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Rapid event-related fMRI (erfMRI) allows estima-
tion of the shape of hemodynamic responses (HDR)
associated with transient brain activation evoked by
various sensory, motor, and cognitive events. Choos-
ing a sequence of events that maximizes efficiency of
estimating the HDR is essential for conducting event-
related brain imaging experiments, since increasing
efficiency is essentially equivalent to reducing scan-
ning time or increasing the strength of the principal
magnetic field. The efficiency of an erfMRI design de-
pends critically on the temporal arrangement of the
sequence of events and the noise in the fMRI signal.
We introduce to erfMRI a simple method for generat-
ing efficient event sequences based on maximum-
length shift register sequences, or m-sequences. We
show that under the assumption of white uncorrelated
MRI noise, efficiency of erfMRI experimental designs
that employ m-sequences exceeds efficiency of the best
randomly generated sequences. This is true for single
and multiple event type experiments, which allow ei-
ther parallel events (overlapping events design) or de-
signs in which only one event occurs at a time (non-
overlapping events design). HDR estimation efficiency
afforded by m-sequences grows with the number of
event types, and is greatest when event sequences are
relatively short, albeit within commonly used scan
times (i.e., 63-255 total events per scan). The improve-
ment in efficiency, however, comes at a cost of con-
straints imposed by m-sequence generation rules,
such as predetermined sequence lengths; for nonover-
lapping events design m-sequence-based designs are
not available for all possible numbers of event types.
Nevertheless, designs that are available with m-se-
quences cover a large subset of commonly used erfMRI
experimental designs. Under conditions of character-
istic time-correlated fMRI noise, randomly generated
sequences may Yield efficiencies that exceed those af-
forded by m-sequences for single event-type designs,
since in this case one can generate random sequences
that partially decorrelate MRI noise by chance. Our
simulations suggest that for designs of realistic se-
quence lengths that use more than one event type,
m-sequence based designs tend to outperform random
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designs, thus making the knowledge of noise inessen-
tial. Finally, within an r-th order m-sequence (gener-
ated by a shift register of length r) all possible com-
binations of subsequences of length r occur, and
thus these subsequences are exactly counterbalanced.
This property is essential for minimizing effects of
psychological and neuronal adaptation and
expectation. o 2002 Elsevier Science (USA)

INTRODUCTION

During last few years, rapid event-related designs
(erfMRI) have become a predominant paradigm for
fMRI experiments. The appeal of erfMRI stems from
its ability to resolve hemodynamic responses (HDR)
associated with transient neural activity caused by
multiple types of stimuli and/or cognitive tasks. Unlike
the traditional block design paradigm that strings
identical event types together in a row, event-related
fMRI (erfMRI) allows for different event types to be
interleaved in an arbitrary manner (e.g., Burock et al.,
1998; Rosen et al., 1998; Hinrichs et al., 2000). Most
importantly, while the block design is optimal for de-
tecting activity in the brain, event-related fMRI is op-
timal for estimating the parameters of the HDR asso-
ciated with individual events (e.g., Friston et al., 1999;
Liu et al., 2001).

The estimation efficiency of a given event-related
sequence is a mathematical construct that reflects the
ability of the sequence to provide an estimate of the
HDR, taking into account noise associated with the
fMRI signal (e.g., Dale, 1999). Maximization of HDR
estimation efficiency is critical for erfMRI experimen-
tal design, since it minimizes the error in estimating
the HDR for a data set of given size, or alternatively,
reduces overall scanning time for a criterion signal-to-
noise level. The significance of maximizing estimation
efficiency can be further appreciated by considering the
fact that increasing estimation efficiency is equivalent
to increasing the strength of the main magnetic field of
the scanner.
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HDR estimation efficiency depends on a number of
factors including the nature of fMRI noise, scan dura-
tion, number of sampling points in the HDR estimate,
and the distribution of event occurrences in time. An
experimenter cannot easily control fMRI noise, but the
remaining factors can be manipulated by choosing ap-
propriate parameters in the experimental design, such
as the sequence of events.

An erfMRI experiment can be designed using any
arbitrary sequence of events, but estimation efficiency
varies broadly for different sequences. A common
method for choosing an event-related sequence is to
generate a large number of random sequences and to
pick the one that yields maximum estimation effi-
ciency. While this method, in theory, will eventually
produce the maximally efficient sequence of the large
but finite number of possibilities, obtaining this se-
guence in practice can take a prohibitive amount of
computational resources. Instead, we present a class of
sequences, called m-sequences (maximum length shift-
register sequences), which provide HDR estimation ef-
ficiency superior to that of random sequences at a very
low computational cost. Another advantage of m-se-
guences is their ease of generation, since the number of
computations grows only linearly with sequence
length.

Introduced nearly half a century ago, m-sequences
have been used extensively in encryption, error-cor-
recting codes, pseudorandom sequence generation
where quick generation of random sequences is
needed, signal recovery from noise (e.g., Golomb, 1982),
and linear system analysis (e.g., Sutter, 1987). Re-
cently m-sequence based methods have been extended
to multi-input nonlinear systems analysis, and applied
to mapping receptive fields in mammalian visual sys-
tem (e.g., Bernadette and Victor, 1994). Only recently
have M-sequences been applied to erfMRI experiments
(see, e.g., Fize et al., 2000).

M-sequences maximize HDR estimation efficiency in
two ways. First, the number of events is equal for all
event types (including zero-events), which maximizes
the number of presentations for all event types (Liu et
al., 2001). Second, m-sequences are nearly orthogonal
to cyclically time-shifted versions of themselves. While
random sequences are orthogonal to time-shifted ver-
sions of themselves with an average error of one over
square root of sequence length, the orthogonality of
time-shifted m-sequences has an error of only one over
the sequence length (e.g., Bernadette and Victor,
1994). The gain in efficiency, however, comes at a cost
of restricted design flexibility since their order and
number of levels determine the m-sequence length. In
addition, for m-sequence based designs with nonover-
lapping-events, the number of event types is restricted
to L" — 1, where L is the number of m-sequence levels
and n is an integer. This constraint on the number of
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event types does not apply to experimental designs
with overlapping events.

HDR estimation efficiency depends not only on ex-
perimental design, but also on the nature of fMRI noise
(Dale, 1999; Burock and Dale, 2000). We employ m-
sequence-based experimental designs as a benchmark
for evaluating how the efficiency of randomized designs
is affected by information about the structure of real-
istic fMRI noise. We show that m-sequence based de-
signs tend to be advantageous even in cases when fMRI
noise is taken into account, although for single event
type designs random sequences can be found that ex-
ceed m-sequence efficiency.

Furthermore, an m-sequence of length L' — 1 coun-
terbalances all sub-sequences of length r, because an
m-sequence by design contains all permutations of all
n-length subsequences (except for the all-zero subse-
guence). This attractive property is a direct conse-
guence of near-orthogonality of cyclically shifted m-
sequence. Event counterbalancing may be critical for
eliminating biases induced by temporal context in ei-
ther the neuronal or the hemodynamic response.

MATERIALS AND METHODS

General Linear Model of the HDR

Rapid event-related designs rest on the assumption
that HDRs associated with individual events combine
together in a linear fashion. This assumption has been
found to be a reasonable approximation, at least for
visual responses in the occipital cortex (Boynton et al.,
1996). This observation provides justification for a pop-
ular general linear model of the HDR response R(t):

Ne

R(t) = 2 xi(t)xhi(t) + w(t),

i=1

(1)

where x;(t) = EJ!LEi’emsiS(t — t;) is an “event function,”
with delta functions positioned at the occurrence
times t;; for event of type i (for the i-th event type
there are nEvents; events), h;(t) is the hemodynamic
response to the event of the i-th type (i = 1..n., where
n. is number of event types), often modeled by a
Gamma function (e.g., Boynton et al., 1996), and w(t)
is additive noise. FMRI time series usually exhibit a
slow drift over a period of several minutes. This drift
is not completely understood, and it is customary to
remove it before further analysis by subtracting out
a low-frequency component, often in the form of a
linear trend. Equation (1) adequately models fMRI
signal after this preprocessing step (c.f. Friston et
al., 1999; Liu et al., 2001).

Since the response R(t) is actually acquired as a set
of discrete measurements spaced by fixed sampling
intervals, it can be represented as a column vector R of
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FIG. 1. Graphical representation of matrices for the general
linear model. In this example two event types (n. = 2) are assumed.
The binary experimental design matrix X is composed of two parts,
one for each event type. Each of these parts is a convolution matrix
truncated at the bottom. The first column of each part corresponds to
the event vector for one of event types. The vector h is composed of
two concatenated HDR functions, one for each event type. Then a
noise vector w is added to the result of multiplication of X and h.

size n X 1. The convolution operation in the above
equation can then be represented as multiplication of a
HDR column vector h (n,n, X 1) and “design matrix” X
(n X nyny),

R = Xh + w, (2)
where n, is the number of time-samples in each hemo-
dynamic response (Fig. 1). Note, that in the case of
more than one event type (n, > 1), the HDR vector h is
formed by concatenating, column wise, individual
(sampled) HDR responses to each event type h = [h{
h; ...h,]", and the design matrix X is a horizontal
concatenation of matrices representing truncated con-
volution matrices for each event type: X = [X;
X, ... X, (e.0., Dale, 1999; see Fig. 1). For each event
the HDR vector length n, depends on the assumed
duration of HDR response (typically 15-25 s), and the
sampling rate.

The contribution due to noise, w, is a column vector
of size (n X 1) and has a covariance matrix C,. Since
fMRI noise is correlated in time, the noise is frequently
modeled by a Gauss—Markov process, i.e., it is pro-
duced by filtering independent identically distributed
(i.i.d.) Gaussian noise by a linear FIR filter, which
determines the autocorrelation function of the noise.

The case of canonical convolution submatrices X;
corresponds to a scanning protocol whereby n, — 1 data
points are acquired after the last event while the HDR
response returns to the baseline activity. Note that the
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first column vector in X; is identical to the event vector
for event i. Subsequent column vectors are merely
shifted version of the event vector. A more common
approach, which is used herein, is to present events all
the way up to the end of image acquisition. In this case,
the design matrices X; are truncated convolution ma-
trices without zero padding at the end (see Fig. 1).

Estimating the HDR

For the general linear model of Eq. (2), the most
efficient unbiased estimator of h is the maximum like-
lihood estimate (e.g., Kay, 1993). For the Gaussian
noise model, this estimate minimizes the least-squared
error of residuals, e = R — Xh (e.g., Kay, 1993; Dale,
1999):

h=(XTC1X)"IXTC 'R, (3)
where C is noise covariance matrix. If C is known
exactly, this estimator produces estimation with min-
imum covariance equal to

cov(h) =C, = (XTC X)L (4)

Since the DC level from the response R is removed
before analysis, the DC level in each column of X ma-
trix is removed as well (Liu et al., 2001). This prepro-
cessing step simplifies analysis (i.e., one does not need
to have a column in the X matrix that models the DC
level), and keeps the covariance matrix C, invertible.

Dale (1999) and Burock and Dale (2000) propose
estimating the noise matrix, C, in two steps. First, a
least squares estimate of the HDR is calculated with
assumption of independent identically distributed
(i.i.d.) Gaussian noise with unit variance. This is equiv-
alent to setting C to the identity matrix in equation 2
so that h = (X"X)"'X"R. Next, the average C matrix
over voxels is calculated by creating the Toeplitz ma-
trix from an autocorrelation function of residuals e =
R — Xh. This may be a global average or an average
taken locally over voxels within region of interest (the
local estimate, however, more than the global estimate
tends to result in a less biased statistical inference; see
Burock and Dale, 2000). The maximum likelihood es-
timate of h is then calculated by inserting this estimate
of C to Eqg. (3). An alternative method is to fit an a
priori function (such as an exponential) to the autocor-
relation function of residuals (e.g., Burock and Dale,
2000), and use the least squares estimate of autocor-
relation function in the Eq. (3). Unfortunately, estima-
tion of the noise covariance matrix is not straightfor-
ward because noise varies both across subjects and
across voxels and sessions within subjects.

Estimation Efficiency

The concept of estimation efficiency can be intu-
itively appreciated by comparing a mean HDR function



804

A HDR estimation with m-sequence

% change

5 10 15 20
Time (sec)

B HDR estimation with random sequence

0.2

0.1

% change

-0.1

5 10 15 20
Time (sec)

FIG. 2. Hemodynamic response functions estimated using m-
sequence (A) and random sequence (B) based experimental designs.
The thin smooth line indicates the original HDR function used to
create simulated erfMRI response, the thick line is the mean and
broken lines are standard errors of the mean. The mean and stan-
dard error were estimated from 10 repeats of a n = 127 interval
sequence (n, = 24, n, = 5, SNR = 9:1). Identical noise instantiations
were used in each m- and random-sequence-based HDR estimation
cycle.

computed using m-sequence-based experiment (Fig.
2A) vs that computed using arbitrary random se-
qguences (Fig. 2B). Both graphs plot the original HDR
used to simulate fMRI signal (thin smooth line), mean
(thick line) and standard error of the mean (broken
line) estimated from simulated erfMRI experiments.
The means and standard errors were obtained from 10
repeats of simulated scan across which only noise was
varied (five identical event types were assumed; for
clarity only the plots pertinent to the first event are
plotted). The top functions were calculated using a
design that employed m-sequences, and the bottom
graph employed a design with random sequences. The
estimated mean is much noisier in the bottom plot, and
the standard error of the mean is correspondingly
larger. Since the simulated noise was identical for both
cases the difference in the estimation accuracy is con-
tributable solely to the timing of events.

The notion of HDR estimation accuracy can be quan-
tified by a scalar estimation efficiency function E,
which is the inverse of the sum of the variances of the
estimated HDR responses (Dale, 1999), and can be
written as:

E = 1/trace(Cy) = 1/trace((XTC ~1X) 1). (5)

According to Eq. 5, HDR estimation efficiency de-
pends solely on the fMRI signal noise C and the design
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matrix X, but not on the actual shape of the HDR, h
(e.g., Dale, 1999). In practice, since C cannot be known
exactly, HDR estimation efficiency may depend heavily
on the accuracy of the estimate of noise in the fMRI
signal.

The conditions of maximum estimation efficiency for
independent identically distributed (i.i.d.) Gaussian
noise, N(0,0%1), were explored by Liu et al. (2001). In
this case, E = (c’trace((X"X) ")), where o is the stan-
dard deviation calculated from residuals. Here the
noise contribution behaves as a scaling factor, and
therefore does not affect the choice of optimal design
matrix X.

Efficiency depends on the probability that a given
event type occurs on each trial. For example, in the
case of only one event type, the condition of optimality
is achieved when the probability of the event is 0.5. A
second factor determining estimation efficiency is the
pattern of distribution of event occurrence times within
the event vector. Thus, estimation efficiency varies
broadly for different random sequences that are gen-
erated using the optimal event occurrence probability.

Most importantly, random sequences that lead to opti-
mal estimation efficiency under uncorrelated noise may
be suboptimal when noise is correlated in time, as is the
case with the fMRI noise. In fact, noise in the fMRI signal
can be characterized by correlation times of 10-20 (e.g.,
Burock and Dale, 2000). The relationship between noise
and design matrix becomes evident by considering the
design matrix X in C, = (X'C*X)* (c.f. Eq. (5)) as a
whitening matrix that acts on the inverse of noise covari-
ance matrix C. In other words, the design matrix, X, can
serve to decorrelate the noise, C.

Generation of Random Sequences

In the simulations described below, random sequences
containing identical number of events for each event
type were generated using the random number gener-
ator function available in MATLAB (The MathWorks,
Inc.). The code for generation of these sequences (func-
tion randSequence.m called by the function bal-
ancedRnd.m) is available online (see reference below).

M-Sequences

Maximume-length L level shift register sequences, or
m-sequences, are pseudorandom sequences of integers
that assume L different values. M-sequences are gen-
erated recurrently by a linear shift register (see Fig. 3)
using modulo L arithmetic:

r

Sk = E CiSk—r+i-1s
i=1

(6)

where s, is the next member of the sequence to be
appended to the existing sequence, c¢; are recurrent



M-SEQUENCE FOR fMRI

FIG. 3. Shift registers are used for generating m-sequences. In
the case shown, the register (shaded component of sequence S) is
composed of r = 5 stages, whose humber determine the order of the
m-sequence. The values in the register are weighted by weights ¢
using modulo L = 2 algebra, then added together using, again,
modulo 2 addition, and the result is appended to the sequence s. The
register is then shifted to the left and operations repeated all over
again.

coefficients, and r is the number of stages in the regis-
ter, also called the order of a shift register. It can be
shown that for an arbitrary set of weights c; the se-
quence repeats itself with a period =L" — 1 (e.g.,
Golomb, 1982). The maximum-length (m-sequence) is
obtained when values of c; are coefficients of an irre-
ducible polynomial of degree r in the Galois field with L
elements (see Mamarelis and Marmarelis, 1978). For
example, s, and c; for binary m-sequences (L = 2)
assume values of either 0 or 1, and modulo two algebra
is used in Eq. (6). Ternary and five-level m-sequences
are calculated using algebra modulo three and five,
respectively. An m-sequence is uniquely determined by
a set of coefficients c¢; and the initial content in the
register. The sets of coefficients c; that produce m-
sequences of two, three, and five levels can be found in
the literature (e.g., Davies, 1970).

M-sequences have a number of properties that are
highly desirable in the context of HDR estimation.
They are nearly orthogonal to cyclically shifted ver-
sions of themselves. Specifically, for any phase of a
cyclical shift, binary m-sequences of length n deviate
from orthogonality only by 1/n (i.e., the scalar product
of an m-sequence and its cyclically shifted version de-
viates from zero by 1/n). In comparison, an average
random sequence deviates from orthogonality by a
greater amount, 1/\V/n (e.g., Davies, 1970). Figure 4
shows cyclical autocorrelation functions for sequences
of length 511 (2° — 1) for (A) a random sequence and
(B) a binary m-sequence. Note how for this sequence
length, the autocorrelation function is zero (away
from the zero-shift point) only for the m-sequence.
This makes binary m-sequences an ideal means for
estimating the impulse response of a system (i.e., the
linear component of the system response), since its
autocorrelation function approaches delta-function

with increasing sequence length: Rg(k) R 8(K).

Ternary and higher-level sequences, however, pos-
sess occasional phase values for which the sequences
are perfectly anticorrelated. Figure 4C shows how the
autocorrelation function for a ternary m-sequence has
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two phase shifts that are negatively correlated. These
phase values must be avoided when constructing mul-
tievent sequences.

One cycle of an m-sequence contains all combina-
tions of elements of a subsequence of shift register of
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FIG. 4. Cyclical autocorrelation functions for sequences of length
511 (2° — 1) for (A) a random sequence, (B) a binary m-sequence, and
(C) a ternary m-sequence. The autocorrelation functions are normal-
ized so that the peak value is set to 1.
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length r except for one. The missing subsequence con-
tains all zeros, which is a cycle in itself (Golomb, 1980).
Therefore, combinations (except the all-zeros combina-
tion) of event subsequences are nearly perfectly coun-
terbalanced up to the length equal to the order r of an
m-sequence. If needed, perfect counterbalancing can be
readily achieved by appending a single element to the
original sequence (i.e., producing an extended m-se-
guence). This property is very useful for not only linear
systems analysis of HDR responses (Sutter, 1987), but
also for exploring nonlinear effects, such as adaptation
or expectation (Chen et al., 1996).

The intuitive appeal for using m-sequences in HDR
estimation stems from the nature of the design matrix
X used for estimation of HDR shape. As seen in Fig. 1,
columns of X are shifted versions of the event vector
represented in the first column of a sub-matrix for each
event type. The efficiency measure E is maximized
when the matrix XX approaches diagonal matrix (Liu
et al., 2001), i.e., when all columns of the matrix X are
orthogonal and dot products of each column with itself
are maximal. This condition is met if (1) event vectors
for each event type are orthogonal to each other and (2)
an event vector is orthogonal to a shifted version of
itself. M-Sequences satisfy both of these conditions
much more closely than average randomly generated
sequences.

Data Acquisition for Noise Estimation

For the estimate of noise in HDR estimation effi-
ciency, we used a noise covariance matrix C (see Eq.
(3)) calculated from residuals e = R — Xh using the
following fMRI experiment. We obtained fMRI re-
sponses in area MT+ from a subject viewing moving
stimuli alternating between the lower left and lower
right visual quadrants. Stimuli subtended a radius of
10° of visual angle and were centered 12° below the
horizontal meridian and 12° to the left or right from
the vertical meridian. The stimulus was composed of a
circular aperture of upward moving dots (10°/s). Stim-
uli were presented every 2 s for a duration of 1 s in
either the lower left or right quadrants. The visual
guadrant was chosen based on a binary m-sequence
design. Subjects performed a discrimination task on
the moving dots to keep the attentional state at con-
stant level. Low-bandwidth echo-planar images were
obtained with a 1.5-Tesla Siemens Vision scanner and
a small standard flex coil behind the subject’'s head
(TR = 1 sec, scan duration 512 s, FA 80°, FOV 192
mm).

Noise Estimation from fMRI Data

FMRI time series exhibit a typical temporally-corre-
lated noise pattern with correlation decaying with tem-
poral interval and characterized by correlation time of
order 10-15 sec. These essential noise characteristics

BURACAS AND BOYNTON

can be captured by the model used by (Burock and
Dale, 2000):

c(t)y=(1—a)pt, fort>0, andc(0)=1. (7)

In order to evaluate the effect of characteristic time-
correlated fMRI noise on HDR estimation efficiency,
we estimated the noise autocorrelation function from
residuals calculated by subtracting from the actual
fMRI response, R, an estimate of response R recon-

structed from the estimated HDR response h (n, = 12):

err=R-R=R-Xh=R - (X™X)IXTR. (8)

Then the estimated noise autocorrelation function
was fit by this model after normalizing the peak value
to 1. Best fitting model parameters estimated from our
fMRI signals in area MT+ were a = 0.41, p = 0.88. A
Toeplitz matrix using the resulting vector, ¢, was used
to generate the noise autocorrelation matrix C. This
matrix then was used for calculating HDR estimation
efficiencies (Eq. (4)) for both random sequences and
m-sequences.

Construction of Event Sequences from M-Sequences

Both single and multievent sequences for erfMRI
experiments can be constructed from m-sequences. Al-
though the constructed event sequences are con-
strained to certain lengths and numbers of event types,
the space of m-sequence based designs covers a sub-
stantial portion of sequences that are common for er-
fMRI experiments.

A critical parameter that affects HDR estimation
efficiency is the total number of events of a given type
in a sequence, which is equivalent to event probability
(e.g., Friston et al., 1999; Liu et al., 2001). It has been
shown that no-event trials (“zero-events”) must be in-
cluded in order to make HDR response estimation fea-
sible, i.e., the sum of event occurrence probabilities of
all event types ought to be P < 1 (e.g., Friston et al.,
1999). For any random sequence with one event type,
the probability of the non-zero event occurrence that
maximizes HDR estimation efficiency is P = 0.5 (e.g.,
Liu et al., 2001), which is close to the probability of
event occurrence determined by a binary m-sequence P
= (n + 1)/2n. Therefore, a binary m-sequence can serve
for a single-event design “as is,” with the constraint
that the fMRI signal is sampled 2" — 1 times (i.e., the
scan duration is 7 X 2" — 1 s, where 7 is the time
between temporal samples).

Multievent erfMRI experimental designs can be clas-
sified into two types: those that allow the simultaneous
occurrence of events of different types (the “overlap-
ping” events design), and designs with mutually exclu-
sive event types (the “nonoverlapping” events design).
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For the overlapping events design HDR estimation
efficiency is maximized if the probability of each event
type is 0.5, as in the case of the single event type.
Therefore one can generate a different binary vector
ms; (t) € [0,1] for each event type independently, where
1 corresponds to event-present interval and O corre-
sponds to event-absent interval. For this design there
are no restrictions on the number of event types as long
as the length of the sequences is >n,n,.

A straightforward way to use m-sequences for over-
lapping designs is to cyclically shift the same binary
m-sequence for each event type. This m-sequence-
based design is similar to that used in electrophysiol-
ogy experiments of receptive field properties (e.g., Reid
et al., 1997). Specifically, let the event vector for event
of type 1 be a binary m-sequence of length n = 2" — 1.
For all other event types, the same sequence is then
shifted by a phase >n,. Figure 5A illustrates how the
phase difference between m-sequences representing
each event type influences efficiency for 3-overlapping
events (n, = 3). To generate the figure, events of type 1
were generated using a binary 6th order m-sequence
with parameters n = 2" —1 = 127 and n,, = 12. Events
of type 2 were positioned in time by shifting the origi-
nal m-sequence cyclically by a fixed phase of (n +
1)/2 = 64 steps. Finally, for the third event type, the
original m-sequence was cyclically stepped through all
phase values. Dips in efficiency at the edges and in the
middle of the graph occur when the phase of the third
m-sequence comes within n,, steps of either of the first
two sequences. These dips occur because for phase
differences less than n,, some columns of matrix X
that represent one event type become nearly identi-
cal or identical to shifted columns that represent
other event types, thus making the matrix X'X ill-
conditioned or singular. Therefore, when designing
an erfMRI experiment with overlapping events, one
should use cyclical phases that differ, pair-wise, by
more than n, steps.

M-sequences can also be used for more common non-
overlapping designs. When the number of events is L*
— 1 (k > 0), one can create event vectors for each event
type by using the following formula:

k

e(t) = Y Lis(t +fy, (9)

where e(t) is an integer indicating the type of the event
assigned at the time interval t which ranges from 0 to
L* — 1. The phase f; is added cyclically, with wrap-
around modulo n, and is selected empirically to maxi-
mize estimation efficiency. Next, an event vector [0,1]
for each event type i can be created by assigning O for
all e(t) # i, and 1 otherwise.
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FIG. 5. (A) HDR estimation efficiency (equation 3, with C = 1),
calculated for an experimental design matrix X that uses the same
binary m-sequence for 3 overlapping event types. For the second
event type the m-sequence is shifted cyclically by the phase of (n +
1)/2. For the third event type the m-sequence is cyclically stepped
through all n phase values. The dips in efficiency occur where any of
the three m-sequences are separated by less than n, steps. (B)
Estimation efficiency as a function of the phase f between two m-
sequences used for three-event nonoverlapping design (see Eq. (6)).

For example, if k = 2 (thus there are 2° — 1 = 3 event
types plus the zero event), the event vector e(t) €
[0,1,2,3] can be constructed from:

e(t) = 2*s(t) + s(t + f), (10)
where s is a binary m-sequence, and the phase f is
selected so as to maximize efficiency. Thusifn=7,f =
3,and s(t) = [00 1011 1] is the chosen m-sequence,
then e(t) = [0 3 2 2 1 3 1], which corresponds to the
following event vectors for individual event types:
e, (t) =[0000101],e,(t) =[0011000], and e5(t) =
[0100010].

Intuitively, the reason why the equation (10) affords
cases with maximum efficiency (for certain values of f)
can be appreciated from the following argument. Since
s(t) € [0,1], Eq. (10) assigns for the i-th time interval t;
an event from either the pair e(t;) € [0,1] or e(t;) € [2,3].
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Since this assignment is governed by an m-sequence, it
possesses the property of optimal efficiency E. Like-
wise, the second term of the equation 10 determines
whether the event e(t;) at time t; is odd or even. Clearly,
this assignment also possesses the property of optimal
efficiency when considered independently of the first
event assignment. When considered simultaneously,
these two assignments interact in a way that results in
variable estimation efficiency across phase values f.
Figure 5B illustrates the behavior of estimation effi-
ciency as a function of the phase f. Although efficiency
drops for [f| < n,, and in addition there are drops in E
for multiple values of f, the majority of E values hover
around a maximum value of E. Any of these phase
values that results in high efficiency can be used for
constructing a nonoverlapping erfMRI sequence.

For the nonoverlapping event designs, estimation
efficiency is maximized by reaching a tradeoff between
maximum-energy for each event type and orthogonal-
ity of the column vectors of the design matrix (Liu et
al., 2001). For example, in the case of two mutually
exclusive events, the optimality condition is given
when each event occurs with equal probability of 0.29
(Liu et al., 2001; see also Friston et al., 1999). However,
when not only HDR responses but also contrasts be-
tween effects are to be estimated, the probability that
maximizes estimation efficiency is 1/(n, + 1) (e.g., Liu
et al., 2001). We use this formula for determining op-
timal event probability in efficiency calculations below.

RESULTS

Comparison of Randomly Generated Sequences and
M-Sequences

Figure 6A (open symbols) shows median estimation
efficiencies from a sample of 10,000 randomly gener-
ated sequences with three overlapping events (plus the
zero event) as a function of event probability. For each
probability value, the number of events is equal across
event types. The length of the sequence, n, is 63, and
the length of the HDR, n,,, is 12. Error bars indicate the
best and the worst values from each sample. No tem-
poral correlation in the noise is assumed. It can be seen
that maximal median efficiency is achieved for a prob-
ability of 0.5.

The filled circle indicates the estimation efficiency of
the m-sequence. For this particular choice of parame-
ters, the m-sequence has more than twice the efficiency
of the median random sequence. The best random se-
guence approaches only within <75% of the m-se-
quence efficiency, suggesting that achieving a maxi-
mally efficient sequence through random search is
computationally impractical.

Figure 6B illustrates how HDR estimation efficiency
behaves as a function of event probability for three
nonoverlapping events, assuming probabilities are
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FIG. 6. HDR estimation efficiency as a function of the probability
of event. Three equal probability event types are assumed (n, = 3,
n = 63, n, = 12). Open circles are mean efficiency values, error bars
indicate the best and worst efficiencies of 10,000 randomly generated
sequences. The filled circle at the top corresponds to the maximal
efficiency afforded by an m-sequence-based design. (A) Overlapping-
events design. The maximum efficiency occurs for P = 0.5. (B) Design
with no overlaps (no synchronous events are permitted). The maxi-
mum efficiency is achieved for P < ¥4 = 1/(n, + 1).

equal for all events (conventions as for Fig. 6A). The
event-probability for achieving maximal efficiency is
slightly lower than 0.25. Despite the fact that an opti-
mal m-sequence design is constrained to P = 0.25, and
thus deviates slightly from optimal probability, the
efficiency achieved by m-sequences (indicated by the
closed circle; event vectors generated using Eq. (10)) is
substantially higher than that afforded by random se-
quences.

Figure 7 summarizes HDR estimation efficiency for
designs using a single event type as a function of se-
guence length. The left column (Figs. 7A and 7C) plots
efficiencies for HDR length, n, = 12, and the right
column (Figs. 7B and 7D) plots efficiencies for n, = 24.
The error bars in the graphs of the top row (Figs. 7A
and 7B) indicate the best and worst efficiencies of the
10,000 randomly generated event sequences. Asterisk
symbols indicate the efficiency of the m-sequence. Ef-
ficiency grows with sequence length for both m-se-
guences and randomly generated sequences.

The advantage of m-sequences over random se-
guences is greatest for short sequences. This is more
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FIG. 7. Top row (A, B): Estimation efficiency as a function of sequence length n for experiments with one event type for n, = 12 (A) and
n, = 24 (B). The continuous line indicates the median efficiency of random designs, and the error bars indicate the best and the worst
efficiencies generated after 10,000 iterations. Bottom row (C, D): ratios of the estimation efficiency of m-sequence-based design to the best
random sequence obtained after 10,000 iterations (continuous line) and to the median random design efficiency (dotted line) for n, = 12 (C)

and n, = 24 (D).

clearly seen in Figs. 7C and 7D that plot the results in
Figs. 7A and 7B as the ratio of the efficiency of the
m-sequence over efficiencies of the randomly generated
sequences. Dotted lines indicate ratios with respect to
the median of the random sequences, and solid lines
indicate ratios with respect to the most efficient ran-
dom sequence. It is clear from these ratios that for
short sequences, choosing the best of 10,000 sequences
improves efficiency dramatically over a typical random
sequence, but the best sequence is still not as efficient
as the m-sequence. For long sequences, the efficiency of
the random sequence approaches, but never exceeds
the efficiency of the m-sequence-based design, because
event subsequences are naturally more counterbal-
anced for longer sequences. In addition, designs that
sample HDR with more sampling points (c.f., Figs. 7C
and 7D) offer greater benefit in efficiency of m-se-
guence-based designs.

We have also calculated the ratio of m-sequence ef-
ficiency to the most efficient of 100,000 and one million
randomly generated sequences (n, = 24, n = 63 and
127). Increasing to 100,000 sequences, efficiency of the

best random sequence improved only by 1.8% (n = 63),
and 0.67% (n = 127). After 1 million sequences the
efficiency of the best random sequence improved only
by another 1.4% and was still below that afforded by an
m-sequence by 15%. This remarkably insignificant im-
provement after 100-fold increase in computational
time illustrates how difficult it is to reach m-sequence
efficiency by random search.

The advantage of m-sequences over random se-
guences in HDR estimation efficiency is even greater
for designs that use more than one event type. Figure
8 plots efficiency ratios for designs employing three
event types (convention as in Figs. 7C and 7D). Top row
(Figs. 8A and 8B) plots efficiency ratios for three over-
lapping events, and the bottom row (Figs. 8C and 8D)
shows efficiency ratios for three nonoverlapping
events. Left and right columns, as in Fig. 6, correspond
to HDRs with n, = 12 and n, = 24 sampling points
respectively. Note that for n, = 24 (Figs. 8B and 8D)
efficiency ratios are absent for the shortest sequence
length (n = 63), since the efficiency is zero for m-
sequence-based designs when n < n,n, = 72.
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FIG. 8. Ratios of m-sequence-based estimation efficiency to that of random design for three event types. Top row (A, B): overlapping event
design; bottom row (C, D): nonoverlapping events design. Left column (A, C): n,, = 12, right column (B, D): n, = 24. Conventions as described

in the legends of Figs. 6C and 6D.

Efficiency ratios are greater for 3 event types than
for one event type (c.f. Figs. 7 and 8). This is because
the fraction of random sequences that exceed a crite-
rion level of efficiency decreases with the number of
event types, so the probability of finding such a se-
guence by chance is lower for n, = 3 than for n, = 1.

M-sequence designs used for Figs. 5, 6, and 7 em-
ployed either single (Fig. 7) or combinations (Figs. 6
and 8) of binary m-sequences. The results are similar
for nonbinary m-sequences. Figure 9 plots efficiency
ratios for non-overlapping designs using ternary (3-
level, Fig. 9A) and 5-level (Fig. 9B) m-sequences. As in
previous examples, m-sequence based designs afford
unequivocal advantage over random-sequence designs.
The relationship between the efficiencies of the m-
sequence and the random sequences is similar to the
overlapping designs: the greatest advantage of m-se-
quence occurs for shorter sequences and more event
types.

Effect of Noise on Estimation Efficiency

Next, we explored how knowledge of the fMRI noise
autocorrelation parameters influences estimation effi-

ciency of random vs m-sequence-based designs. Each
scatterplot in Fig. 10 shows estimation efficiencies cal-
culated without noise information (x-axes) (i.e., C = 1)
vs efficiencies with fMRI noise autocorrelation (y-axes).
Closed symbols show efficiencies for 1000 random se-
quences of length 127 (Figs. 10A and 10C) and 511
(Figs. 10B and 10D) and for 1 event (Figs. 10A and
10B) and three overlapping events (Figs. 10C and
10D). An open circle indicates the efficiency of an m-
sequence-based design using phase shifts that maxi-
mize efficiency without noise. Estimation efficiency in
the presence of correlated noise systematically exceeds
that of in its absence. This is expected since correlated
noise is more predictable than uncorrelated noise and
thus information about it can be used for noise sup-
pression.

Distributions along the x-axis of each plot show the
advantage in efficiency of m-sequences over random
sequences when noise is assumed to be i.i.d. (as also
shown in Figs. 7A and 7B). When noise, more realisti-
cally, is assumed to be correlated in time, efficiency of
some random sequences exceeds the efficiency of an
m-sequence-based design. High efficiency can be
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FIG. 9. Ratios of m-sequence-based estimation efficiency to that
of random sequences for designs that use nonbinary m-sequences.
(A) Efficiency ratios for designs with two event types. Ternary m-
sequences are used. (B) Efficiency ratios for designs with four event
types. Five-level m-sequences are used. Conventions as described in
the legends of Figs. 6C and 6D.

achieved for random sequences with correlated noise
because the experimental design matrix X can act as a
whitening matrix with respect to the inverse of the
noise correlation matrix X: X" C™ X (c.f. Eq. (5)).
This decorrelation effect on some random sequences
is maximal when there is one event type and sequences
are relatively long (Fig. 10B). As the number of event
types increases, the advantage offered by m-sequences
increases. For three non-zero event types, m-sequences
offer higher efficiency than the random method, even
after taking into account noise (Figs. 10C and 10D). As
in the case without noise, the advantage of m-se-
guences is greatest for shorter sequences (c.f. Figs. 10C
and 10D). Finally, the decorrelation effect exhibited by
some random sequences of one event-type cases is
weaker for designs that use non-truncated design ma-
trices: scatterplots in Figs. 10E and 10F replot efficien-
cies using parameters of Figs. 10A and 10B, respec-
tively, albeit for nontruncated design. Note that for n =
127 the advantage of random sequences is substan-
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tially reduced (c.f. Figs. 10A and 10E), while for n =
511, the reduction is lesser (c.f. Figs. 10B and 10F).

Computational Complexity of Random Search vs
M-Sequences

In principle, it is possible to generate an m-sequence
by chance using the random search algorithm, but the
probability of this is extremely small. For example,
there are 16 shift register values of order 8 that would
generate a binary m-sequence of length n = 255 (Da-
vies, 1970). Since a cyclically shifted m-sequence is also
an m-sequence, this would make a total of 4080 differ-
ent m-sequences. Considering that there are 2°° ~ 10%
binary sequences of length 255, it is quite unlikely that
an experimenter would produce an m-sequence by
chance.

However, not all sequences that afford high estima-
tion efficiency are m-sequences. An alternative ap-
proach to estimating the likelihood of generating ran-
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noise is unknown (i.e., C = I; plotted on x-axis) with the case when
the noise covariance is known (y-axis). Dots plot efficiencies for 1000
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an m-sequence-based design. (A, B) one event type (n, = 12); (C, D)
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deviation of the distribution of efficiencies in each dimension. (E, F)
Same as A, B, but in this case the design matrix X was composed of
canonical nontruncated convolution matrices.
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dom sequences with efficiency close to that afforded by
m-sequences is to consider the distribution of efficien-
cies of random sequences. Figure 10 gives some idea
about this distribution: it is highly skewed for designs
that use a single event type and long event sequences
(e.g., see Fig. 10B). For short random sequences with
many event types efficiency distribution approaches
normal distribution (see Fig. 10C). In this case we can
estimate the probability of generating a random se-
guence above some criterion efficiency by assuming a
normal distribution. White bars in Fig. 10C indicate one
standard deviation in each dimension. These bars meet
at the mean, which is exceeded by the m-sequence-
based efficiency by 6.7 standard deviations when the
noise is not accounted for (x-axis), and 5.2 standard
deviations when the noise autocorrelation is known
(y-axis). Assuming a Gaussian distribution and param-
eters identical to those used in Fig. 10C (n = 127, n,, =
12, n, = 3), the probability of generating such an effi-
cient sequence randomly is P = 10 for the case when
noise autocorrelation is not known (for parameters in
Fig. 10D, i.e.,, n =127, n, =12, n, = 3,p ~ 3-107").
Therefore, it appears impractical to attempt to reach
efficiency afforded by m-sequences by random search.

This conclusion is reinforced by our simulations us-
ing 10,000; 100,000; and 1 million randomly generated
sequences with parameters: n = 63, n, = 12, n, = 1.
Each increase in the number of generated sequences by
an order of magnitude improved random sequence per-
formance by less than 2%. This is consistent with a
distribution of efficiencies from the family of exponen-
tial distributions, which support our estimates above
based on a Gaussian distribution.

DISCUSSION

We introduce the m-sequence to event-related FMRI
as a computationally efficient method for generating
stimulus sequences that maximize the ability to esti-
mate the hemodynamic response function to a given
event. We show that the standard approach of search-
ing for the best randomly generated sequence is not
practical for experimental designs where high estima-
tion efficiency is essential. Specifically, m-sequence-
based experimental designs afford substantial HDR
estimation efficiency when the scan duration is rela-
tively short, and for multiple event types. M-sequences
are especially useful if the multi-event design allows
for overlapping, or simultaneous occurrences of several
events of different types.

Why do m-sequences tend to outperform random se-
guences in terms of HDR estimation efficiency? Liu et
al. (2001) derive an upper bound on estimation effi-
ciency for the independent identically distributed
Gaussian noise model (i.e., C = ¢*l). They show that
the maximum efficiency condition is met when eigen-
values of matrix X" X are all equal. This leads to a
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requirement that maximum efficiency design matrices
ought to achieve optimal balance between maximizing
the energy in each of the columns of the design matrix
X and reducing correlation between the columns. In-
deed, m-sequence-based designs meet both of these
criteria. First, they contain equal numbers of events
such that energy for each event is maximized. Second,
columns of the design matrix approach mutual orthog-
onality. Exact orthogonality is achieved only between
first columns of each convolution submatrix. As the
columns shift within convolution submatrices, exact
orthogonality property is lost, but columns still remain
weakly correlated. Indeed, casual inspection of eigen-
values of X" X matrix (not shown) reveals that most
eigenvalues for m-sequence designs tend to be identi-
cal, while eigenvalues for random designs vary widely
and range nearly-smoothly over the spanned interval.

We show herein that if the correlated noise were
exactly known, one could select random sequences that
result in estimation efficiency superior to m-sequence-
based designs for cases of one event type (or two event
types with very long event sequences). This is so be-
cause there exist random sequences that result in de-
sign matrix X, which effectively decorrelate (the in-
verse of) noise covariance matrix. The fact that fMRI
noise varies not only across subjects and scanners, but
also across and within experimental runs, makes it
impractical to design high-efficiency random-sequence-
based experiments that incorporate a perfect model of
noise properties. Therefore, in the circumstances of
unknown noise, m-sequences afford designs with supe-
rior estimation efficiency. Moreover, for designs that
use more than one event type, the contribution of noise
information becomes inessential, as it does not help
random sequences to reach the efficiency afforded by
m-sequences.

We have constrained our analysis to truncated de-
sign matrices that are consistent with discontinuation
of scanning once the stimulus presentation sequence is
completed. We have chosen this design since it maxi-
mizes estimation efficiency per unit of scan time. Ex-
tending scanning duration for additional n, sampling
points increases estimation efficiency albeit at a price
of increased scan duration. The choice of truncated vs
nontruncated design matrix does not affect our results.
In fact, our simulations indicate that the m-sequence
advantage over random sequences tends to increase for
nontruncated designs. Furthermore, the decorrelation
effect exhibited by some random sequences for one
event-type designs is substantially reduced for non-
truncated designs (see Figs. 10E and 10F).

However, high efficiency afforded by m-sequences
comes at a price of constraints associated with the
nature of those sequences. One constraint in using
m-sequences is that m-sequence experimental designs
are restricted to a set of sequence lengths. These
lengths are always L" — 1, where the number of levels,
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L, is a prime integer (in practice, L = 2, 3, or 5) and the
order r is an integer. However, the available lengths
span a broad range of values that cover a substantial
set of lengths that are routinely used in erfMRI exper-
iments.

Another constraint is that for non-overlapping
events, the number of event types is restricted to m-
sequence designs that use L* — 1 event types (exclud-
ing the zero-event). For example, nonoverlapping m-
sequence designs can be generated by means of
equation9withl1 (L=2,k=1),2(L=3,k=1),3(L=
2,k=2),4(L=5k=1),7(L=2,k=3),8(L=3,k=
2),15(L = 2,k =4),and 26 (L = 3, k = 3) event types,
but not with 5, 6, 9, etc. event types. Fortunately, the
list of available nonoverlapping designs covers a large
portion of designs typically used in fMRI experiments.
Moreover, these constraints are not applicable for over-
lapping-events designs.

It has been shown that HDR estimation efficiency is
highest for a hybrid block-ER design where event oc-
currence probability slowly varies across time (e.g., Liu
et al., 2001). M-sequence based designs achieve optimal
efficiency under a stringent requirement of constant
event probability for the duration of an experimental
run. These designs might be thus preferable for studies
that are sensitive to expectation, neuronal adaptation,
and priming effects.

Finally, data acquired during experiments using m-
sequences lends to a computationally efficient linear
(Sutter, 1987; Bernadette and Victor, 1994) and non-
linear systems analysis (Chen et al., 1996).

The code for generation of m-sequences and calcula-
tion of estimation efficiency is available online at:
http://www.cnl.salk.edu/~giedrius/professional/m-seqs/
msequences.htm.
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