement, sends this
information to the vestibular nucleus in the brainstem, and this information is used to make the eyes compensate
the movement and maintain the point in focus (Fig. 1.2).

This coupling between these two systems is so tight, that when there is a mismatch, our brain believes it was
poisoned, hence sea sickness, for instance. Furthermore, dizziness after multiple spins (pirouetting) is caused

1.3 Motivation for our Approach 5

Figure 1.2: Depiction of the coupling between the vestibular and ocular systems, in particular the integra-
tion of information in the vestibular nucleus, and corresponding output to adjacent cortical centres, from
[Schuenke et al., 2020].

by persistent movement of crystal in the vestibular systems after continuous stimulation, which is interpreted as
movement, and the eyes try to compensate this (non-existent) movement, resulting in the world rotating around us.

Another reason to use visual and inertial information is that they complement each other. In Section 3.2, the
major limitation of purely inertial odometry systems is that there are no correction mechanisms, and they drift over
time. However, the visual component can serve as a correction (for example, imagine you are blindfolded, riding
in a car; turns and accelerations can be detected (inertial information), and you can have a sense of where you are,
but eventually, you lose your bearings and get lost; however, if you were allowed to peek at your surroundings
from time to time, you could correct the drift you suffered over time), which would increase the reliability of the
inertial system over time, by turning it into a visual inertial odometry system.

Furthermore, a monocular (single camera) system is not capable of obtaining the absolute dimensions of a
scene, only the relative dimension. The inertial system, on the other hand, is able to have a sense of the abso-
lute values of the movement. Combining both systems should produce better estimation with a better sense of
dimensions.

As such, there is a synergy to be explored by combining these two systems.

Finally, the IMU is already embedded in the event camera, and there is no a priori reason not to take advantage
of it.

Why not just vision? Some of the reasons are explained in Sections 3.2 and 3.3, but ultimately culminate in
the synergy between complementary systems that allow them to overcome their individual limitations. From the
biological standpoint, the coupling between these two systems is evident, shown by the vestibulo-ocular pathway,
as explained previously.

From our standpoint, we wish to leverage the inertial system, which responds very rapidly, but is prone to
drifting, and the visual system, which is slower, but less precise. Another relevant factor is the “unknowns” asso-

6 Introduction

ciated with event cameras. The features extracted can be less robust (or at least, less in number) than conventional
features, which means that a vision-only approach may not be reliable on its own.

As such, a vision-only approach, though possible and very successful using conventional cameras ([Mur-Artal and Tardós, 2017]),
was not selected for this work.

Why the need for data fusion? We want to use two data sources (the visual and the inertial components) in a
way that the resulting system is more accurate or consistent. This means that the information from each system
needs to be somehow combined.

Multiple solutions can be used for this fusion, of which filtering is a common approach. Again, in the field of
filtering, multiple filters can be used with varying degrees of complexity. We choose to approach this problem with
an UKF, as it is a technique that is known to produce good results, and which, to the best of our knowledge, has
not been used in combination with event cameras.

1.4 Contributions

We propose a Lie group-based UKF approach to solve the pose estimation problem which, to the best of
our knowledge, is a novel approach in the context of event cameras. This approach attempts to combine visual
information in the form of events and frames, with inertial information obtained from an IMU, by means of an
Unscented Kalman Filter.

Also, we propose the use of the Event-based Kanade-Lucas-Tomasi tracker (EKLT, [Gehrig et al., 2020]) in
the context of pose estimation, which, to the best of our knowledge, as not yet been done before.

Furthermore, we list, implement and compare possible ways to improve said tracker by taking into account the
current estimation of the pose, in effect improving sensor output by combining it locally (at the sensor level) with
measurements from outside the sensor, which is an unusual approach to improving sensor reading.

Through this work, multiple tools have been developed, such as trajectory generators for simulations, motion
capture scripts, simulations, datasets, and the UKF implementation itself, which we hope can be of use for future
works.

1.5 Thesis Structure

Chapter 1 introduces the problem to approach in the thesis, in particular presents a short discussion on the
problem of pose estimation being tackled, the state of the art on event cameras, and pose estimation. Chapter 2
presents the mathematical and engineering background needed to understand the concepts being introduced and/or
used in the context of this work. Chapter 3 and Chapter 4 introduce our proposed approaches. Chapter 5 provides
an overview of the different experiments executed as well as the results attained and a critical analysis of these
results. Chapter 6 summarises the work performed and highlights the main achievements. Moreover, this chapter
proposes further work to extend the activities described in this document.

Chapter 2

Background and State of the Art

“Ex nihilo nihil fit" (Nothing comes from nothing)

— Parmenides

In this chapter, we provide an overview of the necessary mathematical basis for the understanding of this
thesis, as well as the works being done in the area that either helped this work, or serve as a possible comparison.
In particular, Section 2.1 explains how cameras in general work, and introduces the concept of image features (what
they are, how they are detected, and how they are tracked across multiple camera frames). Section 2.2 introduces
event cameras, novel cameras that have a different working principle than conventional cameras, and are the basis
of this work. Section 2.3 introduces the Inertial Measurement Unit (IMU) and its sensor readings. Section 2.4
introduces the problem of pose estimation, and the way camera movement changes the information captured by
the camera. Lastly, Section 2.5 contains the state of the art in terms of pose estimation, with emphasis on event
cameras.

2.1 Camera Projection Model and Imaging Features

In this section we introduce the typical pinhole camera projection model that is the basis for image formation,
and introduce the concept of image features, which are keypoints in the image that are particularly distinctive and
useful.

2.1.1 Camera Model

An important concept to take into account is that of camera model, which models the correspondence between
points in the world and their position in image space. A common model used is the projective model (others can
be used, such as perspective, affine, and orthographic models), in particular the pinhole model (Fig. 2.1). In this
model, the mapping from world (3D) to camera (2D) is performed by tracing a ray of light from the world, through
an infinitesimally small aperture (pinhole), and into the image plane. Important parameters in this model are the
focal distance (distance from aperture to image plane), and image (or optical) centre (centre of the image plane),
which are both intrinsic parameters.

8 Background and State of the Art

Figure 2.1: Pinhole camera model

From this model, we can derive the projective geometry (Fig. 2.2), where the image plane is modelled in front
of the optical centre, and the optical axis is orthogonal to the image plane. In this model, lines are projected to
lines, collinear features remain collinear, and tangents and intersections are preserved, but parallel lines (in the
world) eventually meet at a vanishing point, since angles are not preserved.

This geometry makes it clear that projection between world and image are given by the triangular similarity

x = f
X

Z
, y = f

Y

Z
(2.1)

where X , Y , and Z represent 3D coordinates in the real world, x and y their corresponding projected 2D points,
and f the focus length of the camera.

Figure 2.2: Projective geometry

The intrinsic parameters combine these properties, namely focal length (f), offset to the optical centre (cx
and cy), and skew (s, from non-orthogonality between optical axis and image plane), and constitute the intrinsic
parameters matrix K, defined as

K =

fx s cx

0 fy cy

0 0 1

 . (2.2)

2.1 Camera Projection Model and Imaging Features 9

This matrix is also present in the projective matrix P , which relates the points in world space to their corre-
sponding image plane position, given by

λ

xy
1

 = P


X

Y

Z

1

 =
[
K 0

]

X

Y

Z

1

 =

fx s cx 0

0 fy cy 0

0 0 1 0



X

Y

Z

1

 (2.3)

which is critical for computer vision.

Assuming camera rotation and translation (extrinsic parameters, since image and world frames are not cen-
tred), the projective can be expanded to include rotation R and translation t, and becoming completely generic, in
particular

x = K
[
R t

]
X . (2.4)

This is called the camera matrix. The calibration process to obtain this matrix is explained in Appendix A.
Though the calibration process for both cameras (conventional and event) follow the same general idea of finding
a set of points in the image from multiple points of view, and use them to estimate the parameters, the acquisition
of these points differs a bit (due to the nature of the cameras, and also their resolution). The appendix explains
these changes.

2.1.2 Feature Detection and Tracking

In the context of computer vision and image processing, image features are distinctive landmarks in the images,
preferably insusceptible to point-of-view, scale, and the aperture problem. Features are important as they provide
information on the image, which can be used for recognition, matching, reconstruction, and tracking, among many
other applications. Many types of features can be considered, such as edges, corners, blobs, ridges, and shapes.
In this section, we aim to explain the choice of features that are typically used, from the conventional cameras
perspective. Approaches for event cameras are described in Section 2.2.2.

2.1.2.1 Feature Detection

The process of identifying features in an image is called feature detection, and multiple detectors have been
described in the literature, dependent on the features of interest, such as Canny and Sobel detectors (for edges),
Hough transform (for shapes), Laplacian operator (for blobs), and Harris detector (for corners).

Harris Corner Detector The typical example for a classic corner detector is the Harris Corner Detector ([Harris et al., 1988]).
It works using the following steps: 1) Compute the x-wise Ix(x, y) and y-wise Iy(x, y) partial image derivatives,
2) Compute the second-order derivatives I2x(x, y) and I2y (x, y), and cross-derivatives IxIy(x, y), 3) Compute the
second-moment matrix M(x, y), 4) Compute the Harris score, and 5) Detect local extrema whose Harris score is
greater than the set threshold.

The partial derivatives are computed by applying a Sobel derivative kernel (usually 3x3 or 5x5 kernels) to the
whole image, producing the x-wise Ix(x, y) and y-wise Iy(x, y) partial image derivatives. From these derivatives,
we can define the vector∇I(x, y) = (Ix(x, y), Iy(x, y))T and the second-moment matrix for each pixel (M(x, y)),

10 Background and State of the Art

defined as M(x, y) =
∑

(x,y)∈patch g(x, y)∇I(x, y)∇IT (x, y), where g(x, y) is a Gaussian weighting function
centred around (x, y), which controls the “sharpness” of the edge.

Then, we can compute the Harris score as defined by

H(x, y) = λ1λ2 − k × (λ1 + λ2)
2

= det(M)− k × trace(M)2 (2.5)

where k is an empirical value, k ∈ [0.04; 0.06].

Finally, if H(x, y) ≥ H0, we consider the pixel as a corner. This will produce corner blobs. In order to select
a single pixel to represent the corner, we select the local extrema (the pixel with the highest Harris score). Fig. 2.3
shows these steps of image differentiation, computing the Harris score, and identifying corners.

(a) original image (b) second-order x derivative (c) second-order y derivative

(d) cross derivatives (e) detected corners

Figure 2.3: Illustration of the identification of corners through Harris corner detector. (a) shows the original image,
and (b) and (c) the horizontal and vertical derivatives I2x and I2y , respectively. (d) cross derivative IxIy , and (e)
shows the identified corners of the original image.

Another option to evaluate the presence of corners is to analyse the eigenvalues of M . If both eigenvalues are
low, no interesting features are detected. If one is low, but the other is high, we are in the presence of an edge.
Lastly, if both eigenvalues are high, the pixel is likely a corner. As such, one interpretation of the Harris detector
is that corners are identified by finding the intersection of edges.

With this in mind, an alternative for the corner analysis, is to check the value of the lowest eigenvalue of
M(λmin), through the approximation

2.1 Camera Projection Model and Imaging Features 11

λmin ≈
λ1λ2
λ1 + λ2

=
det(M)

trace(M)
. (2.6)

And then this value is used as a corner criterion.

This relation between corners and eigenvalues is not evident, and is related to the Gaussian curvature of a
surface at a point, in particular, the corner point. Fig. 2.4 shows the surfaces E(u, v), defined by

E (u, v) =
[
u v
]
M

[
u

v

]

M =
∑[

I2x IxIy

IxIy I2y

] (2.7)

for multiple cases. The interesting aspect is that the two principal curvatures at a given point of a surface are
the eigenvalues of the shape operator at the point, and effectively they measure how the surface bends. As such,
corners are points where the surface bends in both directions, with corresponding high eigenvalues. This is why a
valuable approach to corner detection is the analysis of the eigenvalues.

(a) flat zone (b) edge zone (c) corner zone

Figure 2.4: Gaussian curvature around different points. (a) shows a flat zone, two low-value eigenvalues, (b) shows
a edge zone, one significantly-large eigenvalue, and (c) shows a corner, two significantly-large eigenvalues.

SIFT and SURF features and descriptors SIFT (Scale Invariant Feature Transform, [Lowe, 2004]) and SURF
(Speeded-Up Robust Features, [Bay et al., 2006]) are two well-known feature detectors used for conventional cam-
eras. These detectors have been documented and their principle of working is not relevant for this work. However,
even though extracting features from the image is an important step, another crucial step is matching the features
that were detected between consecutive frames. To facilitate this matching, SIFT and SURF features have an
accompanying descriptor, which serves as a sort of label to identify each feature, and allow for easier and faster
matching of features between frames. This concept of descriptor is very powerful and useful, as it means there
is objective information that can be used to match features. Taking SIFT descriptors, for examples, each feature
has a descriptor, corresponding to a grid of 4x4 blocks , each containing 4x4 sub-blocks. For each sub-block, the
feature’s main orientation is estimated, and all 16 sub-block orientation are condensed into a bin with 8 directions.
As such, each feature has a 4x4 blocks x 8 orientation bin which creates a 128D descriptor.The gradient magnitude
mg and orientation θ, which is used for the descriptor is given by

12 Background and State of the Art

mg(u, v) =

√
(L(u,+1, v)− L(u− 1, v))

2
+ (L(u, v + 1)− L(u, v − 1))

2

θ(u, v) = tan−1
(
L(u, v + 1)− L(u, v − 1)

L(u,+1, v)− L(u− 1, v)

)
L(u, v, σ) = G(u, v, σ) ∗ I(u, v)

(2.8)

where G is a Gaussian kernel and I the image.

2.1.2.2 Feature Tracking

Having identified features, an important step is being able to match them or track them across multiple frames.
As such, it is important to choose features which are unique and not easily mismatched (distinct features), as well
as features that are easy to reidentify from multiple angles (robust and stable features, invariant to viewing direction
and distance, and illumination variances).

Sum of Squared Distances (SSD) A simple approach is to use a global minimization method through the Sum
of Squared Distances (SSD) between the features being proposed as a match, with the underlying principle that
matching features are close to each other in consecutive frames. However, this is not always the case.

Also, this approach complicates feature reidentification whenever it exits and re-enters the frame, and is also
slow. Furthermore, there is no guarantee that the exact same number of features has been detected, which further
complicates this approach.

This technique is better suited for template tracking across frames, assuming rigid body motion, which is not
always the case, with independent feature movement.

Iterative Closest Points (ICP) This approach is very similar to SSD, in the sense that it tries to match a point to
its closest point in the next image, but this is an iterative approach. The downsides are generally the same as SSD.

Figure 2.5: Example of ICP being used to match two lines.

Descriptors To facilitate feature matching in classical cameras, along with the features detected (interest points),
image descriptors around these points are also preserved, which are then compared for matching. This ap-
proach is used by Scale-Invariant Feature Transform (SIFT [Lowe, 1999]), Speeded-Up Robust Features (SURF
[Bay et al., 2006]) and similar approaches.

2.2 Event Cameras 13

2.2 Event Cameras

Event cameras, also called neuromorphic cameras, silicon retina or Dynamic Vision Sensor (DVS) are image
sensors that respond to changes in brightness in the scene. Unlike conventional cameras, which capture full image
frames at a fixed frequency (commonly 30Hz or 60Hz), producing redundant information and requiring a high
bandwidth for transmission, each pixel in an event-based camera operates independently and asynchronously,
reacting to changes of brightness in the scene, eliminating the transmission of redundant information, allowing for
much higher temporal resolution (in the order of microseconds, as opposed to the milliseconds of conventional
cameras).

Event cameras are inspired by the behaviour of the cells in the retina. Though oversimplified, retinal cells re-
spond to changes in the environment (namely brightness), generating an electrical impulse. The transient response
of each retinal cell is independent. Event cameras mimic this behaviour by asynchronously and independently re-
sponding to changes in brightness in the environment, generating ON/OFF events each time a predefined threshold
in brightness is exceeded.

This architecture allows for interesting properties, such as microsecond temporal resolution, high dynamic
range (above 120dB), which allows for scenes with both bright and dark zones, and does not suffer from un-
der/overexposure, nor motion blur.

Events are triggered when the brightness in a certain pixel surpasses a certain threshold. In particular, discrete
brightness steps are pre-defined, and whenever brightness detected crosses the threshold, an event is generated.
Positive crossings generate ON events, and negative crossings generate OFF events. In effect, each pixel is con-
stantly working as a comparator (with corresponding electronic to support this mode of working). Fig. 2.6 shows
the first-generation DVS sensor, with an array of 128x128 pixels (from [Lichtsteiner et al., 2008]), where this idea
of comparison and threshold is shown.

Events are then defined as a four-component vector:

e =
(

(x, y)
T
, t, pol

)T
= (p, t, pol)T (2.9)

The component p = (x, y)
T refers to the spatial position of the event in the camera. The component t refers

to the timestamp of the event, and is of extreme importance due to the microsecond temporal resolution of the
camera. Lastly, the parameter pol refers to the polarity of the event (ON/OFF events).

With this event structure, it is common to represent events in a three-dimensional (space-time), representation,
as shown in Fig. 2.7.(d), which shows the space-time evolution of events generated from a rotating black bar on a
white background, over a period of 1000 ms.

Conventional cameras and event cameras have fundamentally different modes of operation and output. As
such, a comparison of the behaviour in the same scene, and an analysis of the output, is interesting. Fig. 2.7 shows
the response of both a conventional camera and an event camera when presented with a disk with a black dot
rotating at a high speed. The fixed capture rate of the conventional camera is unable to keep up with the speed
of the dot, and the images suffer from motion blur and some discontinuity between frames. The event camera,
however, due to its asynchronous event generation and temporal resolution, is able to continuously produce events
relating to the movement of the dot.

Advances in camera manufacturing have allowed for cameras that have both conventional camera pixel arrays,
and event camera pixel arrays. This enables hybrid algorithms, which take advantage of the benefits of event

14 Background and State of the Art

(a) DVS128 camera (b) principle of working

(c) image sensor (d) DVS240 event camera

Figure 2.6: First generation event camera (a) and corresponding principle of operation (b), showing the thresholds
and the corresponding asynchronous generation of ON/OFF events, from [Clady et al., 2015]. A more recent
model, the DVS240 camera, (c) shows the image sensor, and (d) shows the provided lens attached to the camera.

cameras, with the extensive research on conventional cameras.

2.2.1 DVS240 and DAVIS240 Event Cameras

A DVS240 event camera (Fig. 2.6) was available to us and used for part of this work (1). It is an event camera
that is also capable of full frame greyscale recording (but not simultaneously with events, as only one can be active
at each time; this mode was mainly intended for calibration purposes). The camera has a resolution of 240x180
pixels and comes with an adjustable length lens that changes the focal length (from 3.5mm to 12mm) and field of
view (FOV) (from 64.6 deg horizontal and 50.6 deg vertical, to 20.9 deg horizontal and 15.7 deg vertical).

A more powerful camera, the DAVIS240, allows for the simultaneous recording of events and frames, and is
the camera used in some of the datasets that were used (2), and is therefore worth mentioning. The rest of the
specifications are similar to the DVS240.

Lastly, ESIM ([Rebecq et al., 2018b], 3), an event camera simulator was also used in this work, replicating a
DAVIS240 camera, and is explained further in Section 5.1.

1https://inivation.com/wp-content/uploads/2020/04/DVS240.pdf, accessed last 2021/07/25
2https://inivation.com/wp-content/uploads/2019/08/DAVIS240.pdf, accessed last 2021/07/25
3https://github.com/uzh-rpg/rpg_esim

https://inivation.com/wp-content/uploads/2020/04/DVS240.pdf
https://inivation.com/wp-content/uploads/2019/08/DAVIS240.pdf
https://github.com/uzh-rpg/rpg_esim

2.2 Event Cameras 15

(a) comparison of outputs, no motion blur (b) comparison of outputs, with motion blur

(c) rotating bar used for (d) (d) spatio-temporal evolution of events

Figure 2.7: Comparison of the output of a standard camera (above), and an event camera (below), when recording
a rotating disk with a black dot, adapted from [Mueggler et al., 2017a]. (a) shows a lower speed rotation; (b) shows
a higher speed rotation, with motion blur from the conventional camera. Also, space-time representation of events
(d) generated from a rotating black bar (c), from [Clady et al., 2015].

2.2.2 Feature Detection and Tracking on Event Cameras

For event-based cameras, new types of features, as well as detectors, are being proposed, as classical techniques
are not easily transferable in most cases, or result in a non-negligible performance decrease, due to conversion
overhead from asynchronous events to frames. However, corners seem to prove as interesting features to use, as
not only can they be detected using both conventional and event cameras (and can therefore be matched between
the event stream and full frame images), but also algorithms considering only events are available, which leverage
the potential of events, namely speed and event independence.

Due to the nature of events, gradient operators are not possible (at least directly applied to the event stream),
since there is no image on which to apply them, and multiple techniques have been proposed, of which three are
considered.

2.2.2.1 Feature Detection

In this section we explain the techniques proposed for feature detection using events, in particular Space-time
detection, Event-based Harris Corner Detector, and SAE-based corner detector.

16 Background and State of the Art

Space-time detection This method relies on the space-time properties of events, and creates a 3D representation,
containing the spatial position of an event (x, y), as well as the time it was received. In this representation, edges
moving with uniform linear speed create planes (stack of lines at different instants), and corner movement creates
lines (stack of points at different instants).

As such, this technique tracks moving edges by fitting planes in this 3D representation, implicitly estimating
the speed of the moving edge (optical flow). Each new event is matched to the previously estimated planes, and
the estimates are updated, as shown in Fig. 2.8.

Figure 2.8: Distance calculation from event to plane, and plane fitting, from [Clady et al., 2015].

The way this technique identifies (and tracks corners) is by detecting intersection between these planes, as
these intersections correspond to the corner movement through a period of time (Fig. 2.9).

Figure 2.9: Corner are the result of the intersection of lines (edges) at a given timestamp, which themselves result
from the space-time planes that are being estimated, from [Clady et al., 2015].

Event-based Harris Corner Detector This technique (from [Vasco et al., 2016]) relies on the Surface of Active
Events (SAE), a representation system for events, which keeps track of the timestamp of the most recent event for
any given pixel, regardless of polarity, defined by

SAE : (x, y)→ t (2.10)

2.2 Event Cameras 17

Indeed, it is a spatial representation ((x, y) coordinates, corresponding to each pixel), which can be discretized
by assigning a value to each pixel based on its timestamp. Fig. 2.10 shows an example of the SAE, where the
events are represented from white to grey, as they go from more recent to older.

Since this discretized representation is now a frame in the classical sense, we can apply the Harris Corner
Detector directly to the SAE and identify the corners from these results. A more efficient implementation relies
on considering only the neighbouring region of an event as it arrives, instead of the whole SAE. As such, only a
subset of the SAE is analysed. Since each event, and consequently, each subset, is independent on the other subsets
(provided the subsets do not overlap), parallel implementations are possible, and also improve speed.

SAE-based Corner Detector This technique also relies on the SAE representation of events but does not perform
any computations. Rather, it performs only comparison operations on a local neighbourhood around the relevant
event.

As each event is received, its timestamp is compared with the neighbouring pixels using circular segments (for
isotropic response and efficiency), and checked if patterns similar to the one in Fig. 2.10 are present (contiguous
pixels with decreasing timestamps), as these are typical corner patterns.

Though this method is not as effective, it is much faster, as no computations are performed, and each event can
be processed independently (and concurrently in a parallel fashion).

(a) SAE representation (b) comparison filter applied (c) comparison filter

Figure 2.10: (a) Representation of SAE, on which the comparison filter from (c) is applied, and checked for patterns
of decreasing intensity from centre to surrounds, as shown in (b), from [Mueggler et al., 2017a].

2.2.2.2 Descriptors

For event cameras, a typical choice of features, as previously presented, are corners. However, the choice of
descriptors for matching and tracking is not yet as developed as for classic cameras, though some descriptors based
on time properties of events, or their distribution and neighbourhood, have been proposed ([Cohen, 2015]).

2.2.2.3 Feature Tracking

In this section we explain the techniques proposed for feature tracking using events, in particular Sum of
Squared Distances (SSD), Spatio-temporal tracking, and Event-Based Kanade-Lucas-Tomasi Tracker (EKLT).

18 Background and State of the Art

Sum of Squared Distances (SSD) A first approach to feature matching across frames is to rely on the fast nature
of events, and to create pseudo-frames4 by combining features over a timeslice (accumulation of events for a given
interval). The features of both pseudo-frames can then be matched using SSD, assuming a proximity between
features in consecutive pseudo-frames.

Nevertheless, this approach is not ideal, as a critical parameter is the time of integration in the timeslice, which
does not take full advantage of the nature of events and event cameras, and could be so slow as to have the same
temporal resolution as conventional cameras.

Spatio-temporal Tracking The technique presented in Section 2.2.2.1 for corner detection is also able to track
these corners across multiple timestamps, since the plane and line fitting that are performed in the spatio-temporal
representation of events for edges and corners, respectively, implicitly estimates their motion and position across
time.

However, since no descriptors or identifiers are being registered, some problems arise when features leave the
camera space and are recaptured later, as well as situations where multiple corners overlap and end up merging
together. This is particularly true for corners from organic features, as opposed to artificial structures.

Event-Based Kanade–Lucas–Tomasi Feature Tracker (EKLT) EKLT ([Gehrig et al., 2020]) is a hybrid fea-
ture tracking technique that is able to merge information from conventional cameras and events (and hence is more
suitable for the new generation of DAVIS event cameras), that tracks corners across time. The method is based on
the Kanade–Lucas–Tomasi Feature Tracker (KLT), hence the name EKLT (Event-Based Kanade–Lucas–Tomasi
Feature Tracker).

This method tracks corners, as they are easy to recognize in both conventional cameras (Section 2.1.2.1), and
correspond to areas with high event generation, that can be detected using event corner detectors as well (Sec-
tion 2.2.2.1).

The idea behind this tracker is to detect features using a conventional frame, which are then tracked using
events until a new frame arrives, at which point the estimation from events is compared to the corner detection in
the new frame, in essence correcting this estimation. If the feature is not detected, it is still tracked in event space,
as subsequent frames may re-detect missed features. This approach is particularly useful in high-speed movements,
where motion blur becomes a problem for frames, but not for events.

This comparison between frames and events is crucial, and the key concept is "image variation in a frame
patch". As previously discussed (Section 2.2), event cameras respond to brightness changes in the environment.
Therefore, it is not farfetched to compare events to image gradients, as zones with higher gradients in the world
are precisely the ones that produce the most events. In fact, integration (accumulation) of events over a period of
time produce results that are very similar to the gradient of the image, as shown in Fig. 2.11.

This is the idea at the core of this approach, as the brightness change behaves as sort of descriptor for the
features, and are used as patches for a Lucas-Kanade inspired patch comparison and matching, using both the
patch and estimated velocity (estimated through events), using the cost function

min
p,v

∥∥∥∆L(u)−∆L̂(u, p, v))
∥∥∥2 (2.11)

4In this context, and throughout this work, pseudo-frames are defined as an accumulation of features detected or tracked using events, in
effect generating a batch of features that can be compared to a batch of features extracted from a conventional camera.

2.2 Event Cameras 19

where ∆L denotes changes from events, ∆L̂ denotes gradients from frames, and u denotes the image, p the warp
parameters, and v the velocity. p and v are used as the starting values for the optimizer that minimizes the functional
(2.11), and are modified during the optimization process.

While a new frame is not received, the corner is tracked in event space and the local patch is being created for
comparison with a frame patch created from image gradients, as shown in Fig. 2.11.

(a) template from event accumulation (b) template from frame gradients

(c) overview of EKLT

Figure 2.11: Comparison of the brightness change from event integration (a), versus the brightness change from
image gradient (b). (c) shows the block diagram of EKLT, illustrating the comparison between brightness changes
from images and events, from [Gehrig et al., 2020].

It is worth noting, however, that the dependence on corners may present a problem for low-textured, or highly
organic environments, where high quality corners are not always present.

Also worth mentioning is the parameter v shown in Fig. 2.11, which accounts for the optical flow. Though
inconspicuous at first glance, v is crucial for the generation of the Predicted Brightness Increment, as it estimates
the flow angle (the direction objects in the image are moving), which is needed to predict the polarity of the events
and generate the template based on frames to compare against the real Brightness Increment generated from events.

This parameter is estimated by one of the following methods:

Kanade–Lucas–Tomasi Tracker (KLT) method This approach uses the classic KLT algorithm ([Lucas et al., 1981])
to estimate motion flow. The original algorithm estimates the motion flow by comparing patches between consec-
utive image frames (images I and T by means of the minimization of the photometric error

20 Background and State of the Art

min
p
‖(I ◦W) (u)− T (u)‖2 (2.12)

whereW (u; p) denotes a warp that maps image I to image T , and parameters p include the translation and rotation
of these patches. From this warp, flow can be estimated.

We are already considering frame patches around features. This approach takes this into account and compares
consecutive patches to estimate their motion, and estimate v.

Event method A second approach for optical flow estimation of the patches is based on the Brightness Constancy
Formulation, with a novel approach using events.

A common approach to estimate optical flow relies on two principles: brightness constancy and small motion.
The first principle is that scene points moving through the image sequence along time remains the same, meaning

I (x(t), y(t), t) = C (2.13)

that represents that a certain point x, y being tracked along time t is always constant (C).

The second principle states that the motion is small, so that we can write:

Optical flow (velocities): (u, v)

Displacement: (δx, δy) = (uδt, vδt)
(2.14)

Combining both principles, we have that, for small space-time steps

I (x+ uδt, y + vδt, t+ δt) = I(x, y, t) . (2.15)

These assumptions yield the Brightness Constancy Equation:

dI

dt
=
∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t
= 0 . (2.16)

This derivation is not obvious and is better explained in Section D.1. However, it is not necessary to understand
the following steps.

We can then rewrite (2.16) in matrix form, in particular

∇I(u, v)T + It = 0⇒ (u, v) = −∇I−1It . (2.17)

This means that the optical flow (u, v) can be approximated by means of the spatial derivatives∇I =

[
Ixx Ixy

Ixy Iyy

]
and the temporal derivative It = ∂I

∂t .

The interesting novelty in this approach is the use of events to obtain the temporal derivative, while still ob-
taining the spatial derivative from the frame.

2.3 Inertial Measurement Unit (IMU) 21

2.3 Inertial Measurement Unit (IMU)

The event cameras used for this work all have an Inertial Measurement Unit (IMU), with coordinate frame
matching the camera frame. As such, explaining the type of information that is produced by the IMU is fundamen-
tal.

The IMU is a sensor that reports the linear acceleration and the angular velocity of a body by means of ac-
celerometers and gyroscopes (sometimes also the orientation by means of magnetometers, but the IMU used did
not have this capacity and therefore it is not analysed).

Let us consider a square sitting on the floor (Fig. 2.12). On it acts only the force of gravity pushing down, but
it is counteracted by the force of the floor on the square. Unless a force acts on this square, it remains still. Let
us know consider that an horizontal force Fx acts on the square. This force will make the cube move, according
to Newton’s equation of force the F = ma → a = F/m. Logically, the greater the force, the farther the
square will move, as this acceleration is higher. An accelerometer is able to measure this acceleration that the
square was subject to, and give us information on the movement of the square (that can be obtained through
x(t) = v0 t+ 1/2 a t2, where v0 denotes the initial velocity (in this scenario, v0 = 0)).

m

Fg

N

m
Fx

Fg

(a) no force applied (b) horizontal force applied (c) produced reading on accelerometer

Figure 2.12: (a) shows a square on the floor, being acted on by gravity Fg and resulting normal force N . (b) shows
movement of the square from acting force Fx, and (c) the resulting reading in terms of acceleration.

The rotation can be analysed the same way, but its interpretation is not as trivial, as a rotating frame is not an
inertial frame. Its analysis thus need the use of angular speed ω with moment of inertia I and angular momentum
L = I × ω. Angular motion causes the gyroscope to oscillate in certain ways to maintain the angular momentum,
thus giving us an estimation of the angular speed ω.

Let us now analyse the sensor readings. Starting with the gyroscope, and considering a single axis, it provides
a measurement ω̃ that relates to the angular velocity of that axis, and is (according to [Siciliano and Khatib, 2016])
given by

ω̃ = ω + ωb + ηω

ηω ∼ N
(
0, σ2

gyro

) (2.18)

which corresponds to the true angular velocity ω corrupted by the sensor bias ωb and the sensor noise ηω , which is
modelled as additive, zero-mean Gaussian noise.

In order to have 3DOF we use 3 gyroscopes, one for each orthogonal axis, and we assume no crosstalk between

22 Background and State of the Art

them. The bias is temperature dependent and can vary over time, but is generally modelled as a constant, and may
be specified in the manufacturer’s datasheet, alongside the sensor variance σ2

gyro.
In order to obtain orientation information from angular velocity, we can integrate the angular velocity, as per

the motion equations and corresponding Taylor expansion

ω(t) =
∂

∂t
θ(t)

θ(t+ δt) = θ(t) +
∂

∂t
θ(t)δt+ ε

ε ∝ O(δt2) .

(2.19)

A perfect measurement would produce a perfect estimation of orientation (apart from a constant offset). How-
ever, noise makes this more complicated, as shown in Fig. 2.13. Gaussian noise makes the orientation estimation
fluctuate along the correct value, which may be acceptable in some situations. However, the bias poses a more
complicated problem, as we are constantly integrating a wrong value, even when there is no movement.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time [s]

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

A
n

g
u

la
r

v
e

lo
c
it
y
 [

d
e

g
/s

]

Gyroscope readings with different combinations of noise

Groundtruth

With bias

With noise

With noise and bias

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time [s]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

O
ri
e

n
a

ti
o

n
 [

d
e

g
]

Orientation estimation for different combinations of noise

Groundtruth

With bias

With noise

With noise and bias

(a) comparison of readings with different noises (b) expected orientation for different noises

Figure 2.13: (a) Effect of the various types of noise on the reading of the sensor and its impact on the estimation
of the orientation (b).

Continuing with the accelerometers, a similar reasoning can be applied. We have a measurement ã given by

ã = a+ ab + ηa

ηa ∼ N
(
0, σ2

acc

) (2.20)

dependent on the true value a, sensor bias ab and noise ηa. The accelerometer deserves special attention, as it does
not measure acceleration relative to a coordinate frame as one would expect. Rather, this acceleration is relative to
a free fall state, meaning the reading is 0 when the sensor is free falling. When static, it measures the gravitational
acceleration pointing upwards (since the accelerometer is accelerating upwards comparing to a free fall).

Again, a sensor for each axis is used, and no crosstalk is assumed. In order to obtain position information
from angular velocity, we can integrate the acceleration twice (once for velocity and twice for position), as per the
motion equations and corresponding Taylor expansion

2.4 Pose Estimation 23

v(t) =
∂

∂t
x(t)

a(t) =
∂

∂t
v(t) =

∂2

∂t2
x(t)

x(t+ δt) = x(t) +
∂

∂t
x(t)δt+

1

2

∂2

∂t2
x(t)δt2 + ε

ε ∝ O(δt3)

(2.21)

Similarly, a perfect measurement would produce a perfect estimation of position (apart from a constant offset),
but noise and bias render this task difficult. An extra step needs to be taken into account, which is subtracting the
force of gravity from the affected axis (or axes, when no single axis is pointing straight down (or up)).

IMUs are very useful in the sense that they provide high speed information regarding both position and ori-
entation (through angular velocity and linear acceleration). However, the noisy measurements, coupled with the
random walk associated with the bias, can lead to very incorrect estimations, especially when the system is stand-
ing still, and the noise overpowers the correct measurement itself. The calibration process for the IMU is explained
in Appendix A.

2.4 Pose Estimation

Pose estimation refers to the problem of trying to estimate the position and orientation (collectively called the
pose) of a system. A common approach is to use information provided by a camera to detect and track a set of
features, which are used to estimate the motion of the system (ego-motion), as there is a relation between the 3D
point in the world and its corresponding 2D projection in camera space (Section 2.1.1), which is also influenced by
the movement of the system (Section 2.4.1).

2.4.1 Camera Motion and Motion Field

There is much information to be extracted from a time-varying sequence of images. When a camera moves (or
when objects move in front of a camera), there are changes in the captured image, that can be used to estimate the
motion of the camera.

Let us assume a generic point P0 in the world that is projected onto a point Pi in the camera by means of the
projection equations presented in Section 2.1.1. The movement of this point P0 will create a motion on the image
plane. We define the motion field corresponding to the moving point as an assignment of a velocity vector to each
pixel in the image. However, the motion field cannot be directly measured, as we can only measure the motion of
brightness patterns in the image which we refer to optical flow. Fig. 2.4.1 represents this idea of a point P0 moving
at velocity v0 in the world, with corresponding projection Pi with velocity vi (the motion field).

The perspective projection for this simple example is given by

ri
f

=
r0
r0 · z

(2.22)

which can be used to apply to the velocities

24 Background and State of the Art

Sensor

z

Pinhole
f

pi

po

Scene point
ro
+ δ

ro

ro

ri+
δri

ri

vo · δt

vi · δt

Figure 2.14: Motion field obtained when projecting a moving pointP0 in the world to the camera plane.

Figure 2.15: Representation of the motion field and optical flow from the barber pole, where there is a mismatch
between the two.

Scene point velocity: v0 =
d r0
dt

Image point velocity: vi =
d ri
dt

= f
(r0 · z) v0 − (v0 · z) r0

(r0 · z)2
= f

(r0 × v0)× z
(r0 · z)2

(2.23)

where × denotes cross product.

The motion field, vi, is what we would like to have. Unfortunately, we cannot guarantee that this is what is
being measured. We are only measuring the motion of brightness patterns in two consecutive frames, called the
optical flow, which depends on many factors, such as the distance of the point P0 to the camera.

The classic example where motion field and optical flow are not the same is the barber pole, Fig. 2.4.1, where
a rotation along the vertical axis results in a mismatch between the motion field and the optical flow.

Consider now the motion field generated exclusively by the movement of the camera (ego-motion), with trans-
lational velocity T and angular velocity ω. In relation to the observer, a 3D point P = (X,Y, Z)

T moves,
according to [Horn et al., 1986], following

2.4 Pose Estimation 25

Ṗ = −T − ω × P =

ẊẎ
Ż

 = −

TxTy
Tz

−
 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


XY
Z

 . (2.24)

Recovering the projection equations presented in Section 2.1.1, in particular


x = f

X

Z

y = f
Y

Z

⇒


ẋ = f

ZẊ −XŻ
Z2

ẏ = f
ZẎ − Y Ż

Z2

. (2.25)

Combining (2.24) and (2.25), we arrive at (check Section D.2 for derivation)

[
ẋ

ẏ

]
=
f

Z

[
−Tx + x

f Tz

−Ty + y
f Tz

]
+

ωx
xy
f − ωy

(
f + x2

f

)
+ ωzy

ωx

(
f + y2

f

)
− ωy

xy
f − ωzx

 . (2.26)

Analysing this equation is interesting, and we can see the left part pertains to translation, and the right to
rotation. Furthermore, we can also see that translational component depends inversely on depth, and there is scale
ambiguity (meaning T and Z can only be recovered up to a scale factor). On the rotation side of things, we see that
there is no dependence of depth, and therefore depth estimation is not possible without translation.

2.4.2 Visual Odometry

Visual odometry appears as the inverse problem to (2.26), as we want to estimate the translational and angular
velocities of our camera, assuming we know how certain specific points in our camera plane (called features), are
moving along time.

Odometry itself is the use of data from movement sensors to estimate the change of position and orientation of
a system over time. It naturally follows that visual odometry is the use of visual information (in particular cameras)
to estimate this displacement.

A typical pipeline for visual odometry is as follows: 1) Acquire image; 2) Undistort image, 3) Detect features
(Match features between consecutive frames, and Obtain optical flow field), 4)Estimate camera motion from optical
flow (a common approach is the use of Kalman Filter (Section B.2.1))

Visual odometry is particularly relevant in the context of SLAM, more specifically Visual SLAM (also called
vSLAM), whose goal is to use visual information to construct a map of the system’s surrounding environment,
and to place the system in said map. In this case, the visual component is useful to estimate the motion of the
system across time (and also to correct the predicted pose of the system when it passes through a previously
mapped zone (loop closure)). Multiple SLAM approaches have been proposed, of which we highlight Fast-
SLAM ([Montemerlo et al., 2002]), ORB-SLAM ([Mur-Artal and Tardós, 2017]), EKF-SLAM, and GraphSLAM
([Thrun, 2002]). These approaches rely on conventional cameras to provide features that are used to construct a
map and also be used as reference for the estimation of the pose of the system.

26 Background and State of the Art

Figure 2.16: Overview of ORB-SLAM architecture, showing the tracking, local mapping, and loop closing threads,
from [Mur-Artal et al., 2015].

2.5 State of the Art

In this section, we briefly present some related works to the problem of pose estimation with event cameras. We
also analyse SLAM formulations using conventional cameras as a way to compare between conventional cameras’
and event cameras’ performance when tackling this challenge.

Many solutions have been proposed in the context of pose estimation with conventional cameras. We choose
to highlight ORB-SLAM ([Mur-Artal et al., 2015]) as a reference in the area of SLAM. This is a Visual SLAM
implementation, meaning only visual information (and not inertial) is used. The system also allows for stereo
and depth camera implementations (with the advantage of being able to obtain the scale of the map). Being a
SLAM approach, great emphasis is placed on map building, with corresponding difficulties (but also advantages).
In particular, three threads are considered: 1) the tracking thread, that localizes the camera at every frame by
matching the detected features; 2) the local mapping thread, that creates the map, and performs a local Bundle
Adjustment; and 3) the loop closing thread, that detects when the system revisits a previously before seen location,
and corrects drift in the system estimation. Fig. 2.16 shows this global description of the system.

ORB features are used in the system, with an associated 256 bit descriptor, as they are faster than SIFT and
SURF, which are unable to keep the temporal requirements of the authors. These features are based on FAST
corners, with a custom descriptor.

The tracking thread is what is most relevant for comparison with this work. A frame by frame feature matching
is performed, and the features being detected are compared against the local map to obtain the pose of the camera.
A motion-only bundle adjustment is performed to minimize the error in placing the feature in the correct position
(minimizing the reprojection error). If tracking is lost, the system tries to re-localize itself on the map it has built.

2.5 State of the Art 27

The map itself is created by leveraging algorithms such as ICP and local Bundle Adjustment (BA), by com-
bining the most probable position of the camera with corresponding feature location. The initialization uses the
relative poses between two scenes to obtain the fundamental matrix and place the features in the starting map.

Assuming a previous map has already been created, ORB-SLAM also allows for a “localization-only” mode,
where the system is being placed in the previously generated map, but a new map is not being generated (in effect,
only the tracking thread is active).

Even though ORB-SLAM uses a visual odometry approach, it is a reference in terms of performance, and a
baseline against with many works compare their approach and performance.

Event cameras are much more recent (to conventional cameras), which means a definitive approach to pose
estimation (and SLAM) has yet to be widely accepted, and multiple authors have proposed different approaches to
this problem, ranging from conservative formulations, trying to leverage existing and proven methodologies using
event cameras ([Zihao Zhu et al., 2017]), to more innovative approaches trying to make the most of what is now
possible with event cameras ([Vidal et al., 2018]).

Starting with [Rebecq et al., 2017], a visual inertial odometry approach using event cameras is introduced that
relies on events and the IMU embedded in the event camera. The estimated state is composed of a rotation matrix
R ∈ SO(3), a position vector r ∈ R3, and a velocity vector v ∈ R3, forming the full state vectorRr

v

 . (2.27)

The IMU includes a 3-axis accelerometer and 3-axis gyroscope, and measures linear acceleration and angular
velocity, that are modelled according to

ω̃(t) = ω(t) + bg(t) + ηg(t)

ã(t) = R(t) (a(t)− g) + ba(t) + ηa(t)
(2.28)

where ω̃ ∈ R3 corresponds to the read value on the gyroscope, ω ∈ R3 is the “real” value, not affected by noise,
bg ∈ R3 is the gyroscope bias, and ηg is the gyroscope additive white noise. Similarly, for the accelerometer,
ã ∈ R3 is the value from the sensor, R ∈ SO(3) is the rotation matrix representing the current orientation of the
camera, a ∈ R3 is the “real” acceleration value, g ∈ R3 represents the gravity vector, ba ∈ R3 the accelerometer
bias, and ηa the sensor noise.

The IMU and its corresponding readings serve as input to the discretised dynamics model
R (t+ ∆t) = R(t)exp (ω̃ − bg(t)− ηg(t)∆t)

v (t+ ∆t) = v(t) + g∆t+ R(t) (ã(t)− ba(t)− ηa(t)) ∆t

r (t+ ∆t) = r(t) + v(t) + 1/2g∆t2 + 1/2R(t) (ã(t)− ba(t)− ηa(t)) ∆t2

(2.29)

where exp denotes the exponential map of the Lie Group.

On the vision aspect of this approach, the concept of spatio-temporal windows is introduced, which is a way
this group proposes to accumulate events, so that a frame can be obtained for feature extraction (Fig. 2.17).

The novel idea in this approach is how the event frames are generated from events. Instead of simply accumu-

28 Background and State of the Art

Figure 2.17: Spatiotemporal window proposed, where each event (blue) is grouped into a window Wn, that is then
used to obtain features, from [Rebecq et al., 2017].

lating them according to Ik(x =
∑

ej∈Wk
δ (x− xj) (Fig. 2.18.(b) top right and bottom left) which is noisy and

sometimes not reliable, motion-corrected event frames are proposed, that take advantage of the IMU measurement
to reproject the event into the camera frame using the linearly interpolated pose Ttj (Fig. 2.18.(a)), which results
in a sharper event frame (Fig. 2.18.(b) bottom right), using the expression Ik(x =

∑
ej∈Wk

δ
(
x− x′j

)
, where x′j

denotes the corrected event position.

(a) (b)

Figure 2.18: (a) shows the motion correction, where inertial measurements (red squares) are used to compute the
linearly interpolated pose Ttj to reproject each event (blue dot). (b) top left shows the camera frame, top right
shows 3000 events accumulated, and bottom left 30 000 events, both not motion corrected, bottom right shows
30 000 events motion corrected.

The motion corrected event frames are then fed into a FAST corner detector that extracts features. The visual-
inertial localization and mapping problem is then formulated as a joint optimization of a cost function that contains
weighted reprojection errors er and inertial error terms es:

J :=

K∑
k=1

∑
j∈J (k)

ej,k
T

W j,k
r ej,k +

K−1∑
h=1

ek
T

s W k
s e

k
s (2.30)

where k denotes the frame index, j the landmark index, and the set J (k) contains the indices of landmarks visible
in the k − th frame. Furthermore, W j,k

r is the information matrix of the landmark measurement Ij , and W k
s is the

information matrix of the k − th IMU error. The reprojetcion error ej,k
T

r is given by

ej,k
T

r = zj,k − π
(
T k
CST

k
SW Ij

)
(2.31)

2.5 State of the Art 29

Figure 2.19: Algorithm overview. Data from the camera and the IMU are processed in temporal windows and
integrated to propagate the state. Features are tracked using two expectation maximization steps that estimate the
optical flow of the features and their alignment with respect to a template. Outliers are removed using RANSAC.
From [Zihao Zhu et al., 2017].

where zj,k is the measured image coordinate of the j − th landmark on the k − th frame. The IMU measurement
error is given by comparing the current predicted state based on the previous state and the actual current state.

Moving to the work of [Zihao Zhu et al., 2017], an event-based visual inertial odometry approach for estimat-
ing 6-DOF using EKF is proposed, by the name of EVIO (Event-based Visual Inertial Odometry). This approach
leverages both the visual information from the event camera, as well as the inertial information from the IMU. The
filter estimates a state of the form

S :=


q

bg

v

ba

p

 (2.32)

where q represents the orientation of the camera in the global frame by means of a unit quaternion, v represents
the velocity of the system, p its position, and bg and ba the biases of the gyroscope and accelerometer, respectively.
The global overview of the proposed approach is presented in Fig. 2.19.

Features in this approach leverage the fact that events generated from a landmark produce, and therefore, all lie
in, the same curve in a spatio-temporal representation. Furthermore, this curve also relates to the optical flow of the
feature created in the camera space from said landmark. The spatio-temporal windows to analyse the landmarks
are dynamically assigned by measuring the activity (rate of event generation) of that feature.

In order to increase robustness of the features being tracked and fed into the filter, a RANSAC approach is
used to remove outliers and correct the estimated position. The features themselves correspond to corners being
detected using the FAST technique.

For the propagation itself, the dynamic equations

30 Background and State of the Art

q̇(τk) =
1

2
Ω(ωk − b̂g(τk)q(τk)

ṗ(τk) = v(τk)

v̇(τk) = R(q(τk))T (ak − b̂a(τk)) + g

ḃa(τk) = 0

ḃg(τk) = 0

(2.33)

are used.
For the update step, the comparison between expected feature position and observed reprojection is performed,

by means of

h(L, S) := π(R(q)(L− p)) (2.34)

where L denotes the batch of features, S the estimated state, q the orientation, R(q) the rotation matrix and p the
expected feature position.

Lastly, [Vidal et al., 2018] proposes the current best solution for pose estimation, also leveraging frames,
events, and the IMU for visual inertial odometry, but with some differences in regards to the approaches presented
previously. It can be considered an improvement on the work by [Rebecq et al., 2017], but now using frames as
well. It also tackles some of the limitations of [Zihao Zhu et al., 2017], in particular its slow performance (and
resulting impossibility to be used real-time).

The main idea can be summarised as follows. Two types of visual information are being used in parallel:
frames in the conventional sense, and event frames, created by creating spatio-temporal windows of events that are
then accumulated (therefore creating a frame). Features using both types of frames are detected using the FAST
corner detector, and tracked using KLT. They are also used to triangulate landmarks in the world.

The spatio-temporal window for event accumulation is the same as the one presented in Fig. 2.17, and a window
of 20 000 events was used in this case. Furthermore, the idea for motion-corrected event frames, as well as the
filter state, are the same as the ones in [Rebecq et al., 2017].

The optimization function is also the same as [Rebecq et al., 2017], but now using visual information that
alternates between features from event frames, and from conventional frames. The use of these two types of visual
information increase greatly the performance of the approach, which is also able to run in real time. Fig. 2.20
shows the detection of features using FAST with both frames, and event frames.

2.5 State of the Art 31

Figure 2.20: Feature detection on frames and event frames, for multiple conditions. Green features have
been tracked for some time and are considered good features, whereas blue ones are candidate features, from
[Vidal et al., 2018].

32 Background and State of the Art

Chapter 3

Visual Odometry and Visual Inertial
Odometry

If I had only one hour to save the world, I would spend

fifty-five minutes defining the problem, and only five minutes

finding the solution.

— Albert Einstein (apocryphal)

This chapter explains the proposed and developed methodology for the Visual Inertial Odometry system. It
is written in a way to tell the story of how this approach was selected, in particular opposed to other methods.
First the system model is explained (Section 3.1). Afterwards inertial odometry systems are presented, and their
limitations explained (Section 3.2). Then visual odometry approaches (relying only on vision) and their limitations
are presented (Section 3.3). Then our visual inertial odometry approach is introduced, in particular the tools used
for the approach, using both vision and inertial information (Section 3.4).

3.1 System Model

Our system consists of an event camera that contains an IMU sensor embedded. It is important to understand
what each sensor is reading and what reference frame each one uses to make sense of the data being fed into, and
received from, the system.

Concepts like “left” and “right”, “up” and “down” only make sense when there is some sort of reference to
compare it against. Reference frames appear as coordinate system that uniquely represent measurements within
that frame, in an absolute manner. Cartesian coordinates are a common and intuitive choice of representation of
measurements, where all axis are orthogonal and linearly independent.

By wanting to estimate the pose of our camera, what is implicit in this statement is that we have defined some
sort of reference in the world (for example, the starting point of the camera trajectory), and we want to define its
current position and rotation (pose) with regard to this initial reference.

Our IMU reports two types of information: angular velocity ω = [ωx ωy ωz]
T ∈ R3 and linear acceleration

a = [ax ay az]
T ∈ R3. However, this information also has a reference frame implied. As such, the accelerometer

34 Visual Odometry and Visual Inertial Odometry

x

y

z

W

x

y

z

C

Figure 3.1: Representation of our system model, with relevant coordinate frames of reference described, in partic-
ular, world frameW and camera frame C.

reads movement on the x-axis, for instance, this reading is placed in its own reference frame, and somehow needs
to be related to the world frame so that in can be useful in the context of pose estimation (the same applies for
gyroscope information, which also relates to the internal reference frame of the IMU).

Luckily, to relate two frames of reference, we only need to rotate their axis so they align, and translate their
centres to match, by means of the rigid transformation

T (x) = Rx + t (3.1)

where T denotes the transformation, R the rotation, and t the translation. The set of rigid body transformations
constitutes the Special Euclidean Group (SE), and is better explained in Section B.1.3.2. Multiple transformations
can be successively performed, so that nested frames of reference can be used (frames references that depend on
other frames of references to be described, so that moving the former automatically moves the latter).

The camera also has a reference frame for the image frame. Luckily, this reference frame is aligned with the
IMU reference frame. As such, the critical frames of reference are the world frame (on which we are estimating
the pose of the camera), and the IMU/camera reference frame. This setup is shown in Fig. 3.1, showing the world
frame W , with regards to which we want to estimate the position and orientation of our system, and the camera
frame C, with regards to which the sensor readings are produced.

To reiterate, the odometry methods presented in this chapter intend to estimate the position of the camera, at
all times, with regards to the world frameW .

3.2 Inertial Odometry

Inertial odometry refers to the use of inertial sensors to estimate the current pose of the system. As presented
in Section 2.3, the IMU is an inertial sensor that reports on the movement of the system (namely angular velocity
and linear acceleration). As hinted on the same section, using Newton’s laws of motion, it is possible to relate the
pose of the system with the sensor reading.

Being of interest to the ORIENT project, which aims to study the visual and vestibular systems, inspiration was
taken from such biological systems, and multiple comparisons with biological systems are made with said systems.
So, do humans have some sort of inertial odometry? The answer is yes, by means of the vestibular system.

3.3 Visual Odometry 35

The vestibular system is not very familiar, but it is responsible to report information on our movement, sense of
balance and spatial orientation. It is comprised of two particular structures in our ears: the semi-circular channels,
and the otolith organs. We have three semi-circular canals in each ear, orthogonal among themselves, one for
each axis, that are capable of sensing rotational movement. We have two otolith organs in each ear, responsible for
linear acceleration information. (Funny enough, our vestibular system is sensitive to angular and linear acceleration
([Luo, 2015]), whereas an IMU reports angular velocity and linear acceleration.)

The analogy with humans is interesting in this case, even if not explicitly analysed during daily lives. Imagine
you are in a car, as a passenger, blindfolded and not moving. There is no visual information to know where you
currently are, nor estimation based on steps, touch or any other systems. Nevertheless, whenever the driver makes a
turn, you can feel the rotation (even if by means of centripetal force), and whenever the driver stops or accelerates,
you can also feel such movements. By knowing your starting point, and continuously counting the turns of the
route, time accelerating, being stopped, ..., you can keep more or less keep track of your whereabouts.

This idea is translated to an artificial system using an IMU, by continuously integrating the information from
the sensor. The gyroscope registers the turns (in 3D) that the system is performing, or is being subject to, and the
accelerometer reports the acceleration of the system (when it was stopped, and when it was moving). This way
there is an estimate of the pose of the system at all times, using a simple approach. This inertial odometry obtained
from continuous integration of the measurements is called dead reckoning.

However, there are limitations, which can also be interpreted in light of human experience. Imagine you are
now in a rollercoaster, still blindfolded. You can still feel your movement in the cart (very aggressively, in fact),
but over time (after a few loop-the-loops), you have lost your bearing. After a number of twists and turns, you can
no longer know where you are pointing to in regards to your starting point (or at least, not with total confidence).
You can still say that you are moving left or right, but you have drifted in your pose somewhere along time.

And this is the most significant limitation of inertial odometry: it is prone to drifting away over time, as there
is no correction from other systems. Sensors inherently have noise, and, in particular, the IMU has biases, which
means that such a naïve approach is of limited use, has it drifts over time and is, therefore, fallible.

However, inertial odometry allows for very fast updates (IMU usually report information upwards of 100 Hz),
which can be needed in some cases, where a very small, very fast movement needs to be estimated.

Nevertheless, we have not opted for such an approach.

3.3 Visual Odometry

As introduced in Section 2.4.2, visual odometry refers to the approach to the pose estimation problem where
information from the motion of the camera is obtained based on changes in the image, by tracking the change of
certain features in the image.

Returning to the analogy with biological systems and human examples, the visual system is familiar to us,
and consists mainly of our eyes. There is a great deal of information we obtain from the world using our eyes,
in particular using our two eyes. Without any movement, we can observe the environment around us, we can
estimate the motion around us, and we can infer our position. Furthermore, and by no means less important,
with two eyes we can estimate depth from the mismatch of the images being captured by each eye, as well as the
accommodation reflex of the pupil (we change the lens shape and pupil size based on the distance of the object
in focus ([Luo, 2015]), which is obvious when a person tries to follow a pen moving in front of their eyes). Just

36 Visual Odometry and Visual Inertial Odometry

by common sense, vision is critical (though vision can be replaced, as is evident by blind people, but we digress),
which is why visual odometry has been chosen in multiple systems.

There are many methods to obtain visual odometry, i.e., obtain information from the motion of the camera
based changes in the image, as mentioned in Section 2.4.2. Filtering, in particular Kalman Filtering is such an
approach. Another is that of visual SLAM, again, as mentioned in Section 2.4.2.

We chose to present an approach based on the work of [Martins, 2019]. This solution was initially developed
in the context of estimating the orientation of an eye, as part of the ORIENT project, and therefore only focused
on rotation (as a translating eye in its socket would be a serious medical condition). As such, it is not a true
Visual Odometry approach, as only rotation information is provided. For a true system, translation should also
be estimated. Regardless, it is interesting to test this approach as event cameras are still recent, and many recent
proposed approaches also only estimate angular motion.

In [Martins, 2019], approaches to estimate the orientation of a monocular visual system were proposed, based
on the the Orthogonal Procrustes Problem, which is a problem in Linear Algebra that consists of finding the
orthogonal matrix Ω that most closely maps matrix A to matrix B, as formulated in

R = argmin‖ΩA−B‖F , subject to ΩT Ω = I (3.2)

where ‖.‖F represents the Frobenius norm.

This problem is equivalent to finding the nearest orthogonal matrix to a given matrix M = BAT . As such, to
find the orthogonal matrix R, the singular value decomposition (SVD) can be used, resulting in

M = UΣV T (3.3)

R = UV T . (3.4)

This solution though SVD was demonstrated to be optimal ([Schönemann, 1966]). In order to apply the Pro-
crustes method to orientation estimation, a set of features are extracted from the images before and after the
movement of the camera. Since depth cannot be accurately estimated using a single camera with no translation,
the features are projected into a unitary sphere, thus becoming 3D landmarks (shown in Fig. 3.2).

Matrices A and B represent the pointclouds of landmarks detected, and the objective is to find the rotation
matrix R (Ω in (3.2)) that maps one pointcloud to the other. The proposed method thus estimates rotation between
two frames assuming no (or minimal) translation by using the Orthogonal Procrustes Problem. Assuming this
setup, this solution is optimal. Nevertheless, feature detection, matching, non-ideal movement, and other factors
complicate this problem.

3.3.0.1 Filtering Approach for Video Data

Expanding on the work by [Martins, 2019], we add support for more than only two frames, in particular a video
sequence. The idea is to apply the Orthogonal Procrustes Problem consecutively when a new frame is received, so
that rotation over time can be estimated.

In order to minimize the error accumulation, rather than constantly comparing the features of the current frame
to the previous frame, we instead compare it to the earliest recorded frame with a minimum number of matched
features. When this number is lost, the trackers are reset and the last estimated orientation becomes the reference

3.4 Visual Inertial Odometry 37

x

y z

pt1

pt2

pt3

x

y z

pt1

pt2

pt3

pt+∆t
1

pt+∆t
2

pt+∆t
3

(a) projections before movement (b) projections after movement

Figure 3.2: Estimating rotation using Procrustes: (a) shows instant t with corresponding projection of features,
and (b) shows instant t + ∆t, with movement of camera and corresponding change of projection of the tracked
features.

orientation for future comparisons, which can sometimes be a source of error, as deviations are accumulated over
time.

3.3.0.2 Adaptation to Events

The Procrustes’ strategy expects a set of 3D landmarks that are provided with each acquired frame. Events do
not naturally follow this organized and expectable pattern, so changes are needed.

The proposed method involves using EKLT ([Gehrig et al., 2020]) to detect and track the features. This way
we are able to asynchronously detect and track features across time, each with a fixed ID (eliminating the need for
a matching step, such as RANSAC in the original implementation).

In order to address the dependence on frames, we accumulate the asynchronous features over a period of time
in order to simulate frames being received. Nevertheless, in order to take advantage of the fast nature of frames
(which would otherwise be lost waiting for the accumulation of events and features), we keep this integration time
very short (around 5 ms, still much faster than the typical 20-35 ms of conventional cameras), or lower.

3.4 Visual Inertial Odometry

In this section we explain our proposed approach for pose estimation using event cameras, leveraging both vi-
sual and inertial information provided by event cameras. We start by explaining the work of [Brossard et al., 2017],
on which we based ourselves.

3.4.1 Proposed Approach

Our filtering and sensor fusion approach is based on ([Brossard et al., 2017]), which proposes a filter that in-
tegrates IMU and visual information in the form of a UKF (Unscented Kalman Filter) (technically a SR-UKF,
but this distinction is nor relevant; check Appendix B.2 for more information). This filter introduces several sug-
gestions worth mentioning, such as 1) a Lie group structure for the state space (resulting in a matrix state space,

38 Visual Odometry and Visual Inertial Odometry

rather than a vector state space), 2) integration of the landmark position in the Lie group, and 3) representation and
computation of the uncertainty directly in the Lie group, rather than outside of it, followed by a conversion to the
Lie group.

This filter estimates the body pose (position and velocity) and 3D landmark positions, as well as accelerom-
eter’s and gyroscope’s biases. The first two parameters (pose and landmark positions) are integrated in the Lie
group structure, and the latter two (biases) are appended to the state estimation. Though this is not a SLAM im-
plementation, as the whole area is not being mapped (only the local, current region in the vicinity of the body is
estimated), the formulation itself is very similar as if it were a SLAM problem (and could be extended if desired).

Our approach, based on the integration of the visual information (processed by EKLT) with inertial informa-
tion by means of the filter presented, aims to leverage a synergy and complementarity between the two types of
information. The global overview of this approach is shown in Fig. 3.3.

Figure 3.3: First proposed approach, where the feature tracker EKLT is fed into the pose estimator, FUSION, a Lie
groups-based Unscented Kalman Filter.

Why use UKF (rather than EKF)? Simple Kalman Filter is not suitable, as the system is non-linear. Between
UKF and EKF, UKF has better noise robustness, due to the unscented transform (see Section B.2.3), allowing for
the presence of stronger noise, as it does not need to linearize the system (which incorrectly models stronger
noises). Also, not needing to linearize the system is also an advantage in terms of computation.

Why use Lie groups? Rotations can be represented in several ways. The most simple and intuitive one are
Euler angles. However, this representation is not without its problems, in particular gimbal lock (when two or more
axes of the system converge to a parallel configuration, effectively locking the system and reducing the degrees
of freedom), and wrap around problems (when the estimation reaches the limit of the interval, such as wrapping
from 180 degrees to -180 degrees). Quaternions solve these problems, at the cost of loss of legibility. Lie groups,
in particular the Special Orthogonal group (SO(3)) can also represent rotations, with the added benefit of allowing
for the representation of differentiable quantities associated to the group by means of Lie algebra (in this case,
orientation and rotation velocity). As such, in this filter, Lie groups were used.

3.4.2 Filter Structure

This section explains the relevant components of the filter, namely the state, dynamic model and observation
model. This filter expands on the works of [Barrau and Bonnabel, 2015], which introduced a Lie group based EKF,
following the suggestions of [Bonnabel, 2012], that showed the similarities between the SLAM problem and the
group SE1+p(3). [Loianno et al., 2016] proposed a UKF implementation on SE(3). Lastly, [Brossard et al., 2017]
proposed the inclusion of the landmarks into the group itself, creating a group SE2+p(3), coupled with a UKF im-
plementation. Furthermore, two techniques of propagating the uncertainty were suggested, of which we kept the
right uncertainty from their proposed Right-UKF-LG.

3.4 Visual Inertial Odometry 39

3.4.2.1 State Space

The state being estimated by the filter is given by the tuple (χ, b) where χ is defined as

χ =

[
R v x p1 · · · pp

02+p×3 Ip+2×p+2

]
(3.5)

and corresponds to a Lie group SE2+p(3) that incorporates the orientation R ∈ SO(3) , velocity v ∈ R3 and
position x ∈ R3, as well as the 3D positions of the landmarks p1, . . . ,pp ∈ R3.

b ∈ R6 is the bias vector, defined as

b =
[
bTωb

T
a

]
(3.6)

containing the gyroscope and accelerometer biases bω and ba.

The choice of a matrix χ to represent the state is not common in Kalman Filters, but there are some advantages
to this representation. One such reason is that the use of a Lie group that encompasses almost all the variables being
estimated allows for a "cleaner" and more robust mathematical formulation, without the need to convert between
different types of representation (of which we highlight rotations, that may be represented by Euler angles, rotation
matrices, and quaternions, among others), thus increasing numerical consistency (a problem that may arise from the
usage of SR-UKF (Appendix B.2.4)), and increasing accuracy in estimation by avoiding such conversions between
representation ([Asl et al., 2019], [Brossard et al., 2017]).

Another reason is legibility, as such a structure, though containing redundant information (of which we high-
light rotations again, that are represented as a SO(3) Lie group and contained within the SE2+p(3) Lie group, and
its skew symmetric representation that includes multiple entries for each axis of rotation), is much easier to read
and interpret than others, for instance a vector-column containing quaternions, without losing coherence, as may
happen with an Euler angles representation and its inherent gimbal-lock problem.

3.4.2.2 Dynamics Model

The system can be modelled by

body state


Ṙ = R (ω − bω + nω)×

v̇ = R (a− ba + na)− g
ẋ = v

(3.7)

IMU biases

{
˙bω = nbω

ḃa = nba
(3.8)

landmarks {ṗi = 0, i = 1, . . . , p (3.9)

where we have access to angular velocity ω and linear acceleration a through the IMU mounted on the system. n
represents the various noise, defines as

n =
[
nTωn

T
a n

T
bωn

T
ba

]T ∼ N (0, Q) (3.10)

The notation (ω)× represents the skew symmetric matrix associated with the cross product with vector ω ∈ R3

40 Visual Odometry and Visual Inertial Odometry

3.4.3 Measurement Model

Visual information is also fed into the system by means of a calibrated monocular event camera, in order to
correct the predicted state of the system. The camera observes and tracks p landmarks through the standard pinhole
model and corresponding projection model (Section 2.1.1):

yi =

[
yiu

yiv

]
+ niy (3.11)

where yi is the normalized pixel location of the landmark in the camera frames, and ny ∼ N (0, N) represents the
pixel image noise.

This location is then compared with the expected location of the feature in camera space, obtained by projecting
the estimated 3D position of the landmark into camera space through

λ

x
i
u

yiu

1

 = Π
[
RT

C

(
RT (pi − x)− xc

)]
(3.12)

where Π denotes our camera matrix, RT
C our initial rotation of the system, RT the current estimated rotation, pi

the i− th landmark 3D estimated position, x the estimated position of the system, and xc the initial position of the
system.

After testing different types of ways to obtain and feed visual data from event cameras into the system with
the previous approach (Section 3.3.0.2), we found out some empirical ways that produced interesting results. The
proposed method relies on EKLT ([Gehrig et al., 2020]) to detect and track the features. This way we are able to
asynchronously detect and track features across time, each with a fixed ID.

Since events do not naturally follow this organized and expectable pattern of producing visual information at a
constant interval (which can be both advantageous and disadvantageous depending on the situation), changes are
needed to provide a batch of features to the measurement model.

The proposed approach is that of accumulation of the asynchronous features over a period of time, in order to
simulate frames being received. We call these accumulation of event features over time pseudo-frames, and are
usually of 20 ms or less, to take advantage of the speed of events.

Three strategies are proposed for the creation of the pseudo-frames:

• Fixed interval integration Features are accumulated over a fixed period of time before being fed into the
system. This period of time is defined at the beginning as is configurable by the user. Typical values were
under 5 ms.

• Fixed number of features update Features are accumulated until a batch with a predetermined number of
features is achieved.

• Hybrid approach Features are accumulated until a fixed period of time has passed, or until a predetermined
batch of features is achieved (whichever comes first), and is a combination of both previous suggestions.

Though the hybrid approach should perform better, we found that a fixed interval integration was much more
easily manageable (as it translates quite naturally to a conventional camera producing features, albeit at a much
faster rate), we used the fixed interval integration when validating the approach.

3.4 Visual Inertial Odometry 41

3.4.4 Implementation of UKF based on Lie Groups

Our dynamical system evolves over time according to

χn+1 = f (χn, un, wn) (3.13)

where χn corresponds to the proposed Lie group (3.5) at time instant n, un =
[
ωT
n a

T
n

]T
is a known input variable

with gyroscope and accelerometer readings, and wn ∼ N (0,Qn) is white Gaussian noise. f corresponds to the
discretized dynamics model implemented on Lie groups.

Furthermore, the system has associated a discrete measurement of the form

yn = h (χn, vn) (3.14)

where vn ∼ N (0,Rn) is white Gaussian noise.

3.4.4.1 Uncertainty on Lie Groups

The usage of Lie groups to represent part of the state improves accuracy and numeral consistency, but comes
at the cost of a more complex representation of noise. Since our state is not a vector space, the usual approach of
additive noise is not possible. Following [Barfoot and Furgale, 2014], the probability distribution χ ∼ NR (χ̄,P)

is defined by mapping the uncertainty ξ to our state by means of the exponential map

χ = exp(ξ)χ̄, χ ∼ N (0,P) . (3.15)

The uncertainty ξ =
[
ξTR ξ

T
v ξ

T
x ξ

T
p1
· · · ξTpp

]T
is mapped to the Lie algebra through the transformation ξ 7→ ξˆ

defined as

ξˆ=

[
(ξR)× ξv ξx ξp1

· · · ξpp

02+p×5+p

]
. (3.16)

3.4.4.2 Time Discretization

In order to implement Eqs. (3.7) to (3.9), a simple discretization using the Euler method is used, with the
exception of rotation. Considering a small time step ∆t, we have

R (t+ ∆t) = R(t)exp
[
(ω(t)− bω(t)) ∆t+ Cov(nω)1/2g

√
∆t
]
×

v (t+ ∆t) = v(t) + (R(t) (a(t)− ba(t))− g) ∆t

x (t+ ∆t) = x(t) + v(t)∆t

bω (t+ ∆t) = bω(t)

ba (t+ ∆t) = ba(t)

pi (t+ ∆t) = pi (t)

(3.17)

42 Visual Odometry and Visual Inertial Odometry

3.4.4.3 Predict and Update Implementation

The various components of the system are described by

state

{
χn = exp(ξ)χ̄n

bn = b̄n + b̃
,

[
ξ

b̃

]
∼ N (0,Pn) (3.18)

dynamics {χn, bn = f (χn−1, un − bn−1, nn) (3.19)

observations

Yn =
[
yT1 · · · yTp

]T
:= Y (χn, wn)

yi given by (3.12), i = 1, · · · , p
(3.20)

where
(
χ̄, b̄n

)
represents the mean estimate of the state at time n, Pn ∈ R(15+3p)×(15+3p) is the covariance matrix

that defines uncertainties
(
ξ, b̃
)

, and the vector Yn contains the observations of the p landmarks with associated
Gaussian noise wn ∼ N (0,W).

These components are implemented into an SR-UKF-like filter, with the usual steps of propagation (based on
the motion model with input from the accelerometer and the gyroscope) and update (based on the observation
model and the visual information).

3.4.5 Implementation

A more detailed block diagram of the implementation is shown in Fig. 3.4.

Figure 3.4: Proposed integration of visual data, frames and events, into the UKF Visual Inertial filter. We replace
the internal feature extractor and tracker with our approach based on EKLT and an accumulation of features, that
are then fed into the UKF.

3.4 Visual Inertial Odometry 43

In this sketch, x represents the state, composed of the presented tuple (χ, b). ˆ(x) represents the estimate, (x̂)−

is the estimate before measurement update, and (x̂)+ represents the same estimate after update. z represents the
observations (features) fed into the measurement update.

3.4.6 Filter Initialisation

The initialisation of the filter should be carefully considered. The “ideal” initialisation would be to provide the
correct values of all variables in the state, i.e., set the correct values of pose and the location of the landmarks, in
particular. However, not only is such an approach not always possible or realistic (testing on a new, uncontrolled
environment for the first time), it also defeats the purpose of a system that is placed in an unknown environment
and must be robust enough to eventually converge to the correct values.

This problem is not exclusive to our approach, and some suggestions have been made elsewhere. Taking
[Qin et al., 2018], for example, a suggestion where a dataset is captured, and a first pass on the first moments of
the dataset is performed, so that the first few values for the landmark location can be estimated (as multiple points
of view allow for triangulation of features into 3D landmarks). After these values are obtained, the system starts
again, initialised with them.

However, this solution only works offline, i.e., the system first captures a trajectory, and estimation is performed
afterwards. Though perfectly legitimate, we preferred to strive for an approach where the system is able to run
online, meaning it can estimate its location at the same time it is exploring the world, without the need for the first
initialisation pass.

For the initialisation of the position, orientation, and velocity of the system, no prior information is given,
and the filter starts with all values at 0. We believe not only is this approach fair in the sense that the filter must
be robust enough to be able to survive the first instants and quickly obtain these values, it also allows for quick
testing in different environments, as no prior estimation is needed. Furthermore, this implementation assumes the
starting pose to be the base frame, meaning all future pose estimations are given in relation to this frame, which we
consider to be aligned with the world frame. If there are other components in the system, and we know this not to
be true, a simple rigid motion transformation for a coordinate change can be performed. Also, if some information
of the initial state of the filter is available, it can also be used for the initialisation, but it is not needed.

The landmarks, however, are a different story, and two distinctions for the initialisation are made: initialisation
for the start of the system, and for the replacement of features. For the former, we place landmarks in the world by
following the projection line of the corresponding features, which allows for estimation of theX and Y coordinates,
but depth is trickier, as a single point of view is not enough for depth estimation (and for that matter, neither is
rotation). With this regard, we assign a distance value d that reflects the average distance of the landmarks in the
world, to have a notion of scale. As such, every landmark in the world follows |X,Y, Z| = d (which in practice
means they are all in the same sphere of radius d). Another approach that was used for planar scenes was to
consider the same Z for all features (they are all on the same plane at distance Z from the camera). Regardless,
since the depth value is not trustworthy, a high variance is assigned to the start, which decreases as the system
evolves.

For the latter (feature replacement), since information of past states of the filter are available (in particular, we
keep the previous sightings of every feature), we can introduce a new landmark by triangulating the past sightings
into the world, thus creating a much more reliable 3D position of the landmark that is introduced in the filter state.

44 Visual Odometry and Visual Inertial Odometry

3.4.7 Special Note - DVS Cameras

EKLT was developed with DAVIS cameras in mind, as they assume access to frames and events is always avail-
able. However, as explained in Section 2.2.1, the DVS240 camera available to us does not allow this functionality,
as it can either stream frames, or events, one at a time, but not simultaneously. As such, our initial approach when
testing with the DVS240 camera consisted of forcing a switch between these two modes, that was toggled when
the camera was still.

The reasoning of this approach is as follows: the tracking of features is performed using events, and frames are
used for feature extraction, and template matching. As such, if the camera starts in frame mode, stationary, feature
extraction of the initial features is possible. Afterwards, the mode is switched to events, and these features that
have been extracted are tracked using events (as is expected by EKLT) and matched against the template provided
by the first frame (from which the features were extracted).

Obviously, even with perfect tracking and no loss of features, if the camera moves out of the region where the
initial features were detected, there will be nothing to track. In this case, motion is stopped so that the mode can
be temporarily switched to frames, to allow for the extraction of new features, that are then tracked with events.

This switching loop continues for as long as we keep the experiment alive.

Chapter 4

Closed Loop Integration of Sensor and
Pose Filter on Event Cameras

“Though this be madness, yet there is method in’t.” (There is

method to his madness.)

— William Shakespeare, Hamlet

This chapter explains our second proposed approach to the pose estimation problem using event cameras, and
(as designed) is only applicable to event cameras (though the idea can be converted to conventional cameras). It
consists of creating a sort of “closed loop” between the filter, estimating the pose, and the tracker, tracking and
providing visual features.

Two problems identified when testing the previous approach were as follows: the number of features is limited;
and sometimes features are lost, only to be found a few moments later, but with a different ID (which is not
necessarily bad, but then the filter treats this feature as a new one, and all previous sightings are discarded). The
first problem is of difficult resolution without major changes in the approach, as it is based on corner detection,
which are common in images, but still limited. The second problem, however, implies improving the tracking of
features so that they are kept alive for longer. As such, we set out to improve EKLT tracking performance.

4.1 Motivation for Improved Approach

Our proposed approach is to develop a system that can better track the features in EKLT, as these are cor-
ners, which are distinct, but not particularly abundant in a scene, and therefore EKLT extracts less features than
approaches such as SIFT or SURF features. Therefore, keeping as many features alive for as long as possible
becomes paramount in our system.

Revisiting EKLT (Section 2.2.2.3), at first glance it may seem like a simple implementation of KLT, where the
matching patches are obtained from frames and events (as opposed to the normal strategy of both patches coming
from frames), and, to a certain extent, this is true. But there is more to be said about the generation of these
templates.

On the event side of things, other methods rather than simple accumulation can be used (such as motion

46 Closed Loop Integration of Sensor and Pose Filter on Event Cameras

corrected frames proposed in [Rebecq et al., 2017]), or some sort of filtering can be used to reduce outliers or
noisy events. Nevertheless, from our experience, the patch region are so small (usually 20 pixels wide), and the
integration time so short (usually under 5 ms, and generally under 10 ms), that we believed our efforts were better
spent elsewhere.

The frame side of things is a different story, however. Looking back at Fig. 2.11, we can see that the x-wise and
y-wise image gradients are generated, and (after being subject to a warp) are merged by means of a dot product
with the flow angle. This parameter of the flow angle v may look innocent, but it is critical in the generation of the
template, and has proven to be one of the main reasons for tracking loss.

Its function is not obvious or intuitive, but it can be interpreted as a weight in the linear combination of the
x-wise and y-wise gradients of the image. If the camera is moving horizontally, then the accumulation of events
is mainly on the horizontal direction, and v reflects this by placing more importance on the x-wise derivative.
Movements in other directions have respective flow angle values that reflect this movement.

Furthermore, the flow angle v also allows to infer the direction of movement, as moving left to right produces a
different polarity of events to a movement from right to left. The template obtained from frames needs to take this
into account to be able to be compared against the event template. As such, it is now clearer that this parameter is
of paramount importance in the tracker.

Lastly, another parameter to be optimized is the initial location of the feature, which corresponds to the expected
position of the feature, and is fed into the optimizer as a starting value. This parameter is also important, but since
features are updated very frequently (sometimes around 1 ms, in very fast paced scenes) it is not as critical as the
flow angle (though it also plays an important role, in particular when a feature is lost (Section 4.4)).

With this in mind, we propose an approach where the current estimated pose is fed back into EKLT to help
with the tracking of features. This approach creates a sort of "closed loop", where position from FUSION is fed
into EKLT, which then provides information for FUSION, as shown in Fig. 4.1.

To the best of our knowledge, though not novel, this is an uncommon and innovative approach where there is
some sort of additional processing at the sensor level, with information external to said sensor.

Figure 4.1: Global view of our proposed closed loop integration suggestion, where the pose estimation is fed back
into EKLT to help with feature detection.

This approach also tries to turn EKLT into a more robust alternative to DVS cameras, that can only capture
either frames or events at any given time, and take some time when switching between these two modes (see
Appendix C, where an experiment is performed and this delay is analysed).

Therefore, when features are inevitably lost, there is a period where no new information is provided, which
reduces the contribution of the visual component. Therefore, by improving the tracking of features, this approach
can also be beneficial to DVS cameras, as features are lost less, and their need to be replaced (and, therefore, of
full frames), is reduced.

4.2 Ego Motion and Optical Flow 47

Ideally, with perfect matching, only the initial frame would be needed. However, obviously, this is never the
case, so a switch to frames (and then to events) is necessary to ensure tracking for DVS cameras.

4.2 Ego Motion and Optical Flow

In Section 2.4.1, it is already derived how the movement of the features being captured by the camera are
influenced by its motion, in particular (according to [Heeger and Jepson, 1992]), following

[
ẋ

ẏ

]
=
f

Z

[
−Tx + X

f Tz

−Ty + Y
f Tz

]
+

ωx
XY
f − ωy

(
f + X2

f

)
+ ωzY

ωx

(
f + Y 2

f

)
− ωy

XY
f − ωzX

 (4.1)

where ẋ and ẏ represent the flow in x and y axes, respectively, x and y represent the feature in the image frame,
f the focal length of the camera, T(.) the translations of the camera, and ω(.) the rotation of the camera. One
particular note that needs to be made is that (4.1) is made in regard to the reference frame presented in Fig. 4.2,
which differs from the camera frame and world frame presented previously (Fig. 3.1).

Let us now explore (4.1) in more detail. In particular, let us analyse the influence of each motion in the
evolution of the movement of the features. The equation has been grouped in a translation component on the left,
and a rotation component on the right. In total, there are 6 basic types of movement possible, corresponding to an
isolated rotation or translation in the x, y, and z axes.

Exciting a single axis at a time produces the patterns presented in Fig. 4.3, which show the position of each
feature over time, accumulated on a single frame. Notice the similarities in pattern between rotation in the y
axis and translation in the x axis, both of which produce mostly horizontal patterns, as well as rotation in the x
axis and translation in the y axis, both of which produce mostly vertical patterns. These similarities also speak
to the limitations of a purely visual odometry approach, as inertial measurement can help disambiguate between
such motions. Only z axis rotation and z axis translation produce more distinctive patterns, the former producing
concentric ellipses, and the latter producing lines moving into or away from the centre of the image (point of
expansion), similar to the “warp speed” in space movies.

Since we can predict the evolution of the position of the feature over time, it is possible to estimate the flow
angle. However, it is very important to take into account that these predictions work for the immediate proximity
of the feature, i.e., this assumption only works for small timestep. If the timestep is bigger, the predicted movement
will not match the real position of the feature (see Fig. 4.4, where features initiating at the same position eventually
drift away and up up at different positions).

x

y

Figure 4.2: Reference frame for motion model, which differs from the world and camera reference frames pre-
sented previously.

48 Closed Loop Integration of Sensor and Pose Filter on Event Cameras

-100 -50 0 50 100

x position in camera frame

-80

-60

-40

-20

0

20

40

60

80

y
 p

o
s
it
io

n
 i
n
 c

a
m

e
ra

 f
ra

m
e

x axis translation

-100 -50 0 50 100

x position in camera frame

-80

-60

-40

-20

0

20

40

60

80

y
 p

o
s
it
io

n
 i
n
 c

a
m

e
ra

 f
ra

m
e

y axis translation

(a) x translation (b) y translation

-100 -50 0 50 100

x position in camera frame

-80

-60

-40

-20

0

20

40

60

80

y
 p

o
s
it
io

n
 i
n

 c
a

m
e

ra
 f
ra

m
e

z axis translation

-100 -50 0 50 100

x position in camera frame

-80

-60

-40

-20

0

20

40

60

80

y
 p

o
s
it
io

n
 i
n

 c
a

m
e

ra
 f
ra

m
e

x axis rotation

(c) z translation (d) x rotation

-100 -50 0 50 100

x position in camera frame

-80

-60

-40

-20

0

20

40

60

80

y
 p

o
s
it
io

n
 i
n

 c
a

m
e

ra
 f

ra
m

e

y axis rotation

-100 -50 0 50 100

x position in camera frame

-80

-60

-40

-20

0

20

40

60

80

y
 p

o
s
it
io

n
 i
n

 c
a

m
e

ra
 f

ra
m

e

z axis rotation

(e) y rotation (f) z rotation

Figure 4.3: Evolution of features’ position over time due to ego-motion. (a), (b) and (c) show translations in x, y,
and z axis, respectively, and (d), (e), and (f) show rotations in x, y, and z axis, respectively. Notice the similarities
between (a) and (e), and (b) and (d).

4.2 Ego Motion and Optical Flow 49

-100 -50 0 50 100

x position in camera frame

-80

-60

-40

-20

0

20

40

60

80

y
 p

o
s
it
io

n
 i
n
 c

a
m

e
ra

 f
ra

m
e

Drift from long timestep

Figure 4.4: Drift in expected feature position from bigger timestep.

50 Closed Loop Integration of Sensor and Pose Filter on Event Cameras

4.3 Features Tracking complemented by the Pose Filter State

Our objective is to improve the feature tracking from EKLT by feeding it information from the current pose
estimation, which, in turn, will benefit from a greater number of features.

As already explained, the most critical (or, at least, the component that contributes most from loss of features)
is the generation of the template to match from frames, which depends on two main components: the initial
position location and the flow angle. Their importance (and relative importance) have already been mentioned
(Section 4.1). We believe the pose estimator can (either directly or indirectly) help the tracker with regards to these
two components.

Starting with the flow angle, we propose the use of (4.1) to determine it by means of

v = atan2
(
ẏ

ẋ

)
(4.2)

where ẋ and ẏ are given by (4.1). We reiterate the importance of a small timestep, and synchronisation between
the current estimate and EKLT, as disparities become more detrimental than beneficial. To tackle this problem, all
timesteps are kept to a minimum, and are usually of about 1 ms. This ensures the assumptions for (4.1) are valid
(according to our testing).

In terms of the estimations being used for motion, the angular velocity comes directly from the last measure-
ment of the gyroscope (or some sort of mean or median of the last measurements, if readings are too contaminated
by noise). The linear velocity, on the other hand, comes from the state, that estimates the filter velocity (along
with system rotation and position, landmark position, and sensor bias). However, it is important to remember the
relevant frames of reference (see Fig. 3.1). The velocity being estimated is in the world frameW , meaning it needs
to be first converted to the correct frame of reference (the camera’s) before being applied to (4.1). Luckily, since
the rotation of the camera R is one of the variables being estimated in the state, the conversion of velocity to the
camera frame is given by

vC = RT vW (4.3)

where vC and vW denote the velocity v being referenced in the world frameW , and the camera frame C.
Moving on to the initial feature position, our proposed filter structure keeps the estimated 3D position of

landmarks in the state, which can be projected into camera space to obtain the estimated position of the features
by means of the projection equation

λ

x
i
u

yiu

1

 = Π
[
RT

C

(
RT (pi − x)− xc

)]
(4.4)

where Π denotes our camera matrix, RT
C our initial rotation of the system, RT the current estimated rotation, pi

the i− th landmark 3D estimated position, x the estimated position of the system, and xc the initial position of the
system.

This way, the tracker benefits from having an additional information of the features being tracked by adding
the depth factor.

In effect, by “helping” the tracker with the starting values, what is being done is placing the initial estimate
inside the region of convergence, and closer to the global minimum, as the rest of the matching is still performed

4.4 Set of Backup Features 51

by the optimizer, that tries to match both templates, and estimate the current position of the feature (and its flow)
in the process.

The analysis of this region would be interesting, i.e., to say that convergence is guaranteed whenever the initial
flow angle is less than 5 degrees, or when the initial position is not further than 3 pixels. In fact, it would be perfect,
as there would be a component of predictability in the tracker. However, such an analysis is not trivial, as there
are many factors that come into play. To name a few, the speed and overall motion of the scene are critical and
produce different scenarios.

A slowly moving, poorly distinctive feature produces less events (as the changes in brightness are fewer), and
therefore take longer to create a patch, which means a greater displacement is produced, and without outside help
of the closed loop the initial position is farther away from the minimum, perhaps outside the region of convergence.
Not only this, but the patch that is created itself is usually not as distinctive, which result in suboptimal solutions
to the flow estimation that result in suboptimal patches for comparison, and a poorer tracking of position overall.

From our experiments, the importance of the flow angle is much greater than the initial feature location. This
is because the neighbourhood of the feature is really small (the displacement between initial location and final
location is typically around 2-3 pixels diagonally), whereas flow angle could have deviated significantly from the
last optimization (imagine a rotation in the z axis of the camera, where features on the borders of the camera move
faster than those on the inside), and influences the next matching negatively.

4.4 Set of Backup Features

The representation and management of features and landmarks is nothing new, and is a point where much effort
is placed. Referring back to ORB-SLAM ([Mur-Artal et al., 2015]), for instance, the local map being generated is
constantly being updated and corrected by means of local bundle adjustment, so that when new features are de-
tected, they can be compared against the local map, which consists of a 3D point cloud (with additional parameters
that simplify matching but are not particularly relevant in this case).

Based on this idea of using the map created over time to help with localization, we try to take advantage of the
location of features over time to help with localization.

The implementation of the proposed closed loop approach also has other benefits. Tracking features in EKLT is
costly (computation-wise). As such, when features are lost (either because their tracking quality decreasing under
a certain threshold, or because they move outside the FOV of the camera), they are dropped.

In our case, the pose estimator, on the other hand, is capable of storing features and landmarks over time (in
effect, creating a sort of map, as per a SLAM formulation) and keeping these lost and discarded features in a sort
of zombie or dormant state.

Since we can project their predicted location onto camera space by means of (4.4), it is possible to awaken these
features when they enter the FOV again, for example. This means that these features (that would eventually be
detected again, but would be given a new ID, which would not benefit from using past sightings of these features),
are able to be reidentified as used in the filter with the same ID.

This method also allows for bigger jumps in feature tracking, as the initial feature position can be set to a place
that is far away from the previous estimated position (imagine a situation where this landmark becomes occluded,
and therefore disappears, but is kept in memory by the pose estimator; when the landmark is no longer occluded,
since the pose estimation kept running, the expected position based on current pose can be used).

52 Closed Loop Integration of Sensor and Pose Filter on Event Cameras

Internally, this structure corresponds to a table that keeps track of all the sightings of a specific feature across
time (based on its ID), in particular its x and y position in camera space, as well as the estimated camera pose
(position and rotation) at that instant. Through the multiple points of view, associated with the feature position
and camera pose, it is possible to triangulate the position of the landmark in 3D space, in the world frame (using
epipolar geometry constraint).

Since the 3D position is being estimated, it is possible to project it into the camera frame at current time, and
feed it into EKLT when it re-enters the camera FOV. The algorithm of this proposed idea is shown in Algorithm 1.

Algorithm 1: Storing of backup features
Result: Internal representation of landmarks (that can be projected into camera space and fed to EKLT)
while features are received by FUSION do

store feature ID, position, and camera estimated position;
triangulate 3D landmark position;
if landmark projection (feature) is in camera space then

inform EKLT of feature expected location;
else

continue;
end

end

An interesting side effect of such an approach is that it is possible to rank features based on how distinct and/or
observable they are, as features that are detected more, have more entries in the table, and therefore are probably
the ones we want to use, as they are more robust.

4.5 Implementation

The more detailed block diagram of the proposed approach is shown in Fig. 4.5. It is an extension of the block
diagram presented in the first approach, with the inclusion of the new features being proposed. In particular, the
motion estimation that is being performed in the filter is being feeds back into EKLT, and helps better keep track of
the features by leveraging the predictable ego-motion effect on features, as well as the creation of backup features,
that also help keep track of the features, as well as reidentify them later.

4.5 Implementation 53

Figure 4.5: Overview of the proposed approach.

54 Closed Loop Integration of Sensor and Pose Filter on Event Cameras

Chapter 5

Experiments and Results

The person who can combine frames of reference and draw

connections between ostensibly unrelated points of view is

likely to be the one who makes the creative breakthrough.

— Denise Shekerjian

In this section we validate our proposed methods and present their results. In particular, Section 5.1 introduces
the validation environments and datasets used to test the proposed methods. Section 5.2 characterises the experi-
ments performed and their objectives. The following sections present the results obtained for each experiment, and
lastly, in Section 5.6, a critical analysis of the results obtained is performed.

5.1 Datasets and Experimental Setups

In this section we explain the methods which were used to validate our proposed approaches. In particular, we
introduce the simulator used for some of the experiments, the datasets available online that use real event cameras,
and lastly the recorded datasets using the Kinova robot arm to generate trajectories.

Event Camera Simulator Research on event cameras and event-based computer vision is still in its early stages.
One of these reasons is tied to the hardware itself, since event cameras are expensive, not widely available, and are
mostly prototypes, with low resolution (no more than 346x260 in the case of a high-end DAVIS346) and therefore
not ready for commercial applications. Another such reason is the need for data and datasets, which are also scarce
for the time being.

To tackle these problems, a number of simulators have been developed, of which ESIM ([Rebecq et al., 2018b])
is an example, developed by Depts. Informatics and Neuroinformatics at ETH Zurich, in a similar spirit to the
conventional cameras simulator available. ESIM is an open-source ROS package.

Most event camera simulators continuously render images, and consecutive frames are compared. Events are
then generated from big enough differences between frames.

A common problem with this technique is the choice of frame rate, as a naïve approach would have the engine
render at 1 000 000 frames per second, in order to match the microsecond temporal resolution of event cameras.

56 Experiments and Results

However, this is not ideal, as many frames are redundant, and therefore performance is affected. An ideal approach
would only generate frames that are guaranteed to generate events, but at the same time should have a temporal
resolution comparable to event cameras. ESIM uses a tightly coupled system between the simulator and the
rendering engine, allowing for a better simulation, by using an adaptive sampling rate based on the dynamics of
the scene. Fig. 5.1 shows the ESIM architecture.

Figure 5.1: Architecture of ESIM, showing the tight coupling between the simulator and rendering engine, sharing
the information of time tk, camera pose TWC(tk) and camera twist ξ(tk), generating irradiance map E(tk) and
motion field map ν(tk), from [Rebecq et al., 2018b].

Fig. 5.2 shows the advantage of an adaptive sampling approach as opposed to a uniform sampling approach. In
the latter, rapid changes in the environment are sometimes overlooked.

Figure 5.2: Comparison of a uniform sampling approach (b) and an adaptive sampling approach (c) when recreating
the reference response shown in (a), from [Rebecq et al., 2018b]

This adaptive sampling is possible due to a communication between the simulator itself, and the rendering
engine being used. It relies on the knowledge of the trajectory of the virtual camera to estimate the motion on the
scene, which is used to guess changes due to brightness, pixel displacement, noise and non-idealities, to adapt the
sampling rate and the event generation.

ESIM allows the use of multiple rendering engines and modes, such as as an OpenGL integration, as well as

5.1 Datasets and Experimental Setups 57

a photorealistic rendering using Unreal Engine. The simulation of stereo cameras, and panoramic cameras is also
possible. Furthermore, it is possible to “convert” videos to events, though the results are not as good, due to the
fixed sampling rate of the videos, and not using feedback from the rendering engine.

The generation of events is as previously described. This simulator also allows for the generation of images, in
effect replicating the more advanced DAVIS event cameras. For the generation of frames, a simple capture of the
render from the viewpoint of the camera is performed, at specific intervals, corresponding to the framerate of the
camera being generated. It is also possible to simulate exposure time, producing images that are subject to motion
blur (useful for a "fairer" comparison in high-speed motions, though it falls short of a real system in this regard).

The trajectory performed by the virtual camera is crucial for generating the sensor readings, in particular the
IMU measurements (which include both accelerometer and gyroscope readings), as well as groundtruth trajectory
values (for posterior validation of methods). An explanation of the type of information provided by IMUs is
included in Section 2.3.

The simulator can generate a random trajectory, by defining a random set of points, and can also receive a
trajectory predefined in a file. In both cases, the points being supplied are only indicative, and internally the
simulator fits a spline to the trajectory. This concept is shown in Fig. 5.3, and is crucial to generate a smooth
trajectory that can be continuously differentiable (notice the jagged trajectory supplied and the smooth trajectory
received, shown in Fig. 5.3).

The importance of the smooth trajectory is that it can be directly related to the sensor readings. Taking the
accelerometer, for example, it measures the linear acceleration of the camera in space. Well, the acceleration of
a body can be given as the second derivative of movement (the first derivative being velocity). Likewise, velocity
and position can be obtained (apart from a constant) by integrating the acceleration.

As a result of the smooth trajectory from the spline, which is continuously differentiable, we can obtain the
accelerometer reading for that axis by differentiating the trajectory twice, as shown in Fig. 5.3, which compares the
accelerometer reading obtained by differentiating the trajectory twice, and the reading that was in fact generated by
the simulator. It is possible to observe they coincide, apart from a slight noise and bias that the simulator generates
in order to generate more realistic data.

Likewise, for the other sensor readings (namely gyroscope), a similar approach is used, but instead taking into
account the rotation along the trajectory.

Using ESIM, we have created many test scenarios of different complexities, ranging from single axis move-
ment to all axis, from rotation-only or translation-only, to combined movements. Fig. 5.4 shows a sample scene
generated with ESIM, and corresponding generated events. Even though simulators cannot perfectly mimic the
real system, much work was put into getting ESIM close to matching a real event camera, and many authors use it
to test their approaches.

Public Datasets Datasets, like simulators, provide an interesting way to test algorithms without the need for a
camera, compare results with other algorithms, and have a ground truth with which to benchmark. Due to the
novelty of event cameras, there are no “standard” datasets to which to compare against. In fact, not many datasets
have been publicly made available.

In [Mueggler et al., 2017b], a handful of datasets were introduced and made publicly available. The Depts.
of Informatics and Neuroinformatics at ETH Zurich provides a set of event camera datasets 1, recorded with a

1http://rpg.ifi.uzh.ch/davis_data.html

http://rpg.ifi.uzh.ch/davis_data.html

58 Experiments and Results

0 0.5 1 1.5 2 2.5 3 3.5 4

Time[ns] 10
9

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
o
s
it
io

n
 i
n
 t

h
e

 a
x
is

 [
m

]

Trajectory supplied to the simulator

0 0.5 1 1.5 2 2.5 3 3.5 4

Time[ns] 10
9

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
o
s
it
io

n
 i
n
 t

h
e

 a
x
is

 [
m

]

Trajectory obtained from the simulator

(a) trajectory given (b) trajectory generated

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time [ms]

-4

-3

-2

-1

0

1

2

3

4

A
c
c
e

le
ro

m
e

te
r

re
a

d
in

g
 f

o
r

s
in

g
le

 a
x
is

 [
m

/s
2
]

Accelerometer reading estimated from the trajectory

0 500 1000 1500 2000 2500 3000 3500 4000

Time [ms]

-5

-4

-3

-2

-1

0

1

2

3

4

5

A
c
c
e

le
ro

m
e

te
r

re
a

d
in

g
 f

o
r

s
in

g
le

 a
x
is

 [
m

/s
2
]

Accelerometer reading obtained from the simulator

(c) second derivative of trajectory (d) accelerometer reading

Figure 5.3: Comparison of the trajectory that was supplied to the simulator (a) vs. the trajectory that was performed
by the simulator (b), and provided in the trajectory groundtruth. The trajectory corresponds to a movement in a
single axis, back and forth. Comparison of the accelerometer reading obtained by differentiating the trajectory
twice (c) vs. accelerometer reading that was obtained from the simulator (d). Notice the simulator adds some noise
to simulate a real sensor. The spikes in (c) result from the discrete approximation of the derivative, but are not
relevant for the point being made and the comparison.

DAVIS240C (an event camera with both events and full frames), along with IMU measurements and ground truth
(position and orientation) from a motion-capture system. Some of these datasets were used to test the algorithms
developed, as other authors have chosen to use them as well.

These datasets were recorded by moving a DAVIS240C event camera by hand, as such the trajectories produced
are random and not necessarily “precise”. Different scenes were recorded, with more textured environments and
less textured environments being available (Fig. 5.5).

These datasets share a common pattern: they get progressively difficult by increasing speed. Furthermore,
there are datasets that focus on rotation, others translation, and others all 6 DOF. However, since the movement
was done by hand, even the isolated rotation or translation dataset have some undesired motion.

Kinova Datasets In order to have a more rigorous dataset in terms of movement, as opposed to the datasets with
movement by hand (in particular, to generate a dataset that more closely mimics the way an eye works, taking into

5.1 Datasets and Experimental Setups 59

(a) (b) (c)

(d) (e) (f)

Figure 5.4: Example of scene generated using ESIM. (a) through (c) show frames produced at different instants,
and (d) through (f) show events produced in those instants superimposed on the corresponding frames.

account the context of the ORIENT project this work is part of), we recorded a dataset using the Kinova Gen3
robot arm (Fig. 5.6.(a)), with the hope that the robot arm can perform a more controlled and precise movement,
mimicking the eye saccade.

The setup of this experiment relies on a Kinova arm that grips the camera with its end effector (for this purpose,
a special end effector was designed and 3D printed to fit the DVS240). A set of poses is pre-generated, and the
inverse kinematics are computed offline for the Kinova arm specifically. The trajectories generated follow the
saccadic velocity profile. Furthermore, a motion capture system was used to record the pose of the camera at all
instants.

In order to create a dataset relevant for the context of an eye, we tried to replicate the eye saccades. Unfortu-
nately, the robot arm has some velocity and acceleration limitations, which means such speed were not attainable,
and were quite slow when compared with the eye. Nevertheless, the acceleration and velocity profiles follow
the correct shape (the acceleration approximately follows the pattern of an arctangent function, and the velocity
its derivative (1/(1 + x2))), albeit much slower. This limitation does not impede the validation of the proposed
approaches per se, but somehow lessens the advantage that event cameras may have had in high movement scenes.

With this setup, we recorded visual and inertial information from the camera, as well as groundtruth information
from the motion capture system, and directly from the feedback of the arm (each servo’s angle and velocity were
being recorded at each instant). Fig. 5.6.(b) Fig. 5.6.(d) and shows the setup used for dataset generation.

However, since we were using a DVS240 camera, which cannot record frames and events simultaneously, three
recordings were captured: 1) recording frames 2) recording events; and 3) recording frames when still and events
when moving. Fig. 5.6.(c) shows the scene captured using this technique.

60 Experiments and Results

(a) shapes scene (b) boxes scene

Figure 5.5: Example scenes available on the public datasets provided by ETH Zurich. (a) shows a less textured
scene but with clearer edges and corners. (b) shows a more textured scene.

(a) Kinova robot arm (b) setup used (c) sample scene recorded

(d) sketch of setup used for recording

Figure 5.6: Setup for dataset recording showing the Kinova robot arm for trajectory generation and groundtruth
recording, and surrounding motion capture system for groundtruth recording. The DVS240 camera is coupled at
the end of the arm.

5.2 Experiment Plan 61

5.2 Experiment Plan

In this section we characterise the experiments that were performed in order to test the proposed approaches,
which consisted of data using simulations and real datasets. Given the group’s interest in the visual and vestibular
system, the focus of the work (and therefore, of the results presented), was directed towards rotation movement
(though the trajectories themselves may (and do sometimes) have translational components).

Experiment 1, DAVIS240 Public Dataset using Events, Frames, and IMU For this experiment, we tested the
proposed approaches in the publicly available datasets from ETH Zurich. Such tests allows us not only to test
the approaches in a real environment, with all noises and uncontrollable factors associated with real systems, but
also to compare them with other groups and approaches. Since a DAVIS240 is used, the setup is similar to the
simulation (which was created to mimic this exact scenario).

Experiment 2, Simulation using Events, Frames, and IMU In this experiment we test our system with simu-
lated information, as it provides a controlled setting on which to evaluate the performance of the approach. This
setting simulates a DAVIS240 camera, and frames, events and IMU information is present at all times. Multiple
trajectories were generated, from isolated translations and/or rotations in a single axis, to more complex move-
ments. We present the results of some of these tests. We also perform an ablation experiment, where we tried to
isolate the relevance of the IMU in the system (thus testing a visual odometry system as opposed to the proposed
visual inertial odometry system). Instead of the Kalman filter, we tested this experiment using the Procrustes ap-
proach. Our reasoning for this choice is as follows: 1) there is no need for sensor fusion in this approach, as only
visual information is used, and 2) Procrustes finds the optimal solution (whereas the UKF is not guaranteed to).
Finally 3) we want to compare our results against the ones previously obtained in [Martins, 2019].

Experiment 3, Kinova with DVS240 using Events and/or Frames, and IMU The objective of this setup is to
evaluate the viability of the approach in the context of saccadic eye movement estimation, which is of the interest
of the group in which this work is integrated. As such, we used a Kinova robot arm and developed software to gen-
erate controlled trajectories following the profile of the saccades. Motion capture cameras were also used to record
groundtruth. It is important to note the arm is not able to generate the values of velocity and acceleration associ-
ated with a saccadic movement, but allows running controlled experiments, useful for development of the motion
estimation methodology. The camera used is a DVS240 which is lower cost as compared with the DAVIS240, used
in Experiment 1 and simulated in Experiment 2, and for which the proposed approaches were designed and the
base software tools were developed. Using the DVS240 is a challenge whose success can provide major savings
in the total cost of the setup.

5.3 Experiment 1, Integrated Experiment with a DAVIS Camera Dataset

To test the proposed approaches, we tested the performance on the datasets available online, which consist of
a series of movements of the camera, by hand, on multiple scenes. In particular, we tested the approach on the
shapes and boxes datasets, as the former has clear contrast between background and shapes, and the latter has a
much more textured environment.

62 Experiments and Results

We focused mainly on the rotation aspect of the movement, as this is the one that is most relevant in the context
of the project. Since the images produced are from a real system, they have associated distortion parameters, noise,
motion blur and all these undesired properties that should be overcome.

Open Loop Approach

We start with the first proposed approach. The inputs to the system are shown in Fig. 5.7, where we show 3
illustrative frames on the movement, and superimpose the events on frames, making evident their relation with the
edges and corners of objects in the image.

(a) (b) (c)

(d) (e) (f)

Figure 5.7: Input used for the experiment. (a), (b) and (c) show sample frames along time. (d), (e) and (f) show
the same instants, but with the generated events superimposed.

The results running this approach are presented in Fig. 5.8 and Table 5.1. We have decided to isolate each axis
estimation for the sake of a less cluttered analysis, as well as to interpret the evolution of each axis independently.

Movement Mean error [deg] Max error [deg] Std dev [deg] RMSE [deg]

Rotation x axis -30.49 -58.04 16.10 34.48
Rotation y axis -8.14 -45.70 10.45 17.35
Rotation z axis -7.03 -32.46 6.63 9.66

Table 5.1: Results obtained running the open loop approach in the shapes scene.

It is possible to observe that the obtained results are not exactly satisfactory. First, there is an obvious drift in
the x axis that was not able to be compensated. We believe this drift is because of an uncompensated bias in the

5.3 Experiment 1, Integrated Experiment with a DAVIS Camera Dataset 63

gyroscope, as this axis more easily loses features by moving out of the FOV, which means that the local map may
itself drift over time, and not correct sensor bias.

Then, for the remaining axes, there is some oscillation that can reach significant error values. Curious enough,
these occur when there is movement in another axis. For example, around the 10 s mark, there is oscillation in the
y axis, caused by the movement in the z axis. Nevertheless, there is some positive aspects, in the sense that the
general shape of the rotation is indeed estimated, albeit not very well.

0 5 10 15 20

Time [s]

-40

-20

0

20

40

60

80

A
n

g
le

 o
n

 a
x
is

 [
d

e
g

]

Rotation on x axis

0 5 10 15 20

Time [s]

-30

-20

-10

0

10

20

30

40

50
A

n
g

le
 o

n
 a

x
is

 [
d

e
g

]

Rotation on y axis

0 5 10 15 20

Time [s]

-80

-60

-40

-20

0

20

40

A
n

g
le

 o
n

 a
x
is

 [
d

e
g

]

Rotation on z axis

(a) x axis (b) y axis (c) z axis

Figure 5.8: Results obtained running the first approach on the shapes scene. The orange represents the groundtruth
value, and the blue the estimated value.

Though the dataset takes about 60 s, we only present around 20 s of estimation, as the filter panicked and
crashed a little bit after this value. We believe this is because the drift in the x axis, which leads to incorrectly
placed landmarks, and some inconsistencies between the observed features and expected position.

Furthermore, we believe the features being fed into the filter are responsible for these poor results. Analysing
the number of features over time (Fig. 5.9, it is possible to observe that not only is the number of features low
(usually less than 25 features at a time), they also oscillate quite a bit.

0 5 10 15 20

Time [s]

5

10

15

20

25

30

N
u
m

b
e
r

o
f
fe

a
tu

re
s
 t
ra

c
k
e
d

Number of features tracked over time

Figure 5.9: Evolution of features over time using the shapes dataset.

After, we tested the proposed approaches on the boxes scene. The inputs to the system are shown in Fig. 5.10,
where we show 3 illustrative frames on the movement, and superimpose the events on frames, making evident their
relation with the edges and corners of objects in the image.

64 Experiments and Results

(a) (b) (c)

(d) (e) (f)

Figure 5.10: Input used for the experiment. (a), (b) and (c) show sample frames along time. (d), (e) and (f) show
the same instants, but with the generated events superimposed.

The results running this approach are presented in Fig. 5.2 and Table 5.2.

Movement Mean error [deg] Max error [deg] Std dev [deg] RMSE [deg]

Rotation x axis -20.40 -50.10 12.04 30.88
Rotation y axis 3.63 -10.25 4.94 6.13
Rotation z axis 5.96 -12.27 6.48 8.80

Table 5.2: Results obtained running the open loop approach in the boxes scene.

This experiment still produces some clear deviations on the true values. However, we believe these results are
slightly better than the ones presented previously, as not only are the errors smaller (with the exception of the x
axis rotation, that shall be addressed in a moment), the overall profile of the estimation more closely follows the
true values, which is positive.

We believe this has to do with the environment, in particular the much more textured environment, which
means that more features can be, and are, in fact, detected (Fig. 5.12), which allows for a more forgiving tracking
of features fed into the filter, as the higher number means the relative importance and impact of each feature in the
feature is lower.

Comparing with the shapes dataset,we have 2-3 times as many features bring tracked, which obviously help
estimation. The result is that the local map is created more accurately (and features lost in the filter can be more
easily replaced), which improves overall performance.

However, results are still far from perfect, in particular the x axis rotation still drifts (up and down movement),
meaning the filter still cannot estimate the bias in this axis. Nevertheless, the drift seems to be less than in the

5.3 Experiment 1, Integrated Experiment with a DAVIS Camera Dataset 65

0 5 10 15 20 25 30

Time [s]

-20

-10

0

10

20

30

40

50

60

70

80

A
n

g
le

 o
n

 a
x
is

 [
d

e
g

]

Rotation on x axis

0 5 10 15 20 25 30

Time [s]

-60

-50

-40

-30

-20

-10

0

10

20

30

40

A
n

g
le

 o
n

 a
x
is

 [
d

e
g

]

Rotation on y axis

0 5 10 15 20 25 30

Time [s]

-30

-20

-10

0

10

20

30

40

A
n

g
le

 o
n

 a
x
is

 [
d

e
g

]

Rotation on z axis

(a) x axis (b) y axis (c) z axis

Figure 5.11: Results obtained running the first approach on the boxes scene. The orange represents the groundtruth
value, and the blue the estimated value.

shapes dataset, which leads us to think bias is partially being corrected. As in the previous scene, when the camera
moves up, there are less textures, and, since the camera space is rectangular, it is easier for features being tracked
to fall out of the FOV, though this argument has much less force in this scene.

0 5 10 15 20 25 30

Time [s]

0

10

20

30

40

50

60

70

80

90

100

N
u
m

b
e
r

o
f
fe

a
tu

re
s
 t
ra

c
k
e
d

Number of features tracked over time

Figure 5.12: Evolution of features over time using the boxes dataset.

Closed Loop Approach

Lastly, we tested the closed loop approach on the boxes scenario. The inputs to the system are the same, shown
in Fig. 5.10. The results running this approach are presented in Fig. 5.13 and Table 5.3. It is possible to see that the
proposed approach does help with tracking, as the results show an improvement over the previous approach.

Movement Mean error [deg] Max error [deg] Std dev [deg] RMSE [deg]

Rotation x axis 4.35 23.51 5.04 6.66
Rotation y axis -1.53 -10.77 4.88 5.11
Rotation z axis 1.05 14.89 5.29 5.39

Table 5.3: Results obtained running the proposed closed loop approach in the boxes scene.

66 Experiments and Results

0 5 10 15 20 25 30

Time [s]

-20

-10

0

10

20

30

40

R
o

ta
ti
o

n
 [

d
e

g
]

Rotation x closed loop

0 5 10 15 20 25 30

Time [s]

-50

-40

-30

-20

-10

0

10

20

30

40

R
o

ta
ti
o

n
 [

d
e

g
]

Rotation y closed loop

0 5 10 15 20 25 30

Time [s]

-20

-10

0

10

20

30

40

R
o

ta
ti
o

n
 [

d
e

g
]

Rotation z closed loop

(a) x axis (b) y axis (c) z axis

Figure 5.13: Results obtained running the closed loop approach on the boxes scene. The orange represents the
groundtruth value, and the blue the estimated value.

For the sake of transparency, however, it should be stated that these results were obtained by initializing the
filter with the bias of the sensors closer to the real one (obtained by the results of the previous approach). Though
we believe such an approach is valid, as it is a parameter that can be calibrated previously, and many works also
assume this value is know (and therefore initialize their filters with it), it is still very much worth mentioning, as
quality of estimation improved not only because of the closed approach, but also because of this. Without this
initialization, the mismatch between inertial information and visual information is not compensated and results are
very poor (as the closed loop approach is less robust). We chose not to do the same with the previous approach,
as being able to converge to correct (or better) values with as little prior information of the system as possible is a
positive aspect.

5.4 Experiment 2, Integrated Experiment on Simulation

To validate the implementation proposed in Section 3.4, we generated a synthetic dataset based on ESIM (Sec-
tion 5.1). We generated a simple rotation along the z axis. The trajectory generated consisted of a rotation along
the z-axis, with an amplitude of 18 deg for each side. Speed was 18 deg/s, so that the whole movement took about
4 s. A DAVIS240 camera was simulated, with both access to frames and events simultaneously.

The images produced have some distortion parameters, and some noise, but have no motion blur when sim-
ulating conventional frames, which would (in principle) give the upper hand to event cameras. The inputs to the
system are shown in Fig. 5.14, where we show 3 illustrative frames on the rotation movement, and superimpose
the events on frames, making evident their relation with the edges and corners of objects in the image.

Open Loop Approach

Starting with the first proposed approach, we tested its performance using simulated data. We compare the
features extracted by the original feature extractor and tracker, and EKLT, in Fig 5.15. In particular, we show their
position over time, which match their expected movement over time given the motion of the camera.

We also analyse the number of features over time that each tracker provides, and present it in Fig. 5.16.
The groundtruth is compared against an approach using conventional cameras, and using event cameras. The

results are presented in Fig. 5.16, and their values presented in Table 5.4.

5.4 Experiment 2, Integrated Experiment on Simulation 67

(a) (b) (c)

(d) (e) (f)

Figure 5.14: Input used for approach using only visual information (visual odometry). (a), (b) and (c) show the
evolution of the rotation along time, with rotation movement towards both sides on the z-axis. (d), (e) and (f) show
the same instants, but with the generated events superimposed. This input was generated using ESIM (Section 5.1).

Setup Mean error [deg] Max error [deg]

Image + IMU 1.05 4.41
Image + Events + IMU 0.85 3.05

Table 5.4: Results obtained running the proposed visual inertial odometry approach with ESIM dataset, and com-
parison with a conventional setup performance.

It is possible to observe that including visual information with inertial information is beneficial in the sense
that vision contributes to a better estimation, as the spikes in the estimation correspond to the update steps of the
filter, which generally point towards the correct value.

Furthermore, we observe that the approach with events outperforms the approach using frames, both in terms of
the mean error, and the max error. We believe this has to do with two factors: the more frequent updates that events
allow mean that the filter can be updated with visual information more frequently; the features, being tracked with
events, are tracked better (which can be debatable as it has their own problems, as lack of good descriptors, and
being limited to corner features).

There are some other interesting points to be made by analysing Fig. 5.16. Instants t=1 s and t=3 s are periods
of inversion of direction and, therefore, zero speed. Notice that the number of features being tracked from frames
(Fig. 5.16.(a)) remains largely the same, regardless of speed. The situation is completely different for events.
Not only do they start decreasing as the speed decreases, they also start increasing as the movement picks up
(Fig. 5.16.(b)). This is the interesting distinction between both types of cameras. As long as there is no motion
blur, or the displacement too big, conventional cameras are indifferent to motion, but event cameras need it to

68 Experiments and Results

(a) features from frames time evolution (b) features from events time evolution

(c) features from frames all time instants (d) features from events all time instants

Figure 5.15: Frame vs event based features for a rotation about cameraOz. (a) trajectory of features obtained from
frames vs time, and (c) trajectory of features on the camera frame, all time instants superimposed. (b) and (d) show
similar information, but with features obtained from event cameras. In (b), it is also interesting to observe the loss
of features at the inversion of movement, and their later re-detection (albeit with a new ID). (c) and (d), showing
the superposition of the features at all times in the camera plane, is compatible with the theoretical prediction of a
rotation around the camera z axis.

live. Notice the spike on t=1 s, where features are detected (because they are extracted from a frame), but are
immediately lost, due to the lack of events associated with a change of direction. No motion destroys the usefulness
of event cameras.

Obviously, this has consequences on the estimation of the filter. Both filters are still converging to the correct
values of the biases and landmarks. As such, after t=1 s, there is a period where mismatch between vision and
inertial systems, which does not occur (or at least, as abruptly) for t=3 s, when there is another change in direction
(Fig. 5.16.(c)). However, notice that performance of the event camera system starts to degrade even before t=1 s,
as is evident by the error in Fig. 5.16.(d). The error starts increasing before the change in direction because visual
information is lacking, therefore not compensating the IMU bias which is still converging to its correct value, and
the estimation drifts. The error from conventional information only starts increasing after the inversion, as this is
when there is a more significant mismatch between the visual information and the non-compensated IMU. How-
ever, because visual information from events is more frequent when available, the estimation actually compensates

5.4 Experiment 2, Integrated Experiment on Simulation 69

(a) number of features from frames (b) number of features from events

(c) rotation about camera Oz vs time (d) error on estimated rotation

Figure 5.16: Number of features being provided over time. (a) shows features obtained from frames, and (b)
using events. Also shown are the results obtained when using the UKF being proposed. Comparison of the
groundtruth with the approach using frames and frames+events (c), and the error between methods with regard to
the groundtruth (d).

faster, and the maximum error value is both lower and achieved faster, showing a faster convergence to the correct
estimate.

Though not directly relevant for the objective of this group (and by extension, to the analysis and testing
performed in this work), we also present the estimated translation over time, to illustrate that the filter is working
correctly. Fig. 5.17 shows the estimated position of the camera over time, which takes some time to converge but
seems to be bounded appropriately, producing a low error overall, as shown in Table 5.5.

x axis y axis z axis average

RMSE [m] 0.13 0.10 0.014 0.08

Table 5.5: Error of position estimation on ESIM with open loop approach

70 Experiments and Results

0 500 1000 1500 2000 2500 3000 3500 4000

Time [ms]

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

P
o
s
it
io

n
 [
m

]

Position over time

X

Y

Z

Figure 5.17: Position estimation over time in ESIM with open loop approach.

We repeated this same setup, in the same scene, but with other motions, in particular rotations in the other axes.
The rotations follow the same pattern as presented for the z axis, with a 18 deg rotation to each side. The results
are summarised in Table 5.6

Movement Mean error [deg] Max error [deg] Std dev [deg]

Rotation x axis 18 deg 1.66 5.04 1.70
Rotation y axis 18 deg 0.65 2.43 1.11

Table 5.6: Results obtained running the proposed visual inertial odometry approach with ESIM dataset for the
remaining possible axes.

The results are in line with the ones presented for the z axis rotation presented, with the maximum error being
achieved on the first change of direction (when some features are lost, the filter is still converging to the correct
values, and the internal estimation ramps up towards the direction it was going, and now takes some time to invert
the direction), and then being able to correctly keep up with the real values.

Overall, the results are very uplifting, and validate the proposed approach, even if with a simulator, and outper-
form the conventional camera approach in all cases (even though sometimes a change in the settings for the filter or
the tracker is needed). For a fair comparison, though not exhaustive, care was taken to make sure the results using
conventional cameras were favorable. Nevertheless, we do not reject the hypothesis that there are better parameters
that we did not select.

Rotation-Only Hypothesis

In order to analyse the reliability of the features tracked using events, we tested EKLT with the event visual
odometry approach mentioned in Section 3.3. The results are presented in Fig. 5.18. The groundtruth is compared
against an approach using conventional cameras, and using event cameras. This approach, even though simple (as

5.4 Experiment 2, Integrated Experiment on Simulation 71

only rotation is being estimated, and only one axis is being excited), is enough to illustrate the viability of using
events as sources of data in the system.

Though final results are what grabs our attention, and the approach using events loses effective estimation at
around 3 s, it is nevertheless interesting to analyse what is happening behind the scenes. Furthermore, even though
this approach eventually “blows up”, it is able to maintain an estimation close to the groundtruth.

The first point worth analysing is the number of features that are being supplied to the system on both cases.
Using frames, we have around 170 features being tracked at each time, whereas using events, the number of
features oscillate quite a bit, but always remain under 30 features at all times. This in itself is worth mentioning, as
it means that an order of magnitude lower in terms of features is enough to have comparable tracking performance
(before estimation is completely lost). We believe this is because the quality of the features being tracked is better.

However, at least two questions arise:

Why the low number of features? This question has to do with the type of features that are acceptable for
each system. Conventional cameras have the advantage of years of research, and multiple "types" of features can
be used (as seen in Section 2.1.2, corners, blobs, lines, and more can be used as features), and still be distinctive
enough to be matched later (Section 2.1.2). However, this hybrid approach of EKLT only tracks corners,

Why the oscillation on the number of features? Analysing Fig. 5.16, the number of features declines at around
1 s and 3 s, which corresponds to moments where there is a change in direction in the trajectory. As mentioned in
Section 2.2.2.3, flow is being used to generate the template from frames. In these periods of change in movement,
the flow estimation fails, and the matching of features fails more easily. Furthermore, in these changes of direction
there is an instant where there are no events being generated (as their generation is dependent on movement, as
shown in Fig. 5.18, where there are many less events when compares to Fig. 5.14).

(a) Image and Events (b) Events only (c) Evolution over time

Figure 5.18: Lower event rate being produced when there is a change of direction in the motion of the camera
((a) and (b)). (c) shows results using visual information only. We compare the real value of the rotation with the
approach using a conventional camera and using an event camera.

Nevertheless, from this experiment, we believe the use of events has multiple advantages, obviously not without
some disadvantages. Some advantages are: 1) Faster tracking of features, which allows for 2) More frequent
updates, 3) Better for high movement scenes, and 4) Features detected are more relevant. Some disadvantages are:
1) Less features available (only corners), 2) Less features means the estimation is more erroneous and less robust,
resulting in 3) Estimation that is easier to "blow up".

72 Experiments and Results

Closed Loop Approach

After testing the first proposed approach, we present the result for the second proposed approach (closed loop)
using the same scene and setup. The results are presented in Fig. 5.19 and summarised in Table 5.7.

Movement Mean error [deg] Max error [deg] Std dev [deg]

Rotation x axis 18 deg 1.73 5.89 2.37
Rotation y axis 18 deg 0.049 0.12 0.07
Rotation z axis 18 deg 0.80 4.23 1.41

Table 5.7: Results obtained running the proposed closed loop approach with ESIM dataset.

These results seem to corroborate that the closed loop approach does, in fact, improve feature tracking, which,
in turn, improves the estimation quality, as these results seem promising (even though simulated data was used
as input, which does not necessarily transfer to the real system effortlessly). Notice, in particular, the mark at
around 3 s, which improved greatly compared to the first approach, which seemed to drift a bit after this inversion
of direction. The closed loop, on the other hand, sticks remarkably close to the correct value.

The number of features being tracked over time is shown in Fig. 5.19, and shows a number that is consistently
higher than in the previous case. Nevertheless, for direction changes, the number of features being tracked still
dips considerably, as not only are there fewer features being produced, which created poorer matching templates,
the filter also takes a while to adjust, which means there is a period where the estimated velocity is still converging
to the real one, and therefore the velocities used for motion estimation are not correct.

However, it is interesting (and honestly, reassuring) to observe that there is a period of about 1-2 s for the
filter to converge, after which the orientation is correctly tracked with minimal error (less than 0.5 deg). For this
experiment, only flow angle is being used to improve tracking.

Nevertheless, some limitations of this approach also presented themselves, the most relevant of which is the
lower robustness of the filter. The closed loop presents itself as a double edged-sword, in the sense that good pose
estimations lead to better tracking, which leads to better estimation, but a bad starting estimation is very detrimental
to the tracker, which loses features very quickly. This can be shown for the case of x and y axis rotations. The
former had some biases that hurt the performance of the filter, resulting in a rotation that was worse than the first
proposed approach. However, for the former, some parameters must have been optimal, as the error is very low.

5.5 Experiment 3, DVS Camera Mounted on the Kinova Arm 73

0 500 1000 1500 2000 2500 3000 3500 4000

Time [ms]

-20

-15

-10

-5

0

5

10

15

20

R
o

ta
ti
o

n
 [

d
e

g
]

0 500 1000 1500 2000 2500 3000 3500 4000

Time [ms]

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
o

ta
ti
o

n
 [

d
e

g
]

0 500 1000 1500 2000 2500 3000 3500 4000

Time [ms]

0

5

10

15

20

25

30

35

40

45

N
u

m
b

e
r

o
f

fe
a

tu
re

s
 t

ra
c
k
e

d

(a) rotation about Oz vs time (b) rotation error vs time (c) number of features vs time

Figure 5.19: Results obtained when using the closed loop approach. Comparison of the groundtruth (in blue) with
the approach using frames+events (in orange) (a), and the error with regards to the groundtruth over time (b). The
features tracked over time are also represented (c).

5.5 Experiment 3, DVS Camera Mounted on the Kinova Arm

In this experiment, multiple rotation-focused movements were performed by means of a Kinova robot arm, in
order to mimic the eye saccadic movement, and being able to track it along time. This mimicking was mostly in
terms of the velocity and acceleration profiles, not what is humanly possible, as we consider torsional movements,
which do not occur in the eyes, for example.

This experiment is meant to close one of the questions that motivated this work, whether event cameras could
be used in the context of eye saccadic movement estimation. Though this movement follows a certain pattern that
could be used to help with the estimation, namely it is purely rotational, for instance, with an arctangent profile
in orientation, no changes to the proposed approaches were made. In other words, the capability of estimating
translation is kept.

Since the DVS camera is the camera considered for this experiment, either frames or events may be recorded
at each time (exclusive or). The data recording encompasses two parts (i) image frames when the camera is still,
and (ii) events when the camera is moving. The commutation from frames to events is not automatic, is placed in
the script of the data acquisition. IMU is always recording.

The reasoning for the commutation approach is: when still, frames are not contaminated by motion blur, and
features can be extracted from them. Afterwards, when movement starts, by switching to events, the previously
identified features can be tracked. The limitation of this idea is that lost features can only be replaced when a new
frame is available, meaning the tracking has to endure for as long as possible.

Sample frames that were recorded during this session are shown in Fig. 5.20, which correspond to the lab with
some objects placed for texturing. The movement was performed by the Kinova, and groundtruth recorded with
Kinova and a motion capture system. We started by performing rotations along the z axis.

After feeding this recording into EKLT it was verified that frames based features are effectively tracked, how-
ever the event based features are lost between tens to hundreds of milliseconds after detection. Fig. 5.21.(a) shows
the evolution of features tracked over time, and Fig. 5.21.(c) shows their number over time. There are multiple pe-
riods of time where all features are lost, and no new features can be detected because no new frames are available.
When a frame is finally available, some features can be extracted (see the spikes in the graph).

The first results obtained from this experiment are presented in Fig. 5.21.(d). The plot shows an uncompensated
drift due to bias due to lack of visual information correcting it. It is interesting to observe that when features are

74 Experiments and Results

(a) (b) (c)

Figure 5.20: Example of frames captured using the Kinova arm.

detected, they do generally follow the expected pattern of rotation, as seen in Fig. 5.21.(b).
In a second experiment, we have calibrated the IMU and initialized the pose estimation method with estimated

biases of the IMU (see details of IMU calibration in Appendix A.2). Under these conditions, though not perfect, the
estimated rotation much closely follows the real value, as shown in Fig 5.21.(e). One can still see that insufficient
visual information still allows some drift.

In a third experiment, we took an hybrid approach leveraging the start of the recording, where the camera stays
static until around 10 s, and therefore IMU output is mostly noise (and gravity). As such, we start by running the
filter considering frames (as if we were using a conventional setup), in order to estimate bias. Assuming this bias
is corrected by the end of this interval, we switch to the closed loop approach.

The results obtained using this third approach are presented Fig. 5.21(f), corresponding to a RMSE of 0.3635 deg
on the z axis, which is actually quite interesting, though results mostly from a good estimation of the biases from
the initial estimation from frames.

Comparing the results in this section, obtained with a DVS camera, with results in previous sections based on
a DAVIS camera, one finds much harder doing events based feature tracking and therefore running a full visual
inertial odometry methodology. We believe this has to do with the DVS camera itself, which may have been
further complicated by the illumination conditions of the lab, as incandescent lights cause unwanted events. The
DVS camera is not designed to allow fast switching between frames and events modes. In reality, the frames
mode capability is meant in essence just for calibration. As such, there are two problems identified: first is
the latency of commutation between modes, which is non-negligible; second, after commutation there is noise
in the measurements, in particular, erroneous events are produced. As such, we believe this contaminates the
templates for matching and imposes events based tracking difficulties. One possible approach would be to reject
first readings, but they are not consistent, as sometimes they are not present, and other times they contaminate the
whole frame. This latency and reading corruption is explored in Appendix C.

5.6 Results Analysis and Experiments Comparison 75

(a) features’ position (b) projected features (c) number of event based
over time on the camera plane features over time

0 5 10 15 20 25 30

Time [s]

-30

-20

-10

0

10

20

30

40

50

60

R
o
ta

ti
o
n
 [
d
e
g
]

Rotation z Kinova

(d) estimated rotation (e) estimated rotation and GT (f) estimated rotation and GT
and groundtruth (GT) using pre-estimated IMU bias using initial image frames

Figure 5.21: Obtained results for experiment 3, showing the features’ position over time in (a), their projection to
the camera plane in (b), and their overall number over time in (c). The estimated rotation without any correction
is presented in (d), as blue, and compared to the groundtruth in orange, showing a clear drift. In (e), initialisa-
tion is done using the sensor bias from a prior calibration, and shows an estimated trajectory (blue) following the
groundtruth (orange) more closely. In (f), initialization is done by running teh filter using frames, and then switch-
ing to the closed loop proposed approach, and shows an estimated trajectory (blue) following the groundtruth
(orange) even more closely.

5.6 Results Analysis and Experiments Comparison

Being novel contributions (in particular with novel technology), it is interesting to analyse the strengths and
the shortcomings of the proposed methods. In this section we critically analyse the results produced.

Starting with the comparison between event cameras and conventional cameras, in Table 5.4 we show that event
cameras can, in fact, outperform conventional camera approaches, as the error obtained is lower using conventional
cameras. Both approaches are “fair” in the sense that the filter being used is equivalent (the same proposed UKF
filter). We believe this is because of the more frequent corrections performed by the visual component, which are
limited by the frame rate of conventional cameras.

The validation setup was a simulated environment (ESIM). Nevertheless, this simulator is a common tool with
event cameras (as public datasets are scarce), which speaks to its validity. One possible argument is that the
simulator is biased towards event cameras (which is true), and frames being produced are of low resolution, which
would not happen with a conventional camera. Even though this is true, we do not believe it would affect the
results much, as the number of features being tracked is already a order of magnitude greater than the features
being tracked using events. Therefore, we consider that event cameras can, in fact, be used in the context of visual

76 Experiments and Results

inertial odometry with the proposed approach of UKF and EKLT.

The next comparison that is interesting to be made is between both approaches proposed. The first method
is a natural choice considering conventional pose estimation approaches using filtering. A feature extractor feeds
visual data into a filter that also uses inertial information. However, in our second method, we propose a feedback
in the system so that the tracker can benefit from the current pose estimation. This feedback idea is not exactly
novel or innovative, but is nonetheless uncommon. However, its practical usefulness is debatable.

Analysing the results obtained with each method, we can see that generally the closed loop approach performs
better (exception on the x axis, by a small margin). We believe this is because features can be tracked better, and,
as a result, more features are available at each instant. Fig. 5.22 shows the features being tracked over time by each
approach, and the closed loop not only tracks more features, but also tracks them better.

The reason for the tracking of more features is not obvious, and benefits from watching the output of the
tracker in real time. What effectively happens is that features are constantly being lost and replaced. The closed
loop reduces the rate at which features are lost, which allows for more features being tracked. More features, in
turn, help with the estimation.

0 500 1000 1500 2000 2500 3000 3500 4000

Time [ms]

0

5

10

15

20

25

30

35

40

45

N
u

m
b

e
r

o
f

fe
a

tu
re

s
 t

ra
c
k
e

d

Number of features tracked over time

(a) features using open loop (b) features using closed loop

Figure 5.22: Comparison of the number of features over time between both proposed approaches.

As such, we believe that the closed loop approach, even though based on intuition, and the knowledge of the
influence of ego motion on the movement of features in camera space, is a valid approach that performs very well
under the right conditions.

However, what is not obvious from the results presented is that although the closed loop is generally more
precise, it is much less robust. The flow angle estimation is critical for the tracker, and the initial value plays
an important role in the success of the tracking. As such, when the state estimation is accurate, the solution
performs better (as shown by the higher number of features and generally better results). However, when estimation
degrades, it becomes much easier for tracking quality to degrade, and to cause tracking loss.

Another problem with the closed approach is execution time. Though time analysis of either approaches was
not considered in this work, it is also worth mentioning the impact of the closed loop (as is implemented). Time
performance is very poor. The simulated datasets took around 10 min to process, and the boxes dataset was very
slow, taking around 30 min for 2 s of data (depending on the rate of events generated at each time). However,
this time also comes from the way the approach was implemented, which needed synchronization semaphores
and constant messaging between the tracker (implemented in ROS), and the filter (implemented in Matlab). A

5.6 Results Analysis and Experiments Comparison 77

“proper”, eventually commercial approach could benefit from a single program, as well as a parallel processing of
events (which, as is, are sequential).

The next experiment relied only on vision. Though the reason for such an experiment may not seem obvious,
the objective was to evaluate the quality of features tracked using events, and their reliability when isolated (without
inertial information). A priori, based on the previous results, we knew changes in movement corresponded to
instants were many features are lost, and that this might pose a difficulty.

Such suspicions were verified, in particular that changes in movement can be unforgiving, as the estimation
eventually loses so many features that it drifts away. Visual odometry approaches using conventional cameras are
common, but all works with pose estimation and event cameras (that we could find) use inertial information in
combination with events. This experiment confirmed the reason. Even with perfect tracking, stops in movement
are a major limitation in this approach (though some reconstruction approaches could be pursued).

We then tried real datasets to verify the performance of the approaches on real systems. We tested two envi-
ronments: high contrast but low texture, and low contrast but high texture. From these experiments we conclude
that textured environments help the approach, even though features may be less evident. This conclusion comes
from the fact that the boxes scene provided slightly better results than the shapes scene. Nevertheless, initial results
were a bit demotivating, as the first proposed approach was not effective in estimating the correct bias in the x axis,
resulting in a drift over time. The closed loop approach, however, produced better results, which are acceptable
given the speed of the movement.

Nevertheless, the contrast between the simulations and real datasets is notorious, and begs the question of why
such a difference. It is true that the simulation produces a controlled environment to test on, but it is a very realistic
scene, not only visually (in terms of frames generated), but also events and inertial information.

We believe the reason has to do with noise and other non-idealities. First, the simulator does not replicate
motion blur very well, which means features can always be easily extracted. On the real dataset, when the move-
ment speeds up, this is not the case. Then there is the temporal noise associated with the real system. This type
of noise is unfamiliar, and corresponds to incorrectly timestamped events, meaning that they arrive later or earlier,
and are processed at an incorrect time. Lastly, there is the matter of salt and pepper noise in the real sensor, which
contaminates the template for the tracker and complicates the matching step in EKLT, which is also not accurately
present in the simulator. Nevertheless, we consider the experiment to be successful, as estimation followed the
correct trend overall, even though it fell short of expectations based on the performance on the simulator.

Lastly, we tested the proposed approaches on a DVS240 camera coupled to a Kinova robot arm. However,
ultimately, this experiment proved unsuccessful due to hardware limitations which we were unable to overcome
(that might be interesting to analyse in future work). Nevertheless, all software needed for future studies, in terms
of dataset acquisition, has been prepared.

Finally, though we consider the general obtained results satisfactory, we would be remiss not to mention other
approaches, such as [Zihao Zhu et al., 2017] and [Vidal et al., 2018], which present very positive results. However,
they were mostly focused on translations and 6DOF movements, while our experiments focused mainly on rota-
tions, which makes direct comparisons difficult (which is why none were presented in the Experiments sections).

78 Experiments and Results

Chapter 6

Conclusion and Future Work

Don’t only practice your art, but force your way into its

secrets, for it and knowledge can raise men to the divine.

— Ludwig van Beethoven

This chapter concludes the thesis by presenting an overview of the work developed, the methods proposed, and
details possible interesting paths for a future exploration. It is divided into a Conclusion section (Section 6.1), and
a Future Work section (Section 6.2). We hope the work presented has been interesting for the reader, and that it
can be of use for others working on the same subjects.

6.1 Conclusion

In this work we set out to develop a system for pose estimation that was based around event cameras, a novel
type of visual sensor that is yet to be fully explored. The motivations for the work were centered around the
exploration of event cameras, on the one hand, which were new to the group, and whose potential was still unclear,
and the analysis of their viability in the context of the research group’s area of interest, on the other hand. In
particular, their viability for the estimation of the orientation of the eye, as the movement speed on eye saccades is
on the order of hundreds of degrees per second.

This work was the first time using event cameras by members of the group, which entailed some work related
to familiarisation of such visual systems. Actually, not many groups work with event cameras, due to their novelty
and price1. However, exploring such a new technology was quite interesting, as I was able to start from the
beginning, almost, and learn the evolution of what had been done. It was particularly amusing seeing the shift in
mentality from initial works, focused on image reconstruction and applying established methods in conventional
cameras into this new technology, from a new mentality that embraces events as useful in themselves.

In the end, two approaches were developed to tackle this problem. A first, which combined an Unscented
Kalman Filter developed around a Lie group structure, with a feature detector and tracker based around events,
which performed well under simulated environments, but ultimately under-performed in the real system.

1As an anecdote, I often joked with my friends that my event camera had the serial number 206, which meant googling for people with the
same problems often proved unfruitful.

80 Conclusion and Future Work

The second approach seems even more promising based on simulations results, but its usefulness in real en-
vironments is debatable, as the initialisation of the filter is much more critical in this method , and good feature
tracking requires good pose estimation. Nevertheless, when said initialisation was done more carefully, the filter
performed well.

To validate these approaches, multiple experiments were performed, both with simulated data and real data,
and overall they were able to produce decent results. Our methods, focused on the research topics of the group,
and at times inspired by biological systems, had multiple innovative concepts in the context of event cameras (the
usage of UKF with event cameras, the usage of EKLT for pose estimation, the feedback in the closed loop), as well
as some interesting ideas from other fields (such as the UKF with a Lie group state).

Though far from perfect (in fact, both fell short of the current state of the art), both introduced new concepts
that can be further improved, and not only produced acceptable results, but served as a basis to understand the
current status of event cameras, their limitations and advantages. In a way, it served as a learning experience not
only for myself, but for the group as well.

6.2 Future Work

Personally, I believe approaches leveraging only events (or events and IMU) should be pursued, with the
objective of letting go of conventional frames, and fully explore the advantages made possible by the use of
events, perhaps inspired by the human visual and vestibular pathway. As a small introduction to such an area of
exploration, it has been proven that visual processing happens at various levels, and is not exclusively concentrated
in the visual region of the brain, located in the occipital cortex (the back of the brain) ([Luo, 2015]). In fact, there is
already some processing of information present in the eye, at the level of the retina. Furthermore, before reaching
the occipital cortex, neurons synapse at the level of the lateral geniculate nucleus, located in the thalamus, which
already extracts information such as blobs, edges, corners and moving objects (and is, in fact, the inspiration for
the initial operations performed in Convolutional Neural Networks (CNN)). Such concepts should be interesting
to adapt to event cameras.

Image reconstruction is also a possible interesting path to take, as, if perfected to a quality similar to conven-
tional frames, could be comparable to high-speed cameras, which would allow for more frequent updates of the
filter (that we showed benefited estimation). It would be interesting seeing said reconstructed frames being used
in the current state of the art pose estimators based on conventional cameras. Nevertheless, such strategies are not
trivial, and have been pursued since the beginning of event cameras, with varying degrees of results.

Lastly, as machine learning and neural network approaches seem to be ubiquitous, considering such an ap-
proach might be interesting. However, depending on the type of data being used (for example, if direct events are
to be used), work on Spiking Neural Networks (SNN) may be needed, as the asynchronous nature of events is best
captured by the asynchronous nature of SNN.

Appendix A

Camera and IMU Calibration

A.1 Camera Calibration

The image obtained from a camera (either conventional or neuromorphic) results from the transformation of 3D
points in the world to 2D points in the camera plane, and is constrained by the physical properties of the camera.
Such properties include unwanted distortions relating to the lens’ geometry, as well as unalignment between the
lens and the camera sensor.

The goal of the calibration is to estimate the intrinsic (parameters relating to the camera itself, such as focal
length, optical centre, and skew coefficient, which are fixed), extrinsic (parameters external to the camera, specifi-
cally translations and rotations between the camera and the world) and distortion (relating to the lens) parameters
of the camera. A calibrated camera is needed for computer vision algorithms, as the relation between points in the
image and world frames needs to be known for distance estimation, 3D reconstruction, depth estimation, ...

Distortion can be modelled as tangential and radial distortion. Radial distortion is caused by the elliptical
geometry of the lens, as light rays bend more near the edges than at the optical centre. Smaller lenses cause greater
distortion. It is possible to have three types of radial distortion, namely negative, none, and positive, as shown in
Fig. A.1. Tangential distortion occurs when the lens is not perfectly parallel to the sensor, which happens during
manufacture, as shown in Fig. A.2.

Figure A.1: Comparison of possible radial distortions

The process of finding the matrix K for a given camera is known as camera calibration. The calibration
problem can be formulated as an optimization problem that matches 3D reference positions in the world (which

82 Camera and IMU Calibration

Figure A.2: Explanation for tangential distortion

can be either known (Direct Linear Transformation) or unknown), and the corresponding projections in the camera
plane. We can assume centred image and world frames (ignore extrinsic parameters), and focus solely on intrinsic
parameters, resulting in a total of 5 unknowns.

An example of calibration with known features is Direct Linear Transformation (DLT) [Tsai, 1987], in which
we know the exact location of points in the 3D world and their corresponding image projection in the camera plane
(as in Figs. 2.1 and 2.2, assuming that the scene/world point is known), and through linear equations that result
from the mapping of multiple points through the camera matrix, in particular the projection equations (2.3) and
(2.4), we can estimate the parameters. Though this technique provides good results, a very careful setup is needed,
as greater precision leads to better parameter estimation. This is not always possible, or very practical (as the 3D
coordinates of the points need to be known), which is why more flexible were proposed.

A popular technique is that of [Zhang, 2000], which relies on a checkerboard planar pattern (such as the one in
Fig A.3) captured from at least two orientations, but usually more. The high contrast of the checkerboard pattern
allow for easy detection of edges and corners, as well as the plane of the checkerboard. A typical workflow consists
of capturing a few images of the checkerboard under different orientations, by either moving the camera or the
checkerboard, then detect feature points in the images and use a closed form solution to match 3D and 2D points,
and obtain an estimation of the parameters. Afterwards, an energy optimization based on the maximum-likelihood
criterion is used to fine-tune the parameters.

A.1.1 Event camera calibration

Event cameras follow the same optical principles described in Section 2.1.1, meaning the same models are still
valid, and suffer from the same distortion parameters that need to be quantified through calibration. However, due
to the nature of event cameras, the techniques from Section A.1 cannot be applied directly. The static images of the
checkerboard that are used in conventional camera calibration would just be blank images (because event cameras
need movement or changes to produce output). Nevertheless, completely redesigning the last decades of computer
vision calibration techniques is ill-advisable, and common techniques for event cameras merely replace the steps
up until feature acquisition.

Event camera calibration is a two-stage procedure. First, a sharp image (such as the ones in Fig. A.3) is used,
in order to focus the lenses (focus adjustment). With this procedure, the edges produced from moving the camera

A.1 Camera Calibration 83

or the pattern should be sharp.

(a) (b)

Figure A.3: Example images used for focus adjustment

Afterwards, a blinking LED pattern is used (Fig. A.4). This pattern attempts to mimic the checkerboard of
conventional calibration, and the LEDs act as the corners of the checkerboard. Usually, a grid of 5x5 LEDs,
spaced 5 cm between themselves, and blinking at a frequency of 500 Hz is used.

(a) (b)

Figure A.4: (a) Schematic used for the connection of the LEDs, and (b) LED pattern in a rigid surface for calibra-
tion

Since the LEDs are blinking, the event camera is able to detect them and generate events, even with a still
environment and camera. These events (from the blinking) are accumulated over a period of time in order to
create a pseudo-frame, and blob detection is used to provide these feature to the pipeline of conventional camera
calibration, which would use the corners as features. From here, the calibration pipeline is preserved.

Newer generation neuromorphic cameras combine both event and conventional camera (grayscale) acquisition
(see Section 2.2.1). For these cameras (such as the DAVIS240), since the optical parameters are the same (same lens

84 Camera and IMU Calibration

and same sensor), calibration can be performed using conventional techniques, or event camera specific techniques.
The result should be the same (or similar).

A.2 IMU calibration

Just like the camera needs calibration, so do other sensors, in particular the IMU. In order to minimize the
effect of noise and bias in the estimation, it is important to characterise these parameters. Ideally, they are supplied
by the manufacturer in the datasheet. Oftentimes, however, they are not, and it is necessary to experimentally
determine them.

We used the Kalibr framework 1 to characterise these parameters. [Board, 1998] introduces the technique used
by Kalibr, which consists of recording sensor measurement while standing still for a large amount of time (at least
4 hours), and then creating a plot with the log-log Allan deviation, as shown in Fig. A.5. Two curves are then fitted
to the plot, one with slope −1/2, and a second with slope 1/2.

σgyro and σacc are taken directly at τ = 1s, as we assume the noise power in most inertial sensors is dominated
by noise at this frequency (point 1 in the plot). ωb and ab corresponds to the value at which the line with slope 1/2

crosses τ = 3s (point 2 in the plot).

Figure A.5: Allan standard deviation of a gyroscope, showing the fitted lines, and noise characterisation, from the
Kalibr wiki

1https://github.com/ethz-asl/kalibr

Appendix B

Lie Groups and the Unscented Kalman
Filter

B.1 Lie groups and Lie Algebra

This section explains the concept of Algebraic groups, in particular Lie groups, which are fundamental to under-
stand the structure of the filter in 3.4. This section was written based on the works by [Wang and Chirikjian, 2008],
[Müller, 2017], and [Deray and Solà, 2020].

B.1.1 Algebraic groups

An algebraic group is an algebraic structure with no singularities (holes or points), with its corresponding
operation set. Considering group A and operator ∗, the following properties must hold for a structure to be a
group.

• Closure: ∀a1, a2 ∈ A, a1 ∗ a2 ∈ A

• Associativity: ∀a1, a2, a3 ∈ A, (a1 ∗ a2) ∗ a3 = a1 ∗ (a2 ∗ a3)

• Identity: ∃a0 ∈ A, s.t.∀a ∈ A, a0 ∗ a = a ∗ a0 = a

• Inverse: ∀a ∈ A,∃a−1 ∈ A, s.t., a ∗ a−1 = a0

A Lie group is an algebraic group that is a smooth differentiable manifold. Furthermore, the operator and the
inversion are smooth functions.

B.1.2 Lie algebra

Each Lie group has an associated Lie algebra, corresponding to the tangent vectorspace around the identity
element of the group, which means that the Lie algebra is a vector space obtained by differentiating the group
at the identity transformation. As such, the Lie group representation is desirable when we want to represent
differential quantities pertaining to the group, such as velocity and covariance, which are well-represented in the

86 Lie Groups and the Unscented Kalman Filter

tangent space around the transformation, in particular because we can convert any element of the tangent space
exactly into a transformation in the group through the exponential map, and the adjoint transforms tangent vectors
from one tangent space to another.

B.1.2.1 Exponential and logarithmic maps

The exponential and logarithmic map allows the transfer of elements between the Lie group and the corre-
sponding Lie algebra. The exponential map locally maps an element of the tangent space to the group, and the
logarithmic map of a Lie group provides the "inverse operation", transferring elements from the Lie group to its
tangent space.

Figure B.1: Representation of the Lie group G and its corresponding Lie algebra (tangent space) around n1 denoted
Tn1G. The exp operation takes elements from the tangent space and maps them to the group, and the log operation
takes elements from the group and maps them to the tangent space. Adapted from [Li et al., 2018].

Consider Fig. B.1. Here we represent group G with elements of the group n1 and n2. The tangent space
considered at n1, denoted Tn1

G is also represented. The relevance of the exp and log operations is evident in the
figure, as we can see that n2 can be mapped onto the tangent space by

n = logn1
(n2) = log

(
n−11 n2

)
(B.1)

and symmetrically, the element n can be mapped onto the group through

n2 = expn1
(n) = n1exp (n) (B.2)

B.1.3 Particular Lie groups

The Lie group theory introduced so far is very abstract. However, some groups are of particular interest to the
area of Robotics, such as the Special Orthogonal Group (SO) (Section B.1.3.1), useful to represent rotations, and
the Special Euclidean Group (SE) (Section B.1.3.2), relevant when representing rigid body transformations. We
will briefly talk about these two groups.

B.1 Lie groups and Lie Algebra 87

B.1.3.1 The Special Orthogonal Group SO(3)

The rotation group SO(3), with its corresponding Lie algebra so(3), and vector space R3. This group is formed
by the set of orthogonal rotation matrices R ∈ R3×3 that fulfil

SO(3) :=
{
R ∈ R3×3|RTR = I3, det (R) = 1

}
. (B.3)

From the orthogonality condition RTR = I3, the tangent space may be found by derivating with respect to
time, in particular RT Ṙ + ṘTR = 0, that can be rearranged to form

RT Ṙ = −
(
RT Ṙ

)T
, (B.4)

which reveals that RT Ṙ is, in fact, a skew-symmetric matrix, which are usually represented by the hat operator
(.)̂

ω̂ = [ω]× =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 ∈ so(3) (B.5)

where ω = [ωxωyωz]
T ∈ R3. Since [ω]× ∈ so(3) has 3 degrees of freedom, the Lie algebra can be decomposed

into the components

[ω]× = ωxEx + ωyEy + ωzEz (B.6)

Ex =

0 0 0

0 0 −1

0 1 0

 , Ey =

 0 0 1

0 0 0

−1 0 0

 , Ez =

0 −1 0

1 0 0

0 0 0

 (B.7)

This relation allows us to map transformations between so(3) and R3, by use of the operators hat and vee:

Hat: R3 −→ so(3); ω 7→ ω̂ = [ω]× (B.8)

Vee: so(3) −→ R3; [ω]× 7→ [ω]
v
× = ω (B.9)

The exponential mapping for SO(3) can be obtained by means of the Rodrigues’ formula ([Mebius, 2007]):

R = exp
(
[ω]×

)
= I3 +

sin (‖ω‖)
‖ω‖ +

(1− cos (‖ω‖))
‖ω‖2 (ω̂)

2 (B.10)

where ‖ω‖ =
√
ω2
x + ω2

y + ω2
z . The logarithmic mapping can also be obtained by inverting (B.10):

θ =


cos−1

(
tr(R− 1)

2

)
if R = I3

2πk if R 6= I3

(B.11)

ω̂ =


θ

2sin(θ)

(
R−RT

)
if R = I3

0 if R 6= I3

(B.12)

88 Lie Groups and the Unscented Kalman Filter

where ω gives the direction of rotation, and θ gives the angle of rotation.

B.1.3.2 The Special Euclidean Group SE(3)

This group is defined as

SE(3) :=

{
H =

[
R p

0 1

]
∈ R4×4‖R ∈ SO(3),p ∈ R3

}
(B.13)

This group can be considered to represent rigid body transformations, and H is referred to a homogeneous
transformation matrix, where R provides the rotation information (refer to Section B.1.3.1), and p refers to the
translation information, hence the rigid body transformation.

The associated Lie algebra is represented as se(3), consists of the 4×4 matrices of the form[
ω̂ v

0 0

]
∈ se(3) (B.14)

where ω̂ ∈ so(3) and v ∈ R3. Considering a robotic system, ω usually refers to the angular velocity of the

system, and v its linear velocity. The two components can be grouped together in a vector v =

[
v

ω

]
in what is

called a twist.

The hat operator is applied as

v̂ =

[
v

ω

]̂
=

[
ω̂ v

0 0

]
∈ se(3) (B.15)

Furthermore, the inverse of an element H is given by

H−1 =

[
RT −RTp

0 1

]
(B.16)

B.2 Sensor Fusion and Filtering

It is common to have multiple sensors in a system that produce complementary or redundant readings of the
world and/or the state of the system. This may be for several reasons, such as sensor noise, sampling rate, and
robustness, among others. For example, one sensor may report information on velocity, whereas another reports
on position. These two quantities are related through movement equations, and can be considered redundant, but
by combining different types of readings, global uncertainties on the system can be reduced, and limitations of the
single sensor may be overcome.

However, how to properly use and fuse the readings from multiple sensors is itself a critical part. In this
work, the event camera was used in conjunction with an IMU, and so fusing the visual information with inertial
information was needed. The solution used was an Unscented Kalman Filter (UKF) (explained in Section B.2.3),
which is described in Section 3.4.2. The UKF is an extension to the Kalman Filter (explained in Section B.2.1)
applicable to nonlinear systems.

B.2 Sensor Fusion and Filtering 89

B.2.1 Kalman Filter

The Kalman Filter [Kalman, 1960] is an algorithm that can be applied when we have a linear system that
follows the model equations (the system equation)

x(k + 1) = Fx(k) +Bu(k) +Gv(k) (B.17)

and (the measurement equation)

z(k) = Hx(k) + w(k) (B.18)

namely a linear system that can be represented with a state s that evolves according to Eq. (B.17) and that can be
measured by an observer function (B.18) that provides z, that can be somehow related linearly to the state. v(k) is
the state noise process, u(k) is the input to the system, and w(k) is the measurement noise.

Both noises are assumed to be zero-mean Gaussian white noise, meaning

E(w(k)) = E(v(k)) = 0 (B.19)[(w(k)
v(k)

) (
w(m)T v(m)T

)]
=

[
R1 0

0 R2

]
δ(k −m) . (B.20)

Furthermore, x(k) ∈ Rn, u(k) ∈ Rm, w(k) ∈ Rn, v(k) ∈ Rq , and y(k) ∈ Rq .

With this formulation, the optimal estimator is given by a set of equations that relate to the prediction of the
state based on the input to the system, in particular

x̂(k + 1|k) = Fx̂(k|k) +Bu(k) (B.21)

P (k + 1|k) = FP (k|k)FT +GR1G
T (B.22)

and another set related to the update and correction of the estimate, namely

K(k) = P (k|k − 1)HT
[
HP (k|k − 1)HT +R2

]−1
(B.23)

x̂(k|k) = x̂(k|k − 1) +K(k) [z(k)−Hx̂(k|k − 1)] (B.24)

P (k|k) = [I −K(k)H]P (k|k − 1) (B.25)

provided by the measurement.

The Kalman Filter, though optimal, is only applicable to linear systems. As such, alternatives are needed
when nonlinear systems are used (which arise particularly in the estimation of rotation in the case of this work).
Two extensions to the Kalman Filter are usually considered: the Extended Kalman Filter (EKF) (presented in
Section B.2.2) and the Unscented Kalman Filter (UKF) (presented in Section B.2.3).

B.2.2 Extended Kalman Filter (EKF)

The Extended Kalman Filter (EKF) is an extension to the Kalman Filter when the system or the measurements
from the system are nonlinear, such as

90 Lie Groups and the Unscented Kalman Filter

x(k + 1) = f(x(k), u(k), v(k)) (B.26)

z(k) = h(x(k), u(k)) + w(k) (B.27)

where functions f and/or h are nonlinear functions. In this case, the system cannot be written in matrix notation
(such as (B.17) and (B.18)).

As such, there are no F or H matrices that can be used for uncertainty propagation ((B.22) and (B.25)),
since the system is nonlinear, and therefore functions f and/or h cannot be written as a linear combination of the
input variables. Furthermore, due to the nonlinear nature of the system, the covariance P would not preserve the
Gaussian nature of the noise.

EKF solves this problem by linearizing the system dynamics around the predicted and filtered estimates of the
state, at each cycle:

Fk+1 =
∂f

∂x

∣∣∣∣
x̂k+1|k,uk

(B.28)

Hk+1 =
∂h

∂x

∣∣∣∣
x̂k+1|k

(B.29)

so that a matrix Fk+1 and Hk+1 are generated at each cycle, suitable for use in (B.22) and (B.25), as if the system
was linear.

Clearly, this filter is sub-optimal, as it does not contemplate the full system model, as well as the effect of the
noise on the system. Moreover, the need for the linearization of the model can be cumbersome for large systems.

Nevertheless, the EKF is a simple extension to the Kalman Filter that allows its usage with nonlinear systems,
and generally obtains positive results.

B.2.3 Unscented Kalman Filter (UKF)

The inherent flaws of the EKF stem from its linearization approach for calculating the mean and covariance of
a random variable. The Unscented Kalman Filter (UKF) ([Julier and Uhlmann, 1997]) addresses these flaws. It is
another extension to the Kalman Filter when the system or the measurements from the system are nonlinear:

x(k + 1) = f(x(k), u(k), v(k)) (B.30)

z(k) = h(x(k), u(k)) + w(k) . (B.31)

This situation is similar to the one in the EKF (Section B.2.2).

Unlike the Extended Kalman Filter (EKF, Section B.2.2), which can also be used with nonlinear functions, the
UKF does not linearize these functions when propagating the uncertainty, and instead tries to approximate distribu-
tion of the output to a Gaussian distribution by using an unscented transform. This procedure works by choosing a
set of sigma points (2L+1 points, where L is the state dimension, corresponding to 2 points around the current es-
timate for each dimension in the state vector, plus the mean) which are subject to the true nonlinear transformation
and used to approximate the output distribution, as shown in Fig. B.2. The comparison of approached between the
EKF and the UKF is shown in Fig. B.3, in particular the propagation of the state, in which EKF linearizes the sys-
tem, whereas the UKF takes (in this case, 5) sigma points to obtain the propagated mean and covariance of the state.

B.2 Sensor Fusion and Filtering 91

Notice this approach usually produces a "truer" result, accurate to the third order of the Taylor series expansion for
Gaussian inputs, and at least second order for non-Gaussian inputs ([Van Der Merwe and Wan, 2001]).

Figure B.2: The principle of the Unscented Transform, where sigma points obtained by varying each dimension
is the state space is propagated using the nonlinear model to approximate the distribution of the covariance, from
[Julier and Uhlmann, 1997]

These sigma points are given by

χ0 = x̄,W0 = κ/(L+ κ) (B.32)

χi = x̄+
(√

(L+ κ)Pxx

)
,Wi = 1/2(L+ κ) (B.33)

χi+L = x̄−
(√

(L+ κ)Pxx

)
,Wi+L = 1/2(L+ κ) (B.34)

with corresponding weights Wi associated to each point, where L ∈ R denotes the dimension of the state and
κ ∈ R is a scaling parameter to control the spread of the sigma points. Furthermore, x̄ represents the mean of state
x, Pxx its covariance, and i ∈ [1, 2n].

The propagation of the sigma points is then given

yi = f(χi) (B.35)

ȳ =

2L∑
i=0

Wiyi (B.36)

Pyy =

2L∑
i=0

(yi − ȳ) (yi − ȳ)
T

. (B.37)

This transformation allows us to have the mean and covariance associated with the nonlinear process, without
the need to linearize it beforehand, producing a better approximation as well.

The full algorithm is given by Eqs. (B.38) through (B.49).

By using the UKF, it is not needed to linearize the system equations, which results in a better approximation
of the uncertainty of the estimate, since the nonlinearities of the system are somewhat taken into account. Further-
more, the use of the unscented transform also makes the filter more robust to noise ([Wan and Van Der Merwe, 2000]).

92 Lie Groups and the Unscented Kalman Filter

Figure B.3: Comparison of propagation between EKF and UKF. Left shows the true mean and covari-
ance; middle represents the EKF approach, linearizing the system; right shows the UKF approach, generating
sigma points (in this case, 5) to propagate the state and obtain estimation on the mean and covariance, from
[Van Der Merwe and Wan, 2001]

B.2.4 Square-Root Unscented Kalman Filter (SR-UKF)

The most computationally expensive operation in the UKF is the generation of the new set of sigma points at
each time update, that requires taking the matrix square root of the covariance matrix P ∈ RL×L, which can be
given by P = SST . Efficient implementations are usuallyO

(
L3/6

)
. However, by propagating S directly, there is

no no need to refactorize at each step. This is the idea at the heart of the SR-UKF. Though the complexity remains
similar, but the numerical properties improve.

SR-UKF relies on three techniques:

• QR decomposition The QR decomposition is factorization of a matrix A ∈ RL×N such that AT = QR,
where Q ∈ RN×N and R ∈ RN×L is upper triangular, and N ≥ L. The upper triangular part of R,
denoted R̄, is the transpose of the Cholesky factor, so we have that R̄ = ST and P = AAT = R̄T R̄. qr{.}
denotes the QR decomposition that returns R. The computational complexity is O

(
NL2

)
, as opposed to

the Cholesky decomposition that is O
(
L3/6

)
, plus O

(
L2
)

to form AAT .

• Cholesky factor updating Assuming S is the Cholesky factor of P = AAT , the Cholesky update cor-
responds do P ± √νuuT , and is denoted as S = cholupdate {S, u,±ν}. The complexity is O

(
L2
)

per
update.

B.2 Sensor Fusion and Filtering 93

• Efficient least squares The solution to (AAT)x = AT b is also the solution to Ax = b, which can be solved
efficiently using QR decomposition with pivoting.

The full algorithm is given by Eqs. (B.50) through (B.64).

94 Lie Groups and the Unscented Kalman Filter

UKF algorithm

Initialize with:
x̄0 = E [x0] P0 = E

[
(x0 − x̄0) (x0 − x̄0)

T
]

(B.38)

For k ∈ {1, · · · ,+∞}
Calculate sigma points:

χk−1 =
[
x̂k−1 x̂k−1 + η

√
Pk−1 x̂k−1x̂k−1 − η

√
Pk−1

]
(B.39)

Time update:
χk|k−1 = F [χk−1, uk−1] (B.40)

x̂−k =

2L∑
i=0

Wiχi,k|k−1 (B.41)

P−k =

2L∑
i=0

Wi

[
χi,k|k−1 − x̂−k

] [
χi,k|k−1 − x̂−k

]T
+Rv (B.42)

yk|k−1 = H
[
χk|k−1

]
(B.43)

ŷ−k =

2L∑
i=0

Wiyi,k|k−1 (B.44)

Measurement update equations:

Pykyk
=

2L∑
i=0

Wi

[
yi,k|k−1 − ŷ−k

] [
yi,k|k−1 − ŷ−k

]T
+Rn (B.45)

Pxkyk
=

2L∑
i=0

Wi

[
χi,k|k−1 − x̂−k

] [
yi,k|k−1 − ŷ−k

]T
(B.46)

Kk = Pxkyk
P−1xkyk

(B.47)

x̂k = x̂−k +Kk

(
yk − ŷ−k

)
(B.48)

Pk = P−k −KkPykyk
KT

K (B.49)

where Rv is process noise covariance and Rn is measurement noise covariance

B.2 Sensor Fusion and Filtering 95

SR-UKF algorithm

Initialize with:
x̄0 = E [x0] P0 = chol

{
E
[
(x0 − x̄0) (x0 − x̄0)

T
]}

(B.50)

For k ∈ {1, · · · ,+∞}
Calculate sigma points and time update:

χk−1 = [x̂k−1 x̂k−1 + ηSk x̂k−1x̂k−1 − ηSk] (B.51)

χk|k−1 = F [χk−1, uk−1] (B.52)

x̂−k =

2L∑
i=0

Wiχi,k|k−1 (B.53)

S−k = qr
{[√

W1

(
χ1:2L,k|k1

− x̂−k
) √

Rv
]}

(B.54)

S−k = cholupdate
{
S−k , χ0,k − x̂−k ,W0

}
(B.55)

yk|k−1 = H
[
χk|k−1

]
(B.56)

ŷ−k =

2L∑
i=0

Wiyi,k|k−1 (B.57)

Measurement update equations:

Syk
= qr

{[√
W1 [y1:2L,k − ŷk]

√
Rn

n

]}
(B.58)

Syk
= cholupdate {Syk

, y0,k − ŷk,W0} (B.59)

Pxkyk
=

2L∑
i=0

Wi

[
χi,k|k−1 − x̂−k

] [
yi,k|k−1 − ŷ−k

]T
(B.60)

Kk = Pxkyk
P−1xkyk

(B.61)

x̂k = x̂−k +Kk

(
yk − ŷ−k

)
(B.62)

U = KkSyk
(B.63)

Sk = cholupdate
{
S−k , U,−1

}
(B.64)

where Rv is process noise covariance and Rn is measurement noise covariance

96 Lie Groups and the Unscented Kalman Filter

Appendix C

Latency evaluation of switching between
event and frame modes

The DVS240 camera being used allows the capture of frames and events, but only one at a time. During
runtime, it is possible to switch between the two modes at any time, though this takes a non-negligible amount of
time. In this experiment we try to measure exactly how long it takes to switch between modes.

C.1 Method

The ROS package rpg_dvs_ros was used to acquire data from the camera, and to perform the switch between
modes. In order to generate a controllable and predictable motion, a stepper motor with a wooden board attached
to the shaft was used, in a clock-like mechanism. The stepper rotated at a frequency of 0.4 Hz (2.5 s per revolution).
Fig. C.1 illustrates the setup used.

Figure C.1: Setup used, showing a rotating wood bar attached to a stepper motor

A continuous stream of data was captured, switching between events and frames with no fixed interval. For

98 Latency evaluation of switching between event and frame modes

each time the mode switched, the angle between the last event line and the first frame was compared (and vice-
versa, when switching from frames to events), and the time elapsed was computed using

time =
angle
freq

=
angle
0.4

. (C.1)

C.2 Results

Using this approach, the average angle measured switching from frames to events was between 60-70 ◦. This
results in a latency of around 0.5 s. The switch between frames and events was not measurable with this method,
as the switch in this case was seamless.

A strange artefact is worth noting, however. The first image captured was always a bright (full white) image
(Fig. C.2), with very little detail. It is not clear whether this is always the case because of insufficient exposure or
because of the auto-focus adjusting (which was supposed to be disabled). Nevertheless, this has to be taken into
account when relying on this switch for algorithms that need it.

Furthermore, the switch from frames to events was often accompanied by some random events contaminating
the image. These were not as regular, however, as they occurred sometimes, but not always, and with a varying
interval of time. This too should be taken into account for methodologies relying on switching between modes.

(a) (b)

Figure C.2: Overlapping image of frame and events, showing the elapsed time indirectly through the bar angle
between the two modes, and first frame after switching, with low quality and very bright overall.

Appendix D

Computing Optical Flow given the
Ego-motion

The aim of this appendix is to explain the assumptions and derive the equations between optical flow and the
effect of ego-motion (the movement of the camera) on optical flow.

D.1 Derivation of the Brightness Constancy Equation

How do we go from

I (x+ uδt, y + vδt, t+ δt) = I(x, y, t) (D.1)

to

dI

dt
=
∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t
= 0 ? (D.2)

The key step is considering that if the time step is small, we can linearize the intensity function using the
Multivariable Taylor Series Expansion into

I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt = I(x, y, t) (D.3)

which yields
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt = 0 . (D.4)

Dividing both sides by δt, and taking the limit δt→ 0, we obtain

∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t
= 0 (D.5)

which corresponds to the Brightness Constancy Equation.

This constraint direct application provides only normal optical flow, not the complete optical flow (usually
called just optical flow). Various ways exist to approximate optical flow, as using higher order derivatives or

100 Computing Optical Flow given the Ego-motion

tracking feature points (using KLT, for example, as detailed in Chapter 2.2.2.3). In the following is considered just
the optical flow, (ẋ, ẏ).

D.2 Effect of Ego-motion on Optical Flow

We begin with the equation that relates the movement of a 3D point P in the scene as seen from the camera:

Ṗ = −T − ω × P =

ẊẎ
Ż

 = −

TxTy
Tz

−
 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


XY
Z

 (D.6)

and the projection equation (and its derivative)


x = f

X

Z

y = f
Y

Z

⇒


ẋ = f

ZẊ −XŻ
Z2

ẏ = f
ZẎ − Y Ż

Z2

. (D.7)

Starting with (D.7), we can rewrite it as[
ẋ

ẏ

]
=
f

Z

[
Ẋ

Ẏ

]
− f

Z

[
X

Y

]
Ż

Z
. (D.8)

Now, expanding (D.6): 
Ẋ = − (Tx + ωyZ − ωzY)

Ẏ = − (Ty + ωzX − ωxZ)

Ż = − (Tz + ωxY − ωyX)

(D.9)

we can isolate and manipulate into

f

Z
= − f

Z

[
Tx + ωyZ − ωzY

Ty + ωzX − ωxZ

]
=
f

Z

[
Tx

Ty

]
−
[
ωyf − ωzy

−ωxf + ωzx

]
(D.10)

and

f

Z

[
X

Y

]
Ż

Z
= −

[
x

y

]
1

Z
(Tz + ωxY − ωyX) = −

[
x

y

](
Tz
Z

+ ωx
y

f
− ωy

x

f

)

=

[
x

y

](
Tz
Z

)
−
[
x

y

](
ωx
y

f
− ωy

x

f

) (D.11)

Finally, we obtain the equation for the motion field due to ego-motion

[
ẋ

ẏ

]
=
f

Z

[
−Tx + x

f Tz

−Ty + y
f Tz

]
+

ωx
xy
f − ωy

(
f + x2

f

)
+ ωzy

ωx

(
f + y2

f

)
− ωy

xy
f + ωzx

 . (D.12)

Bibliography

[Akolkar et al., 2018] Akolkar, H., Ieng, S., and Benosman, R. (2018). Real-time high speed motion prediction
using fast aperture-robust event-driven visual flow. arXiv preprint arXiv:1811.11135.

[Asl et al., 2019] Asl, R. M., Hagh, Y. S., Simani, S., and Handroos, H. (2019). Adaptive square-root unscented
kalman filter: An experimental study of hydraulic actuator state estimation. Mechanical Systems and Signal

Processing, 132:670–691.

[Barfoot and Furgale, 2014] Barfoot, T. D. and Furgale, P. T. (2014). Associating uncertainty with three-
dimensional poses for use in estimation problems. IEEE Transactions on Robotics, 30(3):679–693.

[Barrau and Bonnabel, 2015] Barrau, A. and Bonnabel, S. (2015). An ekf-slam algorithm with consistency prop-
erties. arXiv preprint arXiv:1510.06263.

[Bay et al., 2006] Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust features. In European

conference on computer vision, pages 404–417. Springer.

[Board, 1998] Board, I. (1998). Ieee standard specification format guide and test procedure for single-axis inter-
ferometric fiber optic gyros. IEEE Std, pages 952–1997.

[Bonnabel, 2012] Bonnabel, S. (2012). Symmetries in observer design: Review of some recent results and appli-
cations to ekf-based slam. Robot Motion and Control 2011, pages 3–15.

[Brossard et al., 2017] Brossard, M., Bonnabel, S., and Barrau, A. (2017). Unscented kalman filtering on lie
groups for fusion of imu and monocular vision. In Proc. Int. Conf. Robot. Automat.(ICRA), pages 1–9.

[Censi and Scaramuzza, 2014] Censi, A. and Scaramuzza, D. (2014). Low-latency event-based visual odometry.
In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages 703–710. IEEE.

[Clady et al., 2015] Clady, X., Ieng, S.-H., and Benosman, R. (2015). Asynchronous event-based corner detection
and matching. Neural Networks, 66:91–106.

[Cohen, 2015] Cohen, G. K. (2015). Event-based feature detection, recognition and classification. PhD thesis,
Western Sydney University (Australia).

[Cook et al., 2011] Cook, M., Gugelmann, L., Jug, F., Krautz, C., and Steger, A. (2011). Interacting maps for fast
visual interpretation. In The 2011 International Joint Conference on Neural Networks, pages 770–776. IEEE.

[Deray and Solà, 2020] Deray, J. and Solà, J. (2020). Manif: A micro lie theory library for state estimation in
robotics applications.

102 BIBLIOGRAPHY

[Falanga et al., 2020] Falanga, D., Kleber, K., and Scaramuzza, D. (2020). Dynamic obstacle avoidance for
quadrotors with event cameras. Science Robotics, 5(40).

[Gallego et al., 2019] Gallego, G., Delbruck, T., Orchard, G., Bartolozzi, C., Taba, B., Censi, A., Leutenegger,
S., Davison, A., Conradt, J., Daniilidis, K., et al. (2019). Event-based vision: A survey. arXiv preprint

arXiv:1904.08405.

[Gallego et al., 2018] Gallego, G., Rebecq, H., and Scaramuzza, D. (2018). A unifying contrast maximization
framework for event cameras, with applications to motion, depth, and optical flow estimation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3867–3876.

[Gallego and Scaramuzza, 2017] Gallego, G. and Scaramuzza, D. (2017). Accurate angular velocity estimation
with an event camera. IEEE Robotics and Automation Letters, 2(2):632–639.

[Gehrig et al., 2020] Gehrig, D., Rebecq, H., Gallego, G., and Scaramuzza, D. (2020). Eklt: Asynchronous pho-
tometric feature tracking using events and frames. International Journal of Computer Vision, 128(3):601–618.

[Giulioni et al., 2015] Giulioni, M., Corradi, F., Dante, V., and Del Giudice, P. (2015). Real time unsupervised
learning of visual stimuli in neuromorphic vlsi systems. Scientific reports, 5(1):1–10.

[Harris et al., 1988] Harris, C. G., Stephens, M., et al. (1988). A combined corner and edge detector. In Alvey

vision conference, volume 15, pages 10–5244. Citeseer.

[Heeger and Jepson, 1992] Heeger, D. J. and Jepson, A. D. (1992). Subspace methods for recovering rigid motion
i: Algorithm and implementation. International Journal of Computer Vision, 7(2):95–117.

[Horn et al., 1986] Horn, B., Klaus, B., and Horn, P. (1986). Robot vision. MIT press.

[Ieng et al., 2017] Ieng, S. H., Carneiro, J., and Benosman, R. B. (2017). Event-based 3d motion flow estimation
using 4d spatio temporal subspaces properties. Frontiers in neuroscience, 10:596.

[Julier and Uhlmann, 1997] Julier, S. J. and Uhlmann, J. K. (1997). New extension of the kalman filter to non-
linear systems. In Signal processing, sensor fusion, and target recognition VI, volume 3068, pages 182–193.
International Society for Optics and Photonics.

[Kalman, 1960] Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

[Kim et al., 2008] Kim, H., Handa, A., Benosman, R., Ieng, S.-H., and Davison, A. J. (2008). Simultaneous
mosaicing and tracking with an event camera. J. Solid State Circ, 43:566–576.

[Kim et al., 2016] Kim, H., Leutenegger, S., and Davison, A. J. (2016). Real-time 3d reconstruction and 6-dof
tracking with an event camera. In European Conference on Computer Vision, pages 349–364. Springer.

[Li et al., 2018] Li, K., Frisch, D., Radtke, S., Noack, B., and Hanebeck, U. D. (2018). Wavefront orientation
estimation based on progressive bingham filtering. In 2018 Sensor Data Fusion: Trends, Solutions, Applications

(SDF), pages 1–6. IEEE.

[Lichtsteiner et al., 2008] Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128× 128 120 db 15µ s latency
asynchronous temporal contrast vision sensor. IEEE journal of solid-state circuits, 43(2):566–576.

BIBLIOGRAPHY 103

[Liu et al., 2013] Liu, S.-C., van Schaik, A., Minch, B. A., and Delbruck, T. (2013). Asynchronous binaural spatial
audition sensor with 2\,\times\, 64\,\times\, 4 channel output. IEEE transactions on biomedical circuits and

systems, 8(4):453–464.

[Loianno et al., 2016] Loianno, G., Watterson, M., and Kumar, V. (2016). Visual inertial odometry for quadrotors
on se (3). In 2016 IEEE International Conference on Robotics and Automation (ICRA), pages 1544–1551.
IEEE.

[Lowe, 1999] Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceedings of the

seventh IEEE international conference on computer vision, volume 2, pages 1150–1157. Ieee.

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International journal

of computer vision, 60(2):91–110.

[Lucas et al., 1981] Lucas, B. D., Kanade, T., et al. (1981). An iterative image registration technique with an
application to stereo vision. Vancouver, British Columbia.

[Luo, 2015] Luo, L. (2015). Principles of neurobiology. Garland Science.

[Martins, 2019] Martins, M. (2019). Determining the orientation of a rgb camera embedded on an artificial eye.

[Mead and Mahowald, 1988] Mead, C. A. and Mahowald, M. A. (1988). A silicon model of early visual process-
ing. Neural networks, 1(1):91–97.

[Mebius, 2007] Mebius, J. E. (2007). Derivation of the euler-rodrigues formula for three-dimensional rotations
from the general formula for four-dimensional rotations. arXiv preprint math/0701759.

[Montemerlo et al., 2002] Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B., et al. (2002). Fastslam: A factored
solution to the simultaneous localization and mapping problem. Aaai/iaai, 593598.

[Mourikis and Roumeliotis, 2007] Mourikis, A. I. and Roumeliotis, S. I. (2007). A multi-state constraint kalman
filter for vision-aided inertial navigation. In Proceedings 2007 IEEE International Conference on Robotics and

Automation, pages 3565–3572. IEEE.

[Mueggler et al., 2017a] Mueggler, E., Bartolozzi, C., and Scaramuzza, D. (2017a). Fast event-based corner de-
tection.

[Mueggler et al., 2014] Mueggler, E., Huber, B., and Scaramuzza, D. (2014). Event-based, 6-dof pose tracking for
high-speed maneuvers. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2761–2768. IEEE.

[Mueggler et al., 2017b] Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T., and Scaramuzza, D. (2017b). The
event-camera dataset and simulator: Event-based data for pose estimation, visual odometry, and slam. The

International Journal of Robotics Research, 36(2):142–149.

[Müller, 2017] Müller, A. (2017). Coordinate mappings for rigid body motions. Journal of Computational and

Nonlinear Dynamics, 12(2).

104 BIBLIOGRAPHY

[Mur-Artal et al., 2015] Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015). Orb-slam: a versatile and
accurate monocular slam system. IEEE transactions on robotics, 31(5):1147–1163.

[Mur-Artal and Tardós, 2017] Mur-Artal, R. and Tardós, J. D. (2017). Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics, 33(5):1255–1262.

[Qiao et al., 2015] Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D., and Indiveri,
G. (2015). A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128k
synapses. Frontiers in neuroscience, 9:141.

[Qin et al., 2018] Qin, T., Li, P., and Shen, S. (2018). Vins-mono: A robust and versatile monocular visual-inertial
state estimator. IEEE Transactions on Robotics, 34(4):1004–1020.

[Rebecq et al., 2018a] Rebecq, H., Gallego, G., Mueggler, E., and Scaramuzza, D. (2018a). Emvs: Event-based
multi-view stereo—3d reconstruction with an event camera in real-time. International Journal of Computer

Vision, 126(12):1394–1414.

[Rebecq et al., 2018b] Rebecq, H., Gehrig, D., and Scaramuzza, D. (2018b). Esim: an open event camera simula-
tor. In Conference on Robot Learning, pages 969–982.

[Rebecq et al., 2017] Rebecq, H., Horstschaefer, T., and Scaramuzza, D. (2017). Real-time visual-inertial odom-
etry for event cameras using keyframe-based nonlinear optimization.

[Rebecq et al., 2019] Rebecq, H., Ranftl, R., Koltun, V., and Scaramuzza, D. (2019). High speed and high dynamic
range video with an event camera. IEEE transactions on pattern analysis and machine intelligence.

[Reinbacher et al., 2017] Reinbacher, C., Munda, G., and Pock, T. (2017). Real-time panoramic tracking for event
cameras. In 2017 IEEE International Conference on Computational Photography (ICCP), pages 1–9. IEEE.

[Rosten and Drummond, 2006] Rosten, E. and Drummond, T. (2006). Machine learning for high-speed corner
detection. In European conference on computer vision, pages 430–443. Springer.

[Sanket et al., 2020] Sanket, N. J., Parameshwara, C. M., Singh, C. D., Kuruttukulam, A. V., Fermüller, C., Scara-
muzza, D., and Aloimonos, Y. (2020). Evdodgenet: Deep dynamic obstacle dodging with event cameras. In
2020 IEEE International Conference on Robotics and Automation (ICRA), pages 10651–10657. IEEE.

[Schönemann, 1966] Schönemann, P. H. (1966). A generalized solution of the orthogonal procrustes problem.
Psychometrika, 31(1):1–10.

[Schuenke et al., 2020] Schuenke, M., Schulte, E., Schumacher, U., MacPherson, B., and Stefan, C. (2020). Head,

Neck, and neuroanatomy (THIEME atlas of anatomy). Thieme Medical Publishers.

[Siciliano and Khatib, 2016] Siciliano, B. and Khatib, O. (2016). Springer handbook of robotics. springer.

[Sun et al., 2021] Sun, S., Cioffi, G., De Visser, C., and Scaramuzza, D. (2021). Autonomous quadrotor flight
despite rotor failure with onboard vision sensors: Frames vs. events. IEEE Robotics and Automation Letters,
6(2):580–587.

[Thrun, 2002] Thrun, S. (2002). Probabilistic robotics. Communications of the ACM, 45(3):52–57.

BIBLIOGRAPHY 105

[Tsai, 1987] Tsai, R. (1987). A versatile camera calibration technique for high-accuracy 3d machine vision metrol-
ogy using off-the-shelf tv cameras and lenses. IEEE Journal on Robotics and Automation, 3(4):323–344.

[Van Der Merwe and Wan, 2001] Van Der Merwe, R. and Wan, E. A. (2001). The square-root unscented kalman
filter for state and parameter-estimation. In 2001 IEEE international conference on acoustics, speech, and

signal processing. Proceedings (Cat. No. 01CH37221), volume 6, pages 3461–3464. IEEE.

[Vasco et al., 2016] Vasco, V., Glover, A., and Bartolozzi, C. (2016). Fast event-based harris corner detection
exploiting the advantages of event-driven cameras. In 2016 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 4144–4149. IEEE.

[Vidal et al., 2018] Vidal, A. R., Rebecq, H., Horstschaefer, T., and Scaramuzza, D. (2018). Ultimate slam?
combining events, images, and imu for robust visual slam in hdr and high-speed scenarios. IEEE Robotics and

Automation Letters, 3(2):994–1001.

[Wan and Van Der Merwe, 2000] Wan, E. A. and Van Der Merwe, R. (2000). The unscented kalman filter for non-
linear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications,

and Control Symposium (Cat. No. 00EX373), pages 153–158. Ieee.

[Wang and Chirikjian, 2008] Wang, Y. and Chirikjian, G. S. (2008). Nonparametric second-order theory of error
propagation on motion groups. The International journal of robotics research, 27(11-12):1258–1273.

[Weikersdorfer and Conradt, 2012] Weikersdorfer, D. and Conradt, J. (2012). Event-based particle filtering for
robot self-localization. In 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), pages
866–870. IEEE.

[Zhang, 2000] Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on pattern

analysis and machine intelligence, 22(11):1330–1334.

[Zhu et al., 2017] Zhu, A. Z., Atanasov, N., and Daniilidis, K. (2017). Event-based feature tracking with proba-
bilistic data association. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages
4465–4470. IEEE.

[Zihao Zhu et al., 2017] Zihao Zhu, A., Atanasov, N., and Daniilidis, K. (2017). Event-based visual inertial odom-
etry. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5391–5399.

	Declaration
	Acknowledgments
	Resumo
	Abstract
	Acronyms
	Glossary
	Nomenclature
	Introduction
	Overview of Related Works
	Problem Formulation
	Motivation for our Approach
	Contributions
	Thesis Structure

	Background and State of the Art
	Camera Projection Model and Imaging Features
	Camera Model
	Feature Detection and Tracking

	Event Cameras
	DVS240 and DAVIS240 Event Cameras
	Feature Detection and Tracking on Event Cameras

	Inertial Measurement Unit (IMU)
	Pose Estimation
	Camera Motion and Motion Field
	Visual Odometry

	State of the Art

	Visual Odometry and Visual Inertial Odometry
	System Model
	Inertial Odometry
	Visual Odometry
	Visual Inertial Odometry
	Proposed Approach
	Filter Structure
	Measurement Model
	Implementation of UKF based on Lie Groups
	Implementation
	Filter Initialisation
	Special Note - DVS Cameras

	Closed Loop Integration of Sensor and Pose Filter on Event Cameras
	Motivation for Improved Approach
	Ego Motion and Optical Flow
	Features Tracking complemented by the Pose Filter State
	Set of Backup Features
	Implementation

	Experiments and Results
	Datasets and Experimental Setups
	Experiment Plan
	Experiment 1, Integrated Experiment with a DAVIS Camera Dataset
	Experiment 2, Integrated Experiment on Simulation
	Experiment 3, DVS Camera Mounted on the Kinova Arm
	Results Analysis and Experiments Comparison

	 Conclusion and Future Work
	Conclusion
	Future Work

	Camera and IMU Calibration
	Camera Calibration
	Event camera calibration

	IMU calibration

	Lie Groups and the Unscented Kalman Filter
	Lie groups and Lie Algebra
	Algebraic groups
	Lie algebra
	Particular Lie groups

	Sensor Fusion and Filtering
	Kalman Filter
	Extended Kalman Filter (EKF)
	Unscented Kalman Filter (UKF)
	Square-Root Unscented Kalman Filter (SR-UKF)

	Latency evaluation of switching between event and frame modes
	Method
	Results

	Computing Optical Flow given the Ego-motion
	Derivation of the Brightness Constancy Equation
	Effect of Ego-motion on Optical Flow

