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Abstract

A major challenge in computational neurobiology is to understand how populations of noisy, broadly-tuned neurons
produce accurate goal-directed actions such as saccades. Saccades are high-velocity eye movements that have stereotyped,
nonlinear kinematics; their duration increases with amplitude, while peak eye-velocity saturates for large saccades. Recent
theories suggest that these characteristics reflect a deliberate strategy that optimizes a speed-accuracy tradeoff in the
presence of signal-dependent noise in the neural control signals. Here we argue that the midbrain superior colliculus (SC), a
key sensorimotor interface that contains a topographically-organized map of saccade vectors, is in an ideal position to
implement such an optimization principle. Most models attribute the nonlinear saccade kinematics to saturation in the
brainstem pulse generator downstream from the SC. However, there is little data to support this assumption. We now
present new neurophysiological evidence for an alternative scheme, which proposes that these properties reside in the
spatial-temporal dynamics of SC activity. As predicted by this scheme, we found a remarkably systematic organization in the
burst properties of saccade-related neurons along the rostral-to-caudal (i.e., amplitude-coding) dimension of the SC motor
map: peak firing-rates systematically decrease for cells encoding larger saccades, while burst durations and skewness
increase, suggesting that this spatial gradient underlies the increase in duration and skewness of the eye velocity profiles
with amplitude. We also show that all neurons in the recruited population synchronize their burst profiles, indicating that
the burst-timing of each cell is determined by the planned saccade vector in which it participates, rather than by its
anatomical location. Together with the observation that saccade-related SC cells indeed show signal-dependent noise, this
precisely tuned organization of SC burst activity strongly supports the notion of an optimal motor-control principle
embedded in the SC motor map as it fully accounts for the straight trajectories and kinematic nonlinearity of saccades.
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Introduction

Visually evoked saccades have remarkably stereotyped charac-

teristics. Their two-dimensional trajectories are virtually straight,

there is a near-linear relationship between movement duration and

saccade amplitude, and peak eye velocity versus saccade amplitude

follows a nonlinear, saturating relationship (Fig. 1A). These

kinematic relations, known as the ‘main sequence’ [1], could

indicate a nonlinearity in the saccadic system, because for a linear

system, when driven by a step input, velocity profiles of all

saccades would be self-similar, scaled (by amplitude) versions of

each other (see [2] for a discussion of the step-input assumption).

As a result, the movement duration would be constant for all

saccades, and peak eye velocity would increase linearly with

amplitude [3].

Why saccades have these stereotyped kinematics is unknown.

Interestingly, theoretical studies [4–8] have suggested that the

main sequence of saccades could reflect an optimal control

strategy, as the system has to cope with several conflicting

constraints. More specifically, the properties of internal noise

within the system (assumed to increase with activity levels), a low

spatial resolution in the peripheral retina, and a penalty for

overshooting the target (as corrective commands then have to

cross hemispheres), require a speed-accuracy tradeoff. These

studies indicated that the optimal trajectories to satisfy such

constraints are met by the main-sequence relationships. However,

the neural mechanisms for implementing the main-sequence

relations are unknown.

Almost every neural model of the saccadic system assumes that

the main sequence results from a local feedback circuit in the

brainstem [9–13] (Fig. 1B). The classic theory is that this circuit

receives a step input from the midbrain superior colliculus (SC)

encoding the desired eye displacement, and that medium-lead

burst cells in the pons are driven by a dynamic motor-error signal

which reflects the difference between the desired and the current

eye displacement. The pontine burst cells transform this signal into

an eye-velocity output, a process known as pulse generation. Most

saccade models assume that (due to saturation of peak firing-rates,

or neural fatigue) the input-output characteristic of the pulse

generator is a saturating nonlinearity that causes the amplitude –

peak velocity relation [11–15]. While there is compelling evidence

that the firing-rate of these neurons encodes eye velocity [11,16–
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19], there is surprisingly little data to support the assumption that

their input-output characteristic underlies the nonlinear main

sequence. A critical problem is that the true nature and dynamics

of their input signals are unknown. It is also not clear how a

saturating nonlinearity in the horizontal and vertical brainstem

circuits could support optimal control in two dimensions. Because

the generation of straight saccades in oblique directions involves

stretching the horizontal and vertical velocity components in such

a way that they are scaled versions of each other (Fig. 1A), an

intricate cross-coupling between the horizontal and vertical pulse

generators would be required [20–25]. Clearly, straight trajecto-

ries are optimal in the sense that they constitute the shortest path

to the endpoint.

Here, we study the role of the superior colliculus in the optimal

control of saccades. The deeper layers of the SC form a

topographic map of saccade vectors (Figs. 1B and 1C), which is

organized in eye-centered coordinates [26]. Neurons in this motor

map fire a brisk burst of action potentials tightly coupled to the

onset and duration of the saccade. Cells near the rostral pole of the

SC are involved in the generation of small saccades, while cells at

caudal sites encode large eye movements. Saccade direction in the

contralateral hemifield is represented along the medial-lateral

dimension. The range of movement vectors for which an SC

neuron is recruited is called its movement field [27,28], and it has

been inferred from the size and shape of the cells’ movement fields

that each saccade is associated with a location-invariant two-

dimensional Gaussian activation profile in the map [28]. However,

how the temporal dynamics of activity within the active population

contributes to the movement kinematics is not clear [29–33].

Because the SC is an important sensorimotor interface in the

control of saccade behavior [34–36], it could be in an ideal

position to optimize speed-accuracy tradeoff. In line with this

notion, we recently found that the nonlinear kinematics of

saccades are already embedded in the spatial-temporal SC activity

patterns [33]. More specifically, we demonstrated that measured

SC firing patterns, when used to drive a linear feedback model of

the brainstem, produce realistic, straight saccades that obey the

nonlinear main sequence. As shown in Fig. 1C, this analysis

assumed that i) the spatial-temporal activity patterns in the SC

motor map are decoded by a linear ‘spike-vector’ summation

mechanism in which each spike from each neuron adds an

independent, site-specific vectorial contribution to the saccade

command, and that ii) this command is executed by two

independent, linear feedback circuits in the brainstem that control

the horizontal and vertical movement components, respectively.

Thus, none of the nonlinear properties of saccades (component

stretching, skewness of velocity profiles, and main-sequence

relations) were built into the model; they all emerged from the

measured SC activity patterns (see also Video S1).

However, the mechanism by which the recruited SC population

generates these properties remained unclear. In a recent theoret-

ical study we proposed that a possible mechanism could reside in a

topographic organization of burst properties of saccade-related SC

cells [37]. This theory predicts that the SC could specify the

nonlinear main sequence of saccades if the saccade-related bursts

vary from brief and intense in the rostral zone, to less intense and

of longer duration in the caudal zone, while keeping the total

number of spikes constant. It also predicts a systematic rostral-to-

caudal increase in burst skewness, because skewness of the eye-

velocity profiles increases with saccade amplitude [38]. Moreover,

if the SC indeed acts as an optimal controller, one would expect

that cells in the recruited population synchronize their burst

profiles because this would ensure that the net SC movement

command specifies a straight trajectory at optimal speed. Note,

however, that if burst durations and skewness indeed vary along

the map, such synchronization of burst activity can only occur if

the shape of each cell’s burst depends on the planned movement,

rather than on its anatomical location in the motor map. We thus

predicted that burst shapes are different depending on whether a

cell is recruited for small versus large saccades. Finally, optimal

control theories predict that speed-accuracy tradeoff is constrained

by noise, which increases with the amplitude of the control signals

[5–7]. This suggests that SC cells might exhibit signal-dependent

noise.

Several studies have examined the spatial-temporal organiza-

tion of saccade-related burst activity in the SC [29–33], but a

detailed, quantitative analysis is still missing. Furthermore, the

possibility that populations of movement cells might encode the

optimal kinematics of different movements through a topographic

gradient of firing properties has never been studied. In the present

paper we therefore characterized the activity patterns of a large

population of saccade-related SC neurons, widely distributed

across the motor map. Our results reveal a highly systematic

organization of burst properties along the rostral-to-caudal extent

of the SC motor map, which can fully account for the nonlinear

kinematics of saccades, their straight trajectories in oblique

directions, and the skewed shape of their velocity profiles.

Moreover, we demonstrate signal-dependent noise in the number

of spikes of saccade-related bursts, as predicted by optimal-control

theories. These remarkable findings strongly support the notion of

an optimal motor-control principle embedded in the SC.

Results

If the SC plays a role in optimal control, and if the brainstem

indeed acts as a linear system, one would expect that: 1) individual

SC neurons exhibit signal-dependent noise, 2) peak firing-rate,

burst duration and burst skewness at the center of the recruited

population all depend systematically on its rostral-caudal coordi-

nate in the SC motor map, while the number of spikes in the burst

remains fixed, 3) the shape of a neuron’s burst depends

Author Summary

As the fovea is the only spot on the retina with high spatial
resolution, primates need to move their eyes to peripheral
targets for detailed inspection. Saccades are the fastest
movements of the body, and theoretical studies suggest
that their trajectories are optimized to bring the fovea as
fast and accurately as possible on target. Speed-accuracy
optimization principles explain the stereotyped nonlinear
‘main-sequence’ relationship between saccade amplitude,
duration, and peak velocity. Earlier models attributed these
kinematic properties to nonlinear neural circuitry in the
brainstem but this creates problems for oblique saccades.
Here, we demonstrate how the brainstem can be linear,
and how instead the midbrain superior colliculus (SC)
could optimize saccadic speed-accuracy tradeoff. Each
saccade involves the recruitment of a large population of
SC neurons. We show that peak firing-rate and burst shape
of the recruited cells systematically vary with their location
in the SC, and that burst shapes nicely match the eye-
velocity profiles. This organization of burst properties fully
explains the main-sequence. Moreover, all cells synchro-
nize their bursts, thus maximizing the total instantaneous
input to the brainstem, and ensuring that oblique saccades
have straight trajectories. We thus discovered a sophisti-
cated neural mechanism underlying optimal motor control
in the brain.

Optimal Control of Saccades by the SC Motor Map
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systematically on the actual movement, and 4) all cells in the

recruited population synchronize their burst profiles. In what

follows, we present quantitative evidence for each of these

predictions.

Signal-dependent noise
One of the central premises in the optimal control theories

proposed by Harris and Wolpert [5] and Tanaka et al. [7] is that

the amount of noise in the control signal is proportional to signal

amplitude, but experimental evidence for this assumption is still

limited [39–41]. Here we test whether such signal-dependent noise

exists at the level of the SC motor map. Towards that end, we

quantified the trial-to-trial variability of saccade-related burst

activity of SC neurons for visually guided saccades into their

movement field.

Figure 2 illustrates the results for a typical cell. The left-hand

panels show the instantaneous firing rate of the cell (color code) as

a function of time for selected saccades of different amplitudes

(Fig. 2A, ‘amplitude scan’) and directions (Fig. 2B, ‘direction

scan’). Individual trials are sorted according to saccade amplitude

and direction, respectively. For each saccade, the burst magnitude

was quantified from the raw data by counting all spikes in the time

window between the two tick marks (identifying saccade onset an

offset with a 20 ms lead time), and the resulting spike counts are

displayed in the adjacent panels as running averages. Saccade

endpoints of the responses in Figs. 2A and B (squares and circles,

respectively) are plotted in Fig. 2C, together with a two-

dimensional representation of the cell’s movement field (Methods).

This movement-field plot shows that the number of spikes in the

burst (color code) varies systematically with saccade amplitude and

direction. However, as can be seen in Figs. 2A and B, it is not only

the mean number of spikes in the burst (open symbols) that

depends systematically on the amplitude and direction of the

saccade vector; also the trial-to-trial variability in the spike counts

changes systematically (error bars indicate 61 SD). More

specifically, when the spike-count variability is plotted as a

function of the average number of spikes in the burst (Fig. 2D),

it appears for this cell that the standard deviation increases almost

linearly with the mean. To quantify this relation, we fitted a

regression line to the data. Note that the intercept is practically

zero. The slope of the regression line thus provides a good measure

of the so-called coefficient of variation, which is the ratio between

the standard deviation and the mean (Methods). For the neuron in

Fig. 2, the coefficient of variation was Cv = 0.27860.016 (mean6

SEM).

To quantify the signal-dependent variability of saccade-related

bursts for the entire population of cells, we selected for each SC

neuron a series of non-overlapping clusters of closely matched

Figure 1. Properties of saccades and models of saccade generation. A) Left: main sequence relationship between saccade amplitude, duration
and peak velocity. Right: component stretching. Here, an oblique saccade (blue) has very different component amplitudes (top), but horizontal and
vertical velocity profiles ( _HH and _VV ) have equal durations and similar shapes (bottom). The horizontal saccade (red) has a much shorter duration and
higher velocity than the equally large horizontal component of the oblique saccade. B) Classic one-dimensional model which assumes that the superior
colliculus (SC) specifies a desired displacement vector (after [12]). Main sequence properties are attributed to a saturating nonlinearity of the burst
generator which is controlled through local feedback. Cross-coupling between horizontal and vertical components (not shown) is needed to produce
straight saccades. C) Linear two-dimensional model of the SC – brainstem saccade generator (after [33]). In this scheme, spatial-temporal activity
patterns in the SC specify an intended movement trajectory, which is decoded downstream by ‘spike-vector’ summation: each spike from each neuron
adds a site-specific vectorial contribution to movement command. The actual movement is generated by pulse-step activation of the extra-ocular motor
neurons, as in B, but the burst generator, which produces the pulse, is linear. DE, desired eye displacement; De(t), current eye displacement; me(t),
dynamic motor error; _ee(t), current eye velocity; w(R), exponential weighting function; #dt temporal integration; Burst, brainstem burst generator; NI,
neural eye position integrator; NDI, resettable neural eye displacement integrator; MN, motor neurons; innerv., eye plant pulse-step innervation signal.
doi:10.1371/journal.pcbi.1002508.g001
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saccade responses. This analysis, which is illustrated in Fig. 3A and

B, typically included the entire movement field. Figures 3C and D

summarize the results for all 108 cells for which we obtained

sufficient data (see Methods, for details). Note that for the vast

majority of cells (89%, n = 96) spike-count variability increased

significantly with the mean number of spikes (two-tailed t-test,

p,0.05). The mean (6SEM) value of the coefficient of variation

across the cell population was 0.30660.014. These findings thus

indicate that motor commands generated by individual SC

neurons are endowed with a considerable amount of signal-

dependent noise.

Because signal-dependent noise alone cannot fully account for

the variability in observed saccade trajectories, it has been

suggested that cell activity may also be endowed with signal-

independent noise [42]. We therefore quantified the level of signal-

independent noise in the SC by analyzing the intercepts of the

regression lines (c.f., Fig. 2D and Fig. 3B). Averaged across our

sample of cells, the mean intercept was indeed significantly

different from zero (two-tailed t-test, p,0.001), but with an

average value of 0.5460.03 spikes (mean6SEM) it reached only

3.060.2% of the cells’ average peak response.

Spatial variation of burst properties
As mentioned in the introduction, we recently proposed on the

basis of model simulations that a topographic organization of burst

properties within the SC motor map could underlie the nonlinear

kinematics of saccades [37]. More specifically, our simulations

showed that the SC population could specify the main sequence if

the saccade-related bursts vary from brief and intense in the rostral

zone (small-saccade area), to less intense and of longer duration in

the caudal zone (encoding large saccades) while keeping the

number of spikes constant.

To test these theoretical predictions, Fig. 4 quantifies several

burst properties of saccade-related SC cells for saccades towards

the center of their movement field as a function their anatomical

rostral-to-caudal location in the motor map: number of spikes in

the burst (Fig. 4A), mean firing rate (Fig. 4B), and peak firing rate

(Fig. 4C). Spike counts and mean firing rates were calculated from

the raw data, while peak firing rates were estimated from the spike-

density functions. We indexed the rostral-to-caudal location of

each cell in the motor map by the amplitude of its preferred

vector. Cells (n = 103) were selected for having at least 5 saccades

into the center of their movement field (Methods).

Note that the spike counts are remarkably constant across the

rostral-to-caudal extent of the SC as cells at each location fire on

average about 18 spikes for their preferred saccade. Mean and

peak firing rates, on the other hand, decrease systematically with

the rostral-to-caudal location of the cells. To quantify these

topographic relations we fitted linear regression lines (solid) to each

of the three datasets. The numerical results are listed in Table 1

(top entries). This regression analysis showed there is no significant

correlation between spike counts and preferred amplitudes, and

thus anatomical location, of the neurons (Pearson correlation,

p.0.3). Correlations between firing rates and preferred ampli-

Figure 2. Movement field scan of a saccade-related SC neuron illustrating the presence of signal-dependent noise. A) Spike density
(color code) as a function of time for saccades in and near the center of the movement field, with trials sorted by amplitude of the movement
(amplitude scan; fixed direction W>237u). Tick marks indicate spike-count windows (20 ms before onset to 20 ms before offset of the saccade).
Superimposed is the average eye position of saccades towards the movement field center. Spike counts (open symbols) are displayed as running
averages across 6u wide bins. Error bars indicate the trial-to-trial variability in spike counts (61 SD). B) Same for a direction scan through the center of
the movement field (fixed amplitude R>13u). Spike counts were averaged across 13u wide bins. Average velocity profile of saccades towards the
center is superimposed. C) Spatial extent of the movement field together with the endpoints of saccades (re. to initial fixation, +) included in the
amplitude and direction scan. Color code: movement field description (Methods, Eq. 3) of the number of spikes in the burst as function of saccade
amplitude and direction. Contour lines are drawn at [0.5, 1.0, 1.5 and 2.0]?smf. D) Spike-count standard deviations as a function of mean number of
spikes in the burst. Linear regression line (solid) was calculated from the pooled data of the amplitude (squares) and direction (circles) scans.
doi:10.1371/journal.pcbi.1002508.g002
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tudes, however, were significantly different from zero (t-test,

p,0.005). Slopes of the regression lines (mean6SEM) in Fig. 4B

and C were 27.661.9 and 27.362.3 spk/s per deg, respectively.

The data thus indicate an almost two-fold decrease in firing rates

from small to large saccades within the oculomotor range.

Because mean firing-rates were computed from the number of

spikes divided by saccade duration (Methods), a reduction in mean

firing-rate with amplitude could, in principle, result from the

confounding factor that saccade duration increases linearly with

amplitude (c.f., Fig. 1A). However, this potential confound does

not play a role for the peak firing-rate. In our analysis, the absolute

peak firing-rate values are partly determined by the width of the

Gaussian smoothing kernel (see Table 1 for results with different

values of s), but for a fixed kernel width (here, s = 5 ms), the

changes in peak firing-rate across the population of cells are

entirely due to changes in the temporal distribution of spikes

within their bursts. The data in Fig. 4C thus confirm the presence

of a real rostral-to-caudal gradient in the cells’ activity patterns,

which – to our knowledge – has not been documented before.

This spatial gradient is further illustrated in Figs. 5A–D which

show the full temporal burst profiles of four clusters of cells that

fired ,18 spikes for their preferred saccade (dashed circles in

Fig. 4A). Insets illustrate, schematically, the location of the

recording sites in the motor map. It is important to note that

this analysis does not involve any normalization of activity. Thin

lines represent the mean spike-density functions of the individual

cells, where data are aligned with saccade onset and averaged

across at least 5 saccades into the center of the movement field

(within 0.5?smf). Amplitudes of the preferred vectors were about

5u, 13u, 21u, and 32u, respectively, as may be inferred from the

corresponding eye-position traces. Thick lines are the grand

averages of the responses. Note that the systematic rostral-to-

caudal changes in mean and peak firing rates are quite obvious

from these discharge profiles too. Cells recorded in the rostral

region of the SC (Fig. 5A) clearly showed much higher peak firing

rates and shorter bursts for their preferred vector than the ones in

the caudal SC (Fig. 5D), while cells found at intermediate locations

(Fig. 5B and 5C) had intermediate firing rates and burst durations.

In Fig. 6A we normalized the average burst profiles from the

four clusters of cells (Figs. 5A–D) with respect to their peak. The

top-right insets show the main sequence behavior and velocity

profile skewness [38] of the corresponding average eye movements

(data replotted from Fig. 5). This analysis shows that the peak

firing rate occurs at about the same instant relative to saccade

onset (see Table 1, for further quantification) while the burst

duration increases systematically with the preferred amplitude of

the cells (indexed by the gray-scaling). Hence, these results indicate

that, just like the saccade velocity profiles, the skewness of the

bursts increases systematically with saccade amplitude (and

duration).

Note, however, that the shapes of the spike-density waveforms

in Fig. 6A also depend on the width of the Gaussian smoothing

kernel that is used to compute the instantaneous firing rates (here,

s = 5 ms). To circumvent this problem, in Fig. 6B, we therefore

calculated burst skewness directly from the distribution of spike

moments in the burst (Methods), rather than from the spike

density functions. As in Fig. 4, cells (n = 103) were selected for

having at least five saccades into the center of their movement

field. Note that bursts associated with small saccades (produced by

cells in the rostral region of the SC) are nearly symmetric (skewness

about zero) while bursts associated with large saccades (produced

by cells in the caudal SC) have longer tails towards the end of the

Figure 3. Signal-dependent noise across the population of recorded SC neurons. A) Movement field data from an individual neuron was
parsed into clusters (here, n = 15) containing at least 5 saccades to nearby locations. Preferred vector of the cell shown here was [R,W] = [12,183]u.
Endpoints of saccades belonging to the same cluster are gray-coded and connected by line segments. B) For each cluster, mean and standard deviation
of the number of spikes in the burst were computed (Methods). The relation between these variables is characterized by the coefficient of variance, Cv,
which we determined from the slope of the linear regression line (solid, Cv = 0.4360.08). C) Stacked histograms show the distribution of Cv for the
population of cells in which the regression was statistically significant (bright; n = 96) and for the population of cells for which it was not significant (dark;
n = 12). Legend: p-value of the regression (two-tailed t-test); n.s., not significant. D) Same for the distribution of linear correlation coefficients.
doi:10.1371/journal.pcbi.1002508.g003
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saccade (positive skewness). Linear regression analysis showed a

significant, positive correlation (t-test, p%0.001) between the

skewness of the bursts and the preferred amplitudes of the cells.

This shows that burst skewness indeed increases systematically

with the cells’ rostral-to-caudal location in the motor map. Table 1

summarizes the numerical results of this regression analysis (fifth

entry).

The systematic increase in burst skewness with saccade

amplitude was not related to any change in spike-count variability;

the coefficient of variation computed for these bursts (Eq. 4) was

more or less constant across the map (Table 1), and did not

significantly correlate with burst skewness (t-test, p.0.28).

The topographic variations in burst properties that are revealed

by the analyses in Figs. 4–6 were consistent across animals. In all

three animals for which we obtained a sufficient number of cells at

different locations in the map (n.10; smallest eccentricity ,4u;
largest eccentricity .40u), we observed a nearly constant number

of spikes across the map, a systematic rostral-to-caudal decrease in

mean and peak firing rates, and a systematic rostral-to-caudal

increase in burst skewness. In the fourth animal, recording sites did

not span a large enough range of eccentricities (11u,R,15u) to

obtain reliable fit results.

Burst dynamics depend on the actual saccade vector
So far the analyses quantified the burst properties of SC neurons

for saccades towards the center of their movement field, i.e., when

the cells are part of the central region of the recruited population.

However, SC cells are recruited for a wide range of saccades (the

movement field) that all have different kinematics depending on

their amplitude. The question therefore arises what happens to the

burst of a given cell when it is recruited for saccades that deviate

from its preferred vector.

To address this question, we examined the shape of the burst

profiles for saccades towards more eccentric locations within the

movement field. More specifically, we compared the burst

dynamics when the same cells are part of the rostral region of

the recruited population (i.e. they are recruited for saccades that

are larger than their preferred movement), with the burst

dynamics when they belong to the caudal region of the recruited

population (for saccades that are smaller than the preferred one;

see motor-map insets Figs. 7 and 8, for schematic illustration).

Figure 4. Burst magnitude across the SC motor map. Three
different activity measures were used to quantify the magnitude of the
saccade-related bursts of SC neurons for movements towards the
center of their movement field as a function of their rostral-to-caudal
location in the SC motor map: A) number of spikes in the burst, B)
mean firing rate and C) peak spike density. Cells were selected for
having at least five saccades into the center of their movement field
(within 0.5?smf). Highlighted cells (asterisks) in four clusters of cells
(dashed circles) were selected for producing ,18 spikes for their
preferred saccade (c.f., Fig. 5). Linear regression lines (solid) were fitted
to the data from all n = 103 cells.
doi:10.1371/journal.pcbi.1002508.g004

Table 1. Summary of topographic variations in burst
parameters.

Sigma Mean Slope Intercept Correlation

#Spikes in
burst, Ns

- 1869 0.0960.08 1661.8 0.104{

(spk) (spk ? deg21) (spk)

Mean firing
rate, Fm

- 4296216 27.661.9 573642 20.364**

(spk/s) (spk/s ? deg21) (spk/s)

Peak
density, Fp

2 6326266 27.562.5 774653 20.288*

5 5456252 27.362.3 683650 20.300*

10 4806225 25.862.1 589645 20.265*

(ms) (spk/s) (spk/s ? deg21) (spk/s)

Time to
peak, Tp

2 21.769 20.0560.09 20.961.9 20.052{

5 21.168 20.0260.08 20.761.7 20.025{

10 22.067 20.0260.07 21.761.6 20.026{

(ms) (ms) (ms ? deg21) (ms)

Skewness, c1 - 0.1160.23 0.01060.002 20.0960.04 0.460***

(deg21)

Coeff of
variation, Cv

- 0.2860.16 0.00060.002 0.2860.03 20.006{

(deg21)

Sigma: width s of the Gaussian smoothing kernel used to compute the spike
density functions from which Fp and Tp were estimated. Not applicable for Ns,
Fm, c1 and Cv because they were calculated from the raw spike data. Mean:
parameter values (mean 6 SD) averaged across all n = 103 cells included in this
analysis with the corresponding standard deviation. Slope and intercept: linear
regression coefficients (mean 6 SEM) that quantify changes in burst parameters
as a function of the rostral-to-caudal location of cells in the SC motor map (c.f.,
Figs. 4 and 6). Correlation: Pearson’s correlation coefficient (two-side t-test: *,
p,0.01; **, p,0.001; ***, p,0.000001; {, not significant, p.0.1). Since results
were consistent across animals, listed values are from analyses performed on
the pooled data from four animals.
doi:10.1371/journal.pcbi.1002508.t001
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If saccade-related SC cells indeed participate in specifying the

optimal saccade trajectory [33], one would expect that the shape

of their bursts is different depending on whether the cells are

recruited for saccades that are smaller than their preferred

vector, versus whether they are recruited for saccades that are

larger than their preferred vector, because the shapes of the

velocity profiles for smaller and larger saccades differ (Fig. 6,

inset). Alternatively, the shape of the bursts could remain the

same regardless of the actual saccade vector. Such behavior is

expected if the burst activity of each cell represents only the

weight of its preferred vector in a downstream center of gravity

computation of the saccade goal [43–45]. In this case, the

number of spikes produced by each cell is determined by its

input, but the temporal firing properties only depend on its

location in the motor map.

To dissociate between these two possibilities, Figs. 7 and 8

show the measured burst profiles of two cells in for a series of

large and small saccades for which the cell fired the same number

of spikes. We chose two cells from the central region of the SC

(preferred amplitudes 9.5u and 13.5u, respectively) because these

cells fired vigorous bursts for saccades with distinctly different

kinematics. Note that the shapes of the bursts for small saccades

(light-gray traces) and large saccades (dark-gray traces) are clearly

different. For both cells, peak firing rates occurred at about the

same instant relative to movement onset regardless of the

movement amplitude, but burst durations were shorter and peak

firing rates were higher when the cell took part in the small

saccades than when it participated in the large saccades. These

examples thus suggest that the shape parameters of the burst

depend systematically on the actual saccade to which the

neuron contributes, rather than on its topographic location in

the motor map.

Figure 5. Systematic rostral-to-caudal changes in temporal burst profiles. A–D) Illustrated are the temporal firing patterns of saccade-
related SC neurons at four different rostral-to-caudal locations in the motor map (insets). Movements (top) corresponded with their preferred vector.
Eccentricities of the cells (as indexed by their preferred vectors) were about 5u, 13u, 21u and 32u, respectively. All cells (n = 5, n = 11, n = 8, and n = 7,
respectively) were selected for producing ,18 spikes for their preferred saccade (i.e., highlighted cells in Fig. 4). Thin and thick lines are cell and
cluster averages, respectively. Importantly, spike density functions were not normalized in any way.
doi:10.1371/journal.pcbi.1002508.g005

Figure 6. Burst profiles show amplitude-dependent skewness.
A) Average spike-density profiles of the four clusters of cells normalized
with respect to their peaks. Cells in each cluster were selected for
producing ,18 spikes for their preferred saccade (c.f., Figs. 4 and 5).
Insets: average eye position traces and eye velocity profiles for the each
of the four cell clusters. B) Skewness of saccade-related bursts for
preferred saccades as a function motor map coordinates. The
relationship was quantified with linear regression (solid).
doi:10.1371/journal.pcbi.1002508.g006
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Population dynamics
If the SC acts as an optimal controller, one would expect that

cells in the recruited population synchronize their burst profiles

because this would ensure that the net SC movement command

specifies a straight trajectory with optimal horizontal and vertical

velocity components. The example cells in Figs. 7 and 8 suggest

that the burst shape of individual SC cells is indeed tuned such that

all cells in the recruited population become synchronized for the

saccade in which they participate. To determine whether burst

synchronization in the recruited population is actually found

across the SC, we studied the spatial-temporal burst dynamics of

all recorded cells in the motor map for a range of different saccade

amplitudes (Fig. 9) and directions (Fig. 10), cross-correlated the

burst shapes of all recruited cells to determine their similarity

(Fig. 11), and analyzed the burst shapes of a fixed set of

neighbouring neurons for different saccade vectors (Fig. 12).

We first examined the temporal discharge profiles of saccade-

related neurons along the rostral-to-caudal extent of the SC for

saccades of five particular amplitudes. Because we applied the

rotation algorithm (Methods), cells having different preferred

directions could all be pooled.

Figure 9 shows this analysis for saccade amplitudes ranging

from 5 degrees (top panels) to 31 degrees (bottom panels). Saccade

directions always corresponded with the direction of the cells’

preferred movement (Methods). The different plots in Fig. 9 thus

provide estimates of the rostral-to-caudal cross-sections through

the center of the population. As in previous figures, we indexed the

rostral-to-caudal location of each cell by the amplitude of its

preferred vector. The color-codes in Fig. 9A reflect the averaged

spike density of individual cells as a function of time relative to

saccade onset and their location in the SC motor map. The

associated mean eye movements are superimposed. We calculated

the activity profiles in Fig. 9B from the raw data in Fig. 9A by

averaging the spike-density functions of nearby cells according to a

Gaussian weighting function (width s= 0.25 mm) and sorting

them according to their location in the motor map (Methods). Bin

centers were chosen at 2.5 deg intervals in visual space. In Fig. 9C,

the site-dependent spike density functions are collapse onto a

single pair of axes, and bin centers were chosen at 0.2 mm

intervals on the SC motor map. The latter produced spike density

functions of the population activity at equally spaced distances

from the center of the active population. To facilitate visual

inspection, the hue of the individual spike density functions

indicates the rostral (green) to caudal (cyan) location of the cells

while the color saturation is proportional to the firing rate (i.e.,

traces become darker when activity increases).

Figure 7. Burst shapes depend on planned movement. Temporal firing patterns of a neuron during small and large saccades for which the cell
fired about same number of spikes. A–C) Spike density (color code) as a function of time for saccades of different amplitude in the preferred direction
of the cell. Data are sorted by saccade amplitude. Tick marks indicate spike-count windows. Gray traces: average eye position, eye velocity and spike
density functions for small, 6u saccades (n = 5). Black traces: averaged data for large, 17u saccades (n = 16) for which the cell fired about the same
number of spikes (Ns>25). Inset in A: running average of the number of spikes as a function of saccade amplitude. Vertical line segments: amplitude
range of saccades included in the two datasets. Horizontal line segments: mean6SD of the corresponding spike counts. Insets B and C: schematic
drawing of population activity relative to the recording site. D) Location and extent of the movement field (color code) plus saccade endpoints
(symbols). E) Normalized spike density functions for the two saccade vectors. Note that the shapes of the bursts for small saccades (light-gray traces)
and large saccades (dark-gray traces) are clearly different. Peak firing rates occurred at about the same instant relative to movement onset regardless
of the movement amplitude, but burst durations were shorter and peak firing rates were higher when the cell took part in the small saccades than
when it participated in the large saccades.
doi:10.1371/journal.pcbi.1002508.g007
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Note that for a given saccade amplitude the burst profiles along

the rostral-to-caudal extent of the SC appear to have very similar

shapes, which change systematically as function of saccade

amplitude (and duration). More specifically, peak firing rates in

the recruited population decrease systematically with increasing

saccade amplitude while burst duration and skewness increase

with increasing saccade amplitude. The data thus demonstrate

that not only the location of the recruited population changes

systematically with saccade amplitude; also the dynamics of the

burst activity within the active population changes systematically.

The observation that cells at different locations within the active

population all have very similar burst dynamics is further

illustrated in Fig. 10. As in Fig. 9, we plot the responses of cells

as a function of their rostral-to-caudal location in the SC, but now

for 14 degree amplitude saccades in five different directions, y,

relative to their preferred vector. The plots in Fig. 10 thus provide

rostral-to-caudal cross sections through the population for a 14

degree saccade at five different iso-direction lines. Iso-direction

line y = 0 deg runs through the center of the active population, so

the plots in the center row of Fig. 10 are equivalent to the ones in

the center row of Fig. 9. The other iso-direction lines, however,

characterize the temporal discharge profiles at different medial-

lateral locations.

Note that the peak firing rates decrease systematically with

increasing rostral-to-caudal and increasing medial-to-lateral dis-

tance from the center of the population activity while the shape of

the temporal burst profiles remains remarkably similar. In fact, it is

not difficult to see that practically all discharge profiles in Fig. 10

are approximately scaled versions of each other. Our findings thus

demonstrate that the temporal dynamics of burst activity is very

similar throughout the population of recruited cells.

To quantify the temporal synchrony and shape similarity of the

burst profiles at different locations within the active population, we

performed a series of temporal cross-correlation analyses (see

Methods, for details). As shown in Fig. 11A, we first normalized

the site-dependent spike density functions from Fig. 9C with

respect to their peak. For each saccade amplitude, we then cross-

correlated the population activity at the center of the activated

region of cells with the population activity at different rostral-to-

caudal distances from the center (solid lines), and with the activity

of the individual cells (open symbols).

Note that for each of the five movement amplitudes the

normalized population responses fall on top of each other

(Fig. 11A). Accordingly, the cross-correlation analyses performed

on the population data (solid lines) produced correlation values at

lag zero that were close to one (Fig. 11B), and optimal delays that

were close to zero (Fig. 11C). These results thus indicate that the

response profiles are indeed synchronized, scaled versions of each

other. Even at the level of the individual cells it is observed that the

cross-correlation values at lag zero are very high (gray squares;

typically r(t= 0).0.8). For about 50–70% of the cells, the cross-

correlation values at the optimal delay (black circles) were

significantly higher than at lag zero (Fig. 11B), but the burst

delays of the individual cells were not systematically related to

their rostral-to-caudal location within the recruited population

(Fig. 11C). The same pattern of results was obtained along the

medial-lateral dimension of the population (data not shown). The

cross-correlation values themselves were of course influenced to

Figure 8. Same analysis of burst activity as in Fig. 7, but now applied to data from a different neuron in a different animal. Note
different burst profiles for the small (n = 10) versus large (n = 17) saccades for which the cell fired the about same number of spikes (Ns>20),
indicating that the burst parameters depend on the actual saccade in which the neuron is participating, rather than on its topographic location in the
motor map.
doi:10.1371/journal.pcbi.1002508.g008
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some extent by the width of the Gaussian smoothing kernel

(here,s = 5 ms; Methods), but the resulting optimal delays were

not. When we repeated the analysis with different kernel widths (s
in the range of 2 to 10 ms), they were virtually identical. The

robust analysis of relative burst delays in Fig. 11 thus demonstrates

that there is no systematic spread of activity, neither in the rostral-

to-caudal direction [31,46] (which would produce a systematic

increase of the lag), nor from the center towards the periphery of

the population [27,47] (which would produce a V-shape pattern).

Note, however, that the response profiles for saccades of

different amplitudes are clearly different. I.e., burst profiles within

the active population become more and more skewed as saccade

amplitude and duration increases. The interesting question then

arises whether these systematic changes in burst shape are also

reflected in the population activity at a given location in the SC

when the cells at that location participate in the generation of

saccades of different amplitudes (and durations). The results of

Figs. 7 and 8, in which we analyzed the responses of two example

Figure 9. Population dynamics within the motor map. Temporal discharge patterns of saccade-related neurons along the rostral-to-caudal
extent of the SC for five different saccade amplitudes. Saccade direction matched the preferred direction of each cell. A) Instantaneous firing rates
(color code) of individual cells, sorted according to their rostral-to-caudal location in the SC motor map. Average eye position traces are
superimposed. B) Mean discharge profiles of cells at different locations in the map. Each spike density function is the average activity of cells
recorded in restricted region of the SC. Bin centers at 2.5u intervals. Burst profiles are shifted upward and color-coded according to the motor map
coordinates. C) Site dependent discharge profiles computed at 0.2 mm intervals. As in B, hues of the individual traces refer to the rostral-to-caudal
location, with green corresponding to rostral sites and cyan to caudal sites while color saturation is proportional to the instantaneous spike density.
Discharge profiles of individual cells are not normalized. Note that for a given saccade amplitude the burst profiles along the rostral-to-caudal extent
of the SC appear to have very similar shapes, which change systematically as function of saccade amplitude (and duration).
doi:10.1371/journal.pcbi.1002508.g009
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cells for small versus large saccades, would indeed suggest such

changes.

To address this question, we selected in Fig. 12 a cluster of 16

neurons located in the central region of the SC. Preferred

amplitudes of these cells were closely matched, ranging between

13–15 degrees. From the responses of the individual cells (color

code in Fig. 12A) we first calculated the mean population response

at that location for five different saccade amplitudes (solid lines in

Fig. 12A), and we then normalized the resulting response profiles

with respect to their peaks (Fig. 12C). Note that there are

systematic increases in burst duration and skewness as the saccade

amplitude increases from 8 to 32 degrees. Also note the main-

sequence behavior in the corresponding eye movement traces of

Fig. 12B.

Discussion

Our data reveal a remarkably systematic organization of burst

properties along the rostral-to-caudal extent of the SC motor map.

These novel findings support our theoretical extension of the linear

Figure 10. Neurons within the recruited population have similar burst dynamics. Temporal discharge patterns of saccade-related neurons
for 14u saccades in five different directions y relative to their preferred vector. Positive values of y correspond with counter-clockwise rotations. Same
layout as Fig. 9 but note that each row now represents the burst profiles of cells along a rostral-to-caudal iso-direction line though the active
population. y= 0u runs through the center of the population. The other four iso-direction lines show firing patterns at different medial-lateral
locations. Note that the peak firing rates decrease systematically with increasing rostral-to-caudal and increasing medial-to-lateral distance from the
center of the population activity while the shape of the temporal burst profiles remains remarkably similar. All discharge profiles are approximately
scaled versions of each other indicating that the temporal dynamics of burst activity is very similar throughout the population of recruited cells.
doi:10.1371/journal.pcbi.1002508.g010
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ensemble-coding scheme which explains how a gradient of burst

properties in the deeper layers of the SC could underlie the

nonlinear kinematics of saccades, their straight trajectories in

oblique directions, and the skewed shape of their velocity

profiles [37].

In support of our theoretical prediction, we found a clear

rostral-to-caudal gradient in the burst profiles of SC cells when

they are recruited for their preferred saccade: rostral cells have

nearly symmetrical temporal burst profiles of short duration and

high peak-firing rates, whereas caudal cells have highly skewed

bursts of longer duration and much lower peak-firing rates. The

number of spikes in these bursts, however, is constant across the

map, at about 18–20 spikes on average. Interestingly, our findings

also show that all cells in the recruited population synchronize

their bursts, as they start, end, and reach their peak nearly

simultaneously. Thus, the shape of the motor burst of a given cell

is not determined by its location within the motor map, but by the

saccade for which it is recruited. This precisely tuned organization

Figure 11. Recruited SC neurons synchronize their burst profiles. Temporal cross-correlation analysis of saccade-related burst activity for
saccades of different amplitudes. A) Site-dependent burst profiles (from Fig. 9C) normalized with respect to their peak. Burst profiles in each panel are
drawn at 0.2 mm intervals, starting 1 mm rostral (dark) to the center of the recruited population, and ending 1 mm caudal of it (bright). B–C) The
central burst profile was taken from 20 ms before saccade onset until saccade offset (dashed lines in A) and cross-correlated with the population
activity (solid lines) at different rostral-to-caudal distances from the center (negative values are more rostral, positive values are more caudal), and
with the spike density functions of the individual cells (open symbols; from top to bottom: n = 35, n = 71, n = 99, n = 104, and n = 85). Positive delays in
C indicate that the burst at a given location occurs later than at the center of the active population. Gray lines and symbols in B are the cross-
correlation values obtained at time lag zero. Black lines and symbols are the correlations obtained at the optimal delay (i.e., peak of the cross-
correlation function). Uc: motor map coordinates of the center of the population taken along the horizontal meridian.
doi:10.1371/journal.pcbi.1002508.g011
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of the population supports the notion of an optimal motor-control

principle embedded in the SC motor map.

Dynamic population code
We previously showed that a simple linear ensemble-coding

model of the SC motor map could fully account for the nonlinear

properties of saccades [33]. By driving a linear model of the

brainstem with actual recorded spike trains from a large

population of SC neurons widely distributed across the motor

map we obtained realistic, straight saccades with the correct

kinematic properties (Video S1). The assumptions of this linear

ensemble-coding model (Fig. 1C) are the following:

(i) In line with neuroanatomical data [48–51], each spike of

each recruited cell contributes a fixed movement (‘spike

vector’) to the saccade, ~mmi~½xi,yi�, which is only

determined by the cell’s location, ½ui,vi�, in the motor

map according to the efferent mapping function:

xi~g:A:½exp (Dui=BuD): cos (vi=Bv){1� and

yi~g:A: exp (Dui=BuD): sin (vi=Bv)

with g~1
�

(No
:2p:s2

o
:r) a scaling constant that is the same

for all cells. The fixed parameters [A, Bu, Bv] = [3.0 deg,

1.4 mm, 1.8 mm/rad] describe the anisotropic and

inhomogeneous geometry of the motor map [26,28]; r is

the cell density, N0 the maximum number of spikes in the

burst of SC cells, and s0 the width of the Gaussian

population of recruited cells. Our recordings indicate that

both N0 and s0 are constant across the map (N0<18–20

spikes, and s0<0.5 mm). Thus, if cell density does not vary

along the motor map either, our current results imply that

the total number of collicular spikes associated with

saccades would be constant too.

(ii) Linear summation of all spike vectors determines the

desired two-dimensional saccade trajectory:

~MM(t)~
XP

i~1

XNi

s~1

~mmk
:d(t{ts,k)

with P the number of active cells in the population, and Ni

the number of spikes generated by cell i. This crucial

assumption states that the SC output is a dynamic desired

eye-displacement signal that grows from zero to the final

Figure 12. Burst shapes depend on planned movement. Shown are the saccade-related discharges of 16 neurons located in a small, central
region of the SC for five different saccade amplitudes. Preferred amplitudes of the cells ranged from 13 to 15u. A) Instantaneous firing rates of the
individual cells (color code) averaged across trials with the population average superimposed. Insets: schematic drawing of population activity
relative to the recording sites. B) Eye position traces and eye velocity profiles of the corresponding eye movements show the main sequence
behavior. C) Averaged spike density functions for the different saccade amplitudes normalized to their peak. Note the systematic increases in burst
duration and skewness as saccade amplitude increases from 8 to 32 degrees, indicating that the shape parameters of the burst depend on the actual
saccade in which the neurons participate, rather than on their topographic location in the motor map.
doi:10.1371/journal.pcbi.1002508.g012
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saccade amplitude in synchrony with the spike trains (i.e.,

the spatial-temporal integration stage in Fig. 1C). This

assumption differs radically from alternative models, which

assume that the SC population encodes the goal, not the

motor command, for the upcoming saccade by weighted

averaging of individual cell contributions [43–45,52]. In

weighted-averaging schemes, the saccade amplitude is

specified virtually instantaneously and does not develop

during the course of the saccade-related burst, i.e.
~MM(t)&~MMend Vtw0 (Fig. 1B). These alternative models

therefore provide no explanation as to why caudal cells

would have to fire at much lower peak rates than rostral

cells (the difference is, on average, about 50%), or why the

shape of the motor burst of a given cell would have to

depend systematically on the saccade for which it is

recruited.

(iii) The brainstem saccade generator decomposes the dynamic

vectorial SC signal into its horizontal and vertical eye-

velocity components, but is described by a linear input-

output characteristic (Fig. 1C). In virtually all previous

models (see [53], for review) the brainstem saccade

generator embodies the nonlinear kinematics of saccades

through a nonlinear, saturating characteristic. The satura-

tion was therefore not explained, but added to the model to

fit eye velocity profiles. By removing this nonlinearity from

our model we could demonstrate that the SC output

contains the information needed to generate the main-

sequence properties and component stretching without

additional assumptions.

(iv) The motor neurons of the extra-ocular eye muscles receive

eye-velocity commands from the brainstem pulse generator

as well as eye-position step signals from parallel neural-

integrator pathways (Fig. 1C). As in previous models [11–

13] this so-called pulse-step innervation acts an inverse

model of the oculomotor plant (which has a linear low-pass

filter characteristic) to fully compensate for its sluggish

dynamics.

Note that our scheme does not make any prior assumptions

about the activity patterns of individual cells in the SC motor map.

For example, the finding that the number of spikes in the burst is

invariant for fast and extremely slow eye movements [54], and that

it is invariant across the motor map (Fig. 4A) are not properties of

the model, but appear to be properties of the motor map. The

same holds for our current findings that the peak firing rate of

cells, their burst duration and their burst skewness all vary in a

systematic way with their location in the motor map. Finally, that

all cells within the population are synchronized during the

saccade, and that the burst properties are determined by the

saccade in which the cell participates, rather than by its location in

the map, is not a model assumption either. Yet, all these features

taken together fully explain how the SC population could encode

the nonlinear kinematics, and at the same time generate straight

saccades in all directions.

The nonlinear behavior of saccade kinematics is due to two

opposing factors: (i) peak firing rates in the caudal SC are lower

than in the rostral SC, but (ii) each spike in the caudal SC has a

much larger impact on the brainstem than a rostral cell, due to the

exponentially growing efferent mapping function. Thus, although

spike firing-rates decrease in the caudal SC, the increase in eye

displacement provided by each spike is much larger at these

locations. Straight saccades result from synchronization of burst

profiles, especially along the medial-lateral dimension of the SC

(Fig. 10). This synchronization ensures that the horizontal and

vertical velocity commands are scaled versions of each other as is

required for producing straight oblique saccades. Our findings

thus strongly support the idea that the SC motor map acts as a

nonlinear vectorial pulse generator.

Because the saccade results from the linear contribution of a

large ensemble of recruited cells, our linear ensemble-coding

model does not necessarily predict that each individual cell should

encode the details of the saccade kinematics. Nevertheless, the

saccade kinematics are to a large extent reflected at the level of

single cells, as the shape of the saccade-related burst follows a

similar skewness relationship with burst duration as the saccade

velocity profile to saccade duration (Fig. 6). In addition, the burst

shape of any individual cell is to a large extent determined by the

saccade metrics, and can thus vary substantially between small and

large saccades into its movement field (Figs. 7, 8 and 12).

Interestingly, these features are predicted by the notion that

saccade-related SC neurons have dynamic movement fields which

determine the dynamic relationship between the activity of

individual cells and the ensuing eye displacement as a function

of the saccade metrics [33]. This concept also predicts that for

movements to a single visual target the recruited cells act together

as a ‘common source’ by synchronizing their burst profiles. This

behavior is indeed observed (Figs. 9–11).

Taken together, our findings provide strong support for the

argument that the nonlinear saccade kinematics are not due to a

passive saturation of brainstem burst neurons, e.g., as a result of

neural fatigue, but reflect a deliberate design property within the

saccadic system to produce the main-sequence characteristics.

Optimal control
We believe that such a strategy aims to optimally cope (in a

statistical sense) with conflicting constraints that impede the fovea

from getting as fast and as accurately as possible on a peripheral

target of interest. Several constraints may be identified within the

system: neural noise, considerable processing delays, and the

highly inhomogenous organization of the retina that introduces

considerable uncertainty about stimulus locations within the visual

periphery. Indeed, theoretical studies on optimization have

provided an elegant explanation for different features of saccadic

behavior, such as the tendency to systematically undershoot visual

targets [55], but also the main-sequence nonlinearity [4–7]. In

these studies, the noise is assumed to be multiplicative, i.e. signal-

dependent. To optimize such a system for speed and accuracy, the

control signal should obey the nonlinear main sequence, and at the

same time employ an undershooting strategy. Our data show for

the first time that SC cells indeed possess multiplicative, signal-

dependent noise (Figs. 2 and 3), and that this property is invariant

across the motor map (Table 1).

Since the coefficient of variation is, on average, constant across

the map, it follows from our spike-vector summation theory that

the variance in the resulting displacement vector, ~DD, as function of

desired amplitude and direction is given by:

varS~DDT~C2
v

X
i

~mmi~mm
T
i Ni(R,W)2

z2
X
i[j

~mmi~mm
T
j covSNi(R,W),Nj(R,W)T

Where Ni(R,F) is the mean number of spikes fired by cell i, ~mmi its

spike-vector contribution, and Cv the coefficient of variation

(population average). Clearly, the covariances in this equation

cannot be determined from our single-unit recordings, so we

cannot be 100% sure that the net collicular output has
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multiplicative, signal-dependent noise. Simulations with a uniform

motor map (i.e., fixed cell density, r, and location-invariant widths

smf and heights Npref of the Gaussian movement fields) showed,

however, that both correlated and uncorrelated cell activities

produce elliptical endpoint distributions (e.g., [56]) with standard

deviations that increase linearly with eccentricity (not shown).

The optimal control models described above all dealt with the

generation of horizontal saccades. However, in two dimensions

the fastest response should also follow a straight line; thus an

extended optimal control theory would predict straight oblique

saccades [8]. In alternative models, in which the brainstem is

driven by separate horizontal and vertical nonlinear pulse

generators, the programming of straight oblique saccades is

highly nontrivial as it requires a tedious scheme of cross-coupling

between the horizontal and vertical systems [21–23]. The

problem is even more complex when considering head-free gaze

shifts [57–59], because a fixed cross-coupling scheme will no

longer work when the eye-head coupling varies considerably

from trial to trial. However, if the nonlinear burst generator

resides in the SC motor map, straight saccades (and head-free

gaze shifts) become an emerging property of the system,

requiring no further cross-coupling than a simple linear

horizontal/vertical decomposition (i.e. sine and cosine projection)

of the vectorial gaze-shift command.

Bursting mechanisms
Our simple linear ensemble-coding model is still incomplete. It

accounts for the generation of saccadic eye movements once the

spatial-temporal distribution of SC activity is known, but it does

not explain how the tuned burst patterns come about in the first

place (an omission in most models of the saccadic system). In

principle, the saccade-related burst of SC neurons could be

derived from two alternative mechanisms. First, the type of input

signal, such as that from the frontal eye fields (FEF), might impose

the spatial-temporal pattern of excitation [60]. However, this

explanation is neither attractive nor plausible; it merely shifts the

problem to a different area of the brain, and there exists (at least to

our knowledge) no evidence that the FEF is involved in the

dynamic, online control of saccade trajectories under normal

conditions. Second, the burst might arise from intrinsic membrane

properties of saccade-related SC neurons [61], or from properties

of the local circuits within the SC motor map. Recent in vitro

experiments indeed suggest that the synchronous bursting

command observed in our data could result from a local excitatory

network, in combination with NMDA receptor activation in the

deeper layers of the SC [62–64]. These in vitro experiments also

demonstrated a strong nonlinear signal amplification process in

the SC, which is interesting because it might account for the

nonlinearity (i.e., vector averaging) of responses obtained with

certain types of electrical double stimulation [65–67].

In theory, feedback from the brainstem saccade generator could

also contribute to the shaping of the burst dynamics. For example,

Van Opstal and Kappen [68] suggested that a linear model of the

brainstem together with weighted feedback projections to the SC

motor map reproduces straight saccades with the correct

kinematics. However, in their scheme caudal cells receive the

weakest feedback, and the model therefore predicts a strongly

asymmetric distribution of burst durations and skewness within the

recruited population. This is clearly not observed in our data

(Figs. 9–11). Moreover, previous perturbation studies have shown

that activity in the SC is also not consistent with other types of

feedback models, as the SC activity does not encode dynamic

motor error [32,54,69–74].

Conclusion
Further research is needed to elucidate the mechanisms that

shape the spatial-temporal firing patterns during saccades, and the

behavior of the SC population in more complex motor behaviors,

like during head-free gaze shifts, curved double-step saccades, or

electrical microstimulation. Nevertheless, the burst properties

reported in this study strongly support the idea that the deeper

layers of the SC act as an optimal controller: the systematic

organization of peak firing rates and burst durations as function of

saccade amplitude along the motor map, the synchronous change

in firing rate of recruited cells in the population, and the shaping of

the temporal burst profile of a given cell with the currently

planned saccade, all contribute to the generation of straight eye-

movement trajectories with optimal kinematics.

Methods

Experimental procedures
We collected data from four rhesus monkeys (macaca mulatta) that

were trained to follow a small visual target with saccadic eye

movements. The setup, surgical procedures and behavioural

paradigms have been described elsewhere [33,54,71]. In short,

the animals were seated in a primate chair facing a spherical array

of light-emitting diodes (LEDs) in an otherwise completely dark

room. The head was restrained, and movements of the eye were

measured with the double-magnetic induction technique [75,76].

Single-cell recordings were made through a recording cylinder

using tungsten microelectrodes that were advanced into the SC

with the use of a hydraulic stepping motor.

We recorded activity of 146 saccade-related neurons that were

found in the intermediate and deep layers of the SC (about 0.5–

3 mm below the dorsal surface). Cells were considered saccade-

related if they showed an increase in firing rate around the onset of

saccades towards a particular region of the visual field. All of these

cells were studied with a standard saccade task in which the animal

made saccades from an initial fixation LED to a peripheral target

LED which was presented for 500 ms. The movement field of

each neuron was determined by eliciting saccades to targets inside

and neighboring the response field (‘movement field scan’). In

addition, saccades were evoked to a fixed series of targets across

the visual field (R between 2–35 deg, WM[0,30,…,360] deg; ‘rose

scan’). Eye movement data, spike data, and movement field

parameters of all 146 recording sites were stored in a database for

further processing. The file contained data from a total of 32,147

trials.

Ethics statement. To ensure the animals’ health and

welfare, their general appearance was monitored on a daily basis

and recorded in a welfare diary, along with their daily food and

fluid intake. Surgery was performed under general anesthesia, and

postoperative pain treatment was applied for at least three

consecutive days. All experimental procedures were in accordance

with the European Communities Council Directive of November

24, 1986 (86/609/EEC), and were reviewed and approved by the

local university ethics committee.

Data analysis
Saccades were detected off-line on the basis of the calibrated

eye-position signals using custom software (see [71] for details).

Subsequent analysis was done in Matlab 7.9 (version R2009b).

Single-cell activity was displayed in spike rasters and peri-

stimulus time histograms (PSTHs) that were aligned on specific

events such as target onset and the onset of a saccade. Spike trains

from individual trials were represented as a sequence of d
pulses at the time of spike occurrence, tk (1 ms resolution):
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S(t)~
P

k d(t{tk). Spike density functions, D(t), were calculated

from these raw spike trains by convolving S(t) with a Gaussian

smoothing kernel that had a default width of s = 5 ms and a height

of 1
�

s
ffiffiffiffiffiffi
2p
p� �

spk/s, but analyses were also repeated for different

kernel widths 2§s§10 (see text).

Burst parameters. To quantify the burst properties of

saccade-related neurons, we considered spikes that occurred in a

time window ranging from 20 ms before saccade onset until 20 ms

before saccade offset. We adopted a fixed lead-time of 20 ms

because this value corresponds with the typical latency of saccades

evoked by electrical stimulation at the recording sites. The number

of spikes in the burst, Ns, was counted within this variable time

window. Mean firing rates, Fm, were defined as the number of

spikes in the burst divided by saccade duration. Peak firing rates,

Fp, and the time to peak activity, Tp, were determined from

averaged spike density functions, where data from individual trials

were first aligned with saccade onset. Negative values of Tp

indicate that the peak of the burst precedes saccade onset. Burst

skewness, c1, quantified the skewness of the raw PSTHs over the

spike-analysis window, aligned with saccade onset, and was

calculated directly as the third moment from the distribution of

spike occurrences relative to saccade onset:

c1~

PN
k (tk{�ttk)3

(N{1):s3
ð1Þ

where �ttk is the mean, s the standard deviation, and N the number

of spikes in the burst. Negative values indicate burst profiles that

are skewed left and positive values indicate burst profiles that are

skewed right. By skewed left, we mean that the left tail is longer

than the right tail. Similarly, skewed right means that the right tail

is longer than the left tail.

Movement fields. For each cell, we obtained a quantitative

description of its movement field from a series of saccade responses

towards targets at various locations within and beyond the

response field of the cell (see, e.g., Fig. 2, for illustration). We

used the movement field model of Ottes et al. [28] to account for

the complex-logarithmic nature of the SC motor map. First, we

mapped the polar coordinates [R,W] of each saccade vector in

visual space onto Carthesian coordinates [u,v] of the SC motor

map using the afferent mapping function [R,W]R[u,v] :

u(R,W)~Bu ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2z2AR cos WzA2
p

A

 !
and

v(R,W)~Bvarctan
R sin W

R cos WzA

� � ð2Þ

where A = 1.4 mm, Bu = 1.8 mm/rad, and Bv = 3.0 deg are fixed

parameters of the motor map model. Then, using the number of

spikes in the burst as a measure of burst magnitude, we quantified

the vector-dependent activity of the cell by assuming a two-

dimensional Gaussian activation profile in this motor map:

N(u,v)~Npref
: exp {

(u{upref )2z(v{vpref )2

2s2
mf

 !
ð3Þ

Parameters [upref,vpref] (in mm) define the center of the Gaussian in

Cartesian motor map coordinates, which corresponds with the

point image of the cell’s preferred vector [Rpref,Wpref] in visual

space. smf (in mm) is the width of the cell’s Gaussian activation

profile. Npref is a measure of the peak activity of the cell associated

with its preferred vector. The four free parameters, upref, vpref, smf

and Npref, were estimated with a nonlinear least-squares fit

procedure (Nelder-Mead simplex method; see [33], for details

and results).

Spike-count variability. The trial-to-trial variability in spike

counts, Ns, was characterized by the ratio of the standard deviation

to the mean:

Cv~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varSNsT

p
= �NNs ð4Þ

This quantity is often referred to as the coefficient of variation. In

our analysis, we determined Cv from the slope of linear regression

lines fitted to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varSNsT
p

as a function of �NNs (see Fig. 2D, for an

example). For each cell, we obtained this relation by selecting

clusters of closely matching saccade responses into the movement

field of the cell. We used data-clustering routines implemented in

Matlab to select non-overlapping clusters that contained at least

five responses for which the Euclidean distance between individual

saccade vectors on the SC motor map was less than 1?smf (in mm).

We used Cartesian motor map coordinates, [u,v], because they

conveniently account for the amplitude asymmetry of movement

fields in visual space. The population analysis (Fig. 3) included only

cells having at least five response clusters in which the range of

mean spike counts spanned at least 30% of the peak activity (i.e.,

max( �NNs)2min( �NNs).0.3?Npref ).

Although the range of saccade vectors in each cluster was small,

there is some concern that the trial-to-trial variability in saccade

amplitude and direction leads to an overestimate of the neural

noise at locations within the movement field where its gradient is

steepest. To estimate the true intrinsic noise of each neuron, we

therefore substituted, in Eq. 4, the spike-count variance varSNsT
with the residual variance varSNresT~varSNs{N(R,W)T be-

cause this latter measure corrects for spike-count variability

explained by its movement field. N(R,W) for each saccade was

obtained from Eq. 3. Without this correction, the overall result

across our population of cells was not significantly different. But

since it produced overestimates of the variance in some cells, we

decided to use the correction for all neurons for consistency.

Responses into movement field center. Figures 4–6

quantify the burst properties of SC cells for saccades into the

center of their movement field. For each cell included in these

analyses (n = 103), we selected saccade trials in the following way.

First, we selected all trials in which the saccade vector ended

within 0.2?smf from the center of the movement field. If this range

included less than 5 trials, the selection criterion was gradually

widened (step size 0.01?smf) until at least 5 responses were

obtained, or until the limit exceeded 0.5?smf. This selection

procedure ensured that we only included those trials in which the

saccade vector was closest to the movement field center (typically

within 0.4?smf). Cells for which we obtained less than 5 saccades

within 0.5?smf from the center (n = 43) were excluded from these

particular analyses.

Population activity. To generate plots of SC population

activity (Figs. 9–10), we first mapped the preferred vector of each

neuron onto the right horizontal meridian. This involved a

clockwise rotation of the preferred vector [Rpref,Wpref] by Wpref

degrees. The actual eye movements were re-expressed in this new

frame of reference too by rotating each saccade vector by the same

amount. In this way, all saccades in the direction of the preferred

vector of each cell had a direction Y:W{Wpref ~0 deg.

From our database of cell responses we then selected all trials in

which the saccades closely matched our ‘target’ vector (i.e., the

movement for which we wanted to compute the population
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activity). The criterion for matching the responses across cells and

trials was defined in motor map coordinates. More specifically, the

Euclidean distance, d, between the target vector [ut,vt] and the

(rotated) movement vector [ui,vi] had to be less than 0.3 mm.

For each cell, we then calculated a weighted average of its spike

density functions across trials, where the weight of each trial, i,

depended on d so that responses with the best matching

movements had the largest weights:

�DD(t)~

P
i (0:3{di):Di(t)P

i (0:3{d)i

where di~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ui{ut)

2z(vi{vt)
2

q
ð5Þ

Finally, the population activity at each rostral-to-caudal location in

the motor map, u, was calculated by averaging the spike density

functions of nearby cells according to a Gaussian weighting

function:

P(u,t)~

P
c wc(u):�DDc(t)P

c wc(u)
with wc(u)~ exp {

(u{uc)2

2s2

 !
ð6Þ

where s= 0.25 mm is the width of the spatial smoothing kernel

and uc the rostral-to-caudal location of each cell c taken along the

horizontal meridian of the motor map.
Cross-correlation analysis. To test whether the burst

profiles of cells at different locations within the active cell

population are synchronized, scaled versions of each other, we

cross-correlated the temporal firing pattern at the center of the

recruited population with the firing patterns at different rostral-to-

caudal distances from the center (Fig. 11). In this analysis, we took

the population activity at the center of the recruited population

from 20 ms before saccade onset until saccade offset. This center

burst-profile, Pcntr(t), was then shifted in time and correlated

either with single-unit activity or with population activity at a

different site, Psite(t). Cross-correlation values at each time delay,

t, were obtained from:

r(t)~

P
t Psite(tzt):Pcntr(t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

t Psite(tzt)2
q

:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

t Pcntr(t)
2

q ð7Þ

where t runs from 20 ms before saccade onset until saccade offset.

The resulting cross-correlation functions, r(t), are normalized so

that the auto-correlations at t = 0 are equal to 1.

Peaks of the cross-correlation functions were used to determine

the relative timing of burst activity within the recruited cell

population. Positive delays indicate that the burst activity at a

certain site occurs later in time compared with the burst activity at

the center, while negative delays indicate that burst activity at that

location precedes the burst activity at the center.

We restricted our analyses to population activity within

1.25 mm from the center of the recruited population (i.e., ,2.5

times the width smf of the average movement field) because the

burst activity at larger distances rapidly dropped to zero. For

individual cells, we also required that the number of spikes in their

burst exceeded 5% of the number of spikes that they fired for their

own preferred vector (i.e., Ns.0.05?Npref).

Supporting Information

Video S1 Reconstruction of nine different saccades from

measured SC activity patterns using our linear two-dimensional

model of the SC – brainstem saccade generator (c.f., Fig. 1C). The

video shows the activity patterns in the left, contralateral SC (top

left), the two-dimensional eye movement trajectories (bottom left),

the horizontal and vertical eye position traces (top and middle

right), and the vectorial eye velocity profiles (bottom right).

Amplitude and direction of the subsequent movements is indicated

by the [R,W] coordinates (bottom left). Note that the reconstruc-

tions (green) reproduced the straight trajectories, component

stretching, and nonlinear kinematics of the measured saccades

(blue) quite well, even though none of these properties were built

into the model. Details of the reconstruction procedure have been

described elsewhere [33]. In short, we first estimated the dynamic

SC activity associated with a particular saccade vector from the

cells’ responses recorded during saccades of that particular

amplitude and direction. Towards that end, we mapped each

cell’s spikes directly onto its location in the SC motor map, and

from the measured spike events at each recording site we then

calculated spatially smoothed maps of the instantaneous firing

rates. The resulting estimates of the SC firing patterns in space and

time were subsequently decomposed into dynamic horizontal and

vertical movement commands using our spike vector summation

model, which assumes that each spike from each SC neuron adds a

tiny, site-specific contribution to the horizontal and vertical

movement commands. The brainstem circuit for the horizontal

and vertical eye-movement components was modeled by two

independent linear feedback systems (c.f., Fig. 1C). The three

model parameters (a fixed delay between SC and brainstem

activation, the feed forward gain of the pulse generators, and a

fixed delay in the local feedback loops; fixed for all reconstructions)

were determined by fitting the reconstructions to the measured

saccades.
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