
J Comput Neurosci (2010) 28:509–526
DOI 10.1007/s10827-010-0233-8

The response of a classical Hodgkin–Huxley neuron
to an inhibitory input pulse

Christoph Börgers · Martin Krupa · Stan Gielen

Received: 23 June 2009 / Revised: 24 February 2010 / Accepted: 12 March 2010 / Published online: 13 April 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract A population of uncoupled neurons can of-
ten be brought close to synchrony by a single strong
inhibitory input pulse affecting all neurons equally. This
mechanism is thought to underlie some brain rhythms,
in particular gamma frequency (30–80 Hz) oscillations
in the hippocampus and neocortex. Here we show that
synchronization by an inhibitory input pulse often fails
for populations of classical Hodgkin–Huxley neurons.
Our reasoning suggests that in general, synchronization
by inhibitory input pulses can fail when the transition of
the target neurons from rest to spiking involves a Hopf
bifurcation, especially when inhibition is shunting, not
hyperpolarizing. Surprisingly, synchronization is more
likely to fail when the inhibitory pulse is stronger or
longer-lasting. These findings have potential implica-
tions for the question which neurons participate in
brain rhythms, in particular in gamma oscillations.
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1 Introduction

Transient synchronization of neurons is believed to be
common in the brain and important for brain function.
In a seminal paper, van Vreeswijk et al. (1994) showed
that often synaptic inhibition, not excitation, leads to
synchronized activity. Fast-spiking inhibitory interneu-
rons are believed to play the central role, in particular,
in the generation of gamma (30–90 Hz) rhythms (Traub
et al. 1997; Whittington et al. 2000; Traub et al. 2003;
Csicsvari et al. 2003; Hájos et al. 2004; Mann et al. 2005;
Compte et al. 2008).

Arguably the simplest example of synchronizing in-
hibition is that of a population of uncoupled neurons
receiving a common strong inhibitory input pulse. Such
a pulse can transiently drive all neurons of its tar-
get population towards a common quasi-steady state,
thereby driving them (that is, the quantities charac-
terizing their states, such as membrane potentials and
ionic gating variables) towards each other. This is the
foundation of the “PING” (Pyramidal-Interneuronal
Network Gamma) mechanism (Whittington et al. 2000;
Börgers and Kopell 2003, 2005), in which gamma
rhythms arise from the interaction between excitatory
pyramidal cells (E-cells) and inhibitory fast-spiking in-
terneurons (I-cells): Spike volleys of the I-cells synchro-
nize the E-cells, and spike volleys of the E-cells trigger
synchronous spike volleys of the I-cells.

In this paper, we take another look at the approx-
imate synchronization of a population of neurons by
a single inhibitory pulse, and find that it often fails
for the most famous of all neuronal models, the clas-
sical Hodgkin–Huxley model. The reason lies in the
nature of the transition from excitability to spiking. For
the Hodgkin–Huxley model, this transition involves a
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subcritical Hopf bifurcation. For many other neuronal
models, on the other hand, it involves a saddle-node
bifurcation on an invariant cycle. The simplest model
of the latter kind is the theta neuron (Ermentrout
and Kopell 1986; Hoppensteadt and Izhikevich 1997;
Gutkin and Ermentrout 1998). Neuronal models are
often called of type I if the transition from rest to spik-
ing involves a saddle-node bifurcation on an invariant
cycle, and of type II if it involves a Hopf bifurcation
(Rinzel and Ermentrout 1998; Gutkin and Ermentrout
1998; Ermentrout 1996).

For both type I and type II neurons, a sufficiently
strong inhibitory pulse introduces an attracting quasi-
steady state. For the classical Hodgkin–Huxley neuron
and other type II neuronal models, this quasi-steady
state is a focus, i.e., the center of a spiral; as the
inhibition decays, it turns from attracting to (weakly)
repelling. For the theta neuron, on the other hand, and
for other model neurons of type I, the attracting quasi-
steady state is a node, which is annihilated altogether in
a saddle-node collision as the inhibition decays. As we
will show, this difference gives rise to crucial differences
in synchronization behavior. Theta neurons are easily
synchronized by a pulse of inhibition, provided only
that the pulse is strong and long-lasting enough. On
the other hand, for classical Hodgkin–Huxley neurons,
synchronization by a pulse of inhibition is fragile. It
often fails when the inhibition is shunting (that is, when
the reversal potential is near the resting potential).
Surprisingly, it is more likely to fail, even for hyper-
polarizing inhibition, for stronger and longer-lasting
inhibitory pulses.

We expect these results to have significance for the
question which neurons in the brain participate in or
are entrained by gamma oscillations. We mention three
potential examples here; see Discussion for further
comments. First, cortical pyramidal cells can switch
between type II and type I by means of cholinergic
modulation (Ermentrout et al. 2001; Jeong and Gutkin
2007; Stiefel et al. 2008, 2009). This suggests a new
mechanism that may underlie the link between cholin-
ergic modulation and gamma oscillations: By chang-
ing pyramidal cells from type II to type I, cholinergic
modulation may facilitate synchronization by strong
inhibitory pulses. We note that cholinergic modulation
is known to facilitate gamma rhythms (Buhl et al. 1998;
Fisahn et al. 1998; Rodriguez et al. 2004). Second, our
results suggest a new reason why purely inhibition-
based (“ING”) gamma oscillations (Whittington et al.
1995, 2000) may be fragile: Fast-spiking inhibitory in-
terneurons appear to be of type II (Erisir et al. 1999;
Kawaguchi 1995; Tateno et al. 2004), and inhibition
among fast-spiking interneurons has been reported to

be shunting, not hyperpolarizing (Bartos et al. 2007).
Third, in addition to the fast-spiking, parvalbumin-
positive interneurons thought to be at the core of mech-
anisms underlying gamma rhythms, there are a vast
array of other types of inhibitory interneurons in
the hippocampus (Somogyi and Klausberger 2005)
and neocortex (Markram et al. 2004; Otsuka and
Kawaguchi 2009). Which of these interneurons partic-
ipate in oscillations, and under which circumstances, is
largely unknown. Our work suggests that the nature of
the transition from rest to spiking may be relevant to
this question.

2 Methods

We describe here the models used in our computational
study.

2.1 The theta neuron

The theta model (Ermentrout and Kopell 1986;
Hoppensteadt and Izhikevich 1997; Gutkin and
Ermentrout 1998) represents a neuron by a point
P = (cos θ, sin θ) moving on the unit circle in the
plane. This is analogous to Hodgkin–Huxley-
like, conductance-based models, which represent a
periodically spiking space-clamped neuron by a point
moving on a limit cycle in a higher-dimensional phase
space. In the absence of synaptic input, the differential
equation defining the theta neuron is

dθ

dt
= 1 − cos θ + I (1 + cos θ) . (1)

Here t should be thought of as time measured in mil-
liseconds (see Börgers and Kopell 2003, Section 2) and
I as the analogue of an external input current. For
I < 0, Eq. (1) has exactly two fixed points in (−π, π),
namely

θ±
0 = ± arccos

1 + I
1 − I

= ±2 arccos
1√

1 − I
. (2)

(The second equality in Eq. (2) is a consequence of
the angle doubling formula for the cosine function.)
The fixed point θ−

0 ∈ (−π, 0) is stable, and θ+
0 ∈ (0, π)

is unstable. As I increases, the fixed points approach
each other. As I crosses 0 from below, a saddle-node
bifurcation occurs: The fixed points collide at θ−

0 =
θ+

0 = 0, and there are no fixed points for I > 0. For a
theta neuron, to “spike” means, by definition, to reach
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θ = π (modulo 2π). For I > 0, the theta neuron spikes
with period

T = π√
I

.

The transition from I < 0 to I > 0 is the analogue of
the transition from excitability to spiking in a neuron.

2.2 The theta neuron with inhibitory input

The effect of adding an exponentially decaying in-
hibitory term to Eq. (1) was discussed in detail in
Börgers and Kopell (2003, 2005). Following Börgers
and Kopell (2003), we model the inhibition as follows:

dθ

dt
=1−cos θ+

(
I−

{
ge−(t−t∗)/τi if t≥ t∗

0 if t< t∗

})
(1+cos θ) ,

(3)

where g > 0 is the strength of the pulse of inhibition,
t∗ is its arrival time, and τi its decay time constant.
We primarily focus on τi = 10, since the decay time
constant of GABAA-receptor mediated inhibition is on
the order of 10 ms. However, we will also discuss the
effects of varying τi.

Equation (3) can be derived from the quadratic
integrate-and-fire neuron with an exponentially decay-
ing inhibitory current input term added to the right-
hand side. A variation on this equation is obtained
when starting with the quadratic integrate-and-fire neu-
ron with an exponentially decaying inhibitory synaptic
input term added to the right hand side, in the form
ge−(t−t∗)/τi(Vsyn − V), where V denotes the membrane
potential, g the maximal synaptic conductance, and
Vsyn the synaptic reversal potential (see Börgers and
Kopell, 2005, for a detailed derivation). However, the
difference between current inputs (Börgers and Kopell
2003) and synaptic inputs (Börgers and Kopell 2005)
is not crucial in the current context. Here we will use
current inputs, i.e., Eq. (3), for simplicity.

2.3 E/I networks of theta neurons

Here we specify the model underlying Fig. 3; the figure
itself will be discussed in detail in Section 3.4. Figure 3
shows a spike rastergram resulting from a simulation
of a network of 400 excitatory theta neurons (E-cells)
and 100 inhibitory theta neurons (I-cells). All details of
this simulation were as in Börgers and Kopell (2003),

Fig. 1(b), with the following three exceptions. (1) Con-
nectivity was all-to-all here, whereas it was sparse and
random in Börgers and Kopell (2003), Fig. 1(b). (2)
The (random) initializations were not the same. (3)
We simulated only 100 ms here, whereas 200 ms were
simulated in Börgers and Kopell (2003). As in Börgers
and Kopell (2003), τi = 10 in Fig. 3.

2.4 The classical Hodgkin–Huxley neuron

The classical Hodgkin–Huxley equations (Hodgkin and
Huxley 1952) for the space-clamped squid giant axon
are

C
dV
dt

= gNam3h(VNa − V) + gKn4(VK − V)

+gL(VL − V) + I , (4)

dm
dt

= αm(V)(1 − m) − βm(V)m , (5)

dh
dt

= αh(V)(1 − h) − βh(V)h , (6)

dn
dt

= αn(V)(1 − n) − βn(V)n . (7)

The letters C, V, t, g, and I denote capacitance density,
voltage, time, conductance density, and current density,
respectively. The units used for these quantities are
μF/cm2, mV, ms, mS/cm2, and μA/cm2, respectively.
For brevity, units will often be omitted from here on.
Up to a change in notation, the parameter values that
Hodgkin and Huxley chose are VNa = 45, VK = −82,
VL = −59.387, gNa = 120, gK = 36, gL = 0.3, and C =
1. The letters m, h, and n denote the gating variables,
which are dimensionless real numbers between 0 and 1.
The rate functions αx and βx, x = m, h, n, are given by

αm(V) = (V + 45)/10

1 − exp (−(V + 45)/10)
, (8)

βm(V) = 4 exp (−(V + 70)/18) , (9)

αh(V) = 0.07 exp(−(V + 70)/20) , (10)

βh(V) = 1

1 + exp(−(V + 40)/10)
, (11)

αn(V) = (V + 60)/100

1 − exp(−(V + 60)/10)
, (12)

βn(V) = 0.125 exp(−(V + 70)/80) . (13)
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Although of course a Hodgkin–Huxley model neuron
has spikes of positive width, we say that there is a spike
“at time t0” if

V(t0) = 0 and
dV
dt

(t0) > 0. (14)

2.5 The classical Hodgkin–Huxley neuron
with inhibitory input

To model synaptic inhibition, we modify Eq. (4) by
adding a term of the form

Isyn = gs(t)(Vsyn − V) (15)

to the right-hand side. Constant inhibitory input corre-
sponds to

s(t) = 1

for all t. A decaying pulse of inhibition is modeled by

{
ge−(t−t∗)/τi(Vsyn − V) if t ≥ t∗ ,

0 if t < t∗ ,
(16)

where t∗ denotes the arrival time of the inhibitory pulse.
The parameter Vsyn is the synaptic reversal potential,
and g is the maximum conductance associated with the
synaptic input. The reversal potential of GABAergic
synapses can be below the resting potential (hyperpo-
larizing inhibition), at the resting potential (shunting
inhibition), or even above the resting potential (Isaev
et al. 2007; Jeong and Gutkin 2007; Lu and Trussell
2001). We will experiment with the values Vsyn = −80
(hyperpolarizing inhibition) and Vsyn = −65 (shunting
inhibition) in this paper.

2.6 E/I networks in which the E-cells are classical
Hodgkin–Huxley neurons

We will present simulations of networks in which the E-
cells are classical Hodgkin–Huxley neurons (Eqs. (4)–
(13)). The external drive I in Eq. (4) will in this context
be denoted by Ie. Some of our simulations include a
heterogeneous drive to the E-cells. By this we always
mean that the external drive to the j-th E-cell is

Ie, j = (1 + 0.2X j)Ie, (17)

where the X j are independent Gaussian random vari-
ables with mean 0 and variance 1. The drives Ie, j are
time independent. However, in the simulations in which

drive to the E-cells is heterogeneous, we also add time-
dependent noisy drive. This is done by adding a term to
the right-hand side of the equation describing the time
evolution of the membrane potential of the j-th E-cell
in the form

−0.05sstoch, j(t)V j(t), (18)

where the functions sstoch, j jump to 1 at random times,
and decay exponentially with time constant 3 ms be-
tween jumps. The jumps occur on Poisson schedules
with mean frequency 10 Hz. The noisy inputs to
different E-cells are independent of each other. Equa-
tion (18) is intended to mimic the effect of excitatory
synaptic input pulses arriving at random times. The
decay time constant of 3 ms is motivated by the fact that
the decay time constant of AMPA-receptor mediated
glutamatergic synapses is on the order of 3 ms.

In the model networks in which the E-cells are clas-
sical Hodgkin–Huxley neurons, the I-cells are Wang–
Buzsáki model neurons (Wang and Buzsáki 1996). The
Wang–Buzsáki neuron has the same general form as the
classical Hodgkin–Huxley neuron (Eqs. (4)–(7)). How-
ever, the differential equation for the gating variable m,
Eq. (5), is replaced by

m = m∞(V) = αm(V)

αm(V) + βm(V)
,

and the parameters are VNa = 55, VK = −90, VL =
−65, gNa = 35, gK = 9, gL = 0.1. As for the classical
Hodgkin–Huxley neuron, C = 1. The rate functions αx

and βx, x = m, h, n, are given by

αm(V) = 0.1(V + 35)

1 − exp(−(V + 35)/10))
, (19)

βm(V) = 4 exp(−(V + 60)/18) , (20)

αh(V) = 0.07 exp(−(V + 58)/20) , (21)

βh(V) = 1

exp(−0.1(V + 28)) + 1
, (22)

αn(V) = 0.01(V + 34)

1 − exp(−0.1(V + 34))
, (23)

βn(V) = 0.125 exp(−(V + 44)/80) . (24)

The external drive to the I-cells is denoted by Ii. Het-
erogeneity and noise in external inputs are modeled for
the I-cells in precisely the same way as for the E-cells.

At least some fast-spiking inhibitory interneurons
are of type II (Erisir et al. 1999; Kawaguchi 1995;
Tateno et al. 2004). We decided nonetheless to use
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the Wang–Buzsáki model neuron, which is of type I,
in this study. Our focus here is on the role that the
type of the E-cells plays in the PING mechanism. For
this mechanism, we believe the type of the I-cells to be
largely irrelevant; see also Discussion (Section 4.5).

We adopt the synaptic model of Ermentrout and
Kopell (1998). Each synapse is characterized by a
synaptic gating variable s associated with the presynap-
tic neuron, with 0 ≤ s ≤ 1, which evolves according to
the equation

ds
dt

= ρ(V)
1 − s
τR

− s
τD

,

where ρ denotes a smoothed Heaviside function:

ρ(V) = 1 + tanh(V/4)

2
,

and τR and τD are the rise and decay time constants,
respectively. To model the synaptic input from neuron
j to neuron k, we add to the right-hand side of the equa-
tion governing the membrane potential Vk of neuron k
a term of the form

g jks j(t)(Vsyn − Vk) ,

where g jk denotes the maximal conductance associated
with the synapse, s j denotes the gating variable asso-
ciated with neuron j, and Vsyn denotes the synaptic
reversal potential.

We use the notation Vsyn,e and Vsyn,i for the rever-
sal potentials associated with excitatory and inhibitory
synapses, respectively, τR,e and τD,e for the rise and
decay time constants of excitatory synapses, and τR,i

and τD,i for the rise and decay time constants of in-
hibitory synapses. We always use τR,e = 0.1, τD,e = 3,
and Vsyn,e = 0, values reminiscent of AMPA-receptor-
mediated glutamatergic synapses. We use τR,i = 0.3,
but vary τD,i and Vsyn,i. In most simulations, we use
τD,i = 10, reminiscent of GABAA-receptor-mediated
synapses.

Our model networks of Hodgkin–Huxley and
Wang–Buzsáki neurons include 40 E-cells and 10 I-
cells. The connectivity is all-to-all. We take the maximal
conductance of the synaptic connection from the j-
th I-cell to the k-th E-cell to be gie/10, where gie is
independent of j and k. Thus the maximum possible
value of the sum of all inhibitory conductances affecting
an E-cell is gie. Similarly, the maximal conductance of
the connection from an E-cell to an I-cell is gei/40, and
the maximal conductance of the connection from an
I-cell to an I-cell is gii/10. We do not include E→E
synapses in these simulations.

We always use gei = 0.2. This parameter is chosen so
that a population spike volley of the E-cells promptly
triggers a population spike volley of the I-cells, but does
not cause I-cells to spike multiple times. Unless other-
wise indicated, we use gii = 0.1. PING does not require
the presence of I→I synapses, but they significantly
stabilize the rhythm (Börgers and Kopell 2005). We
experiment with various values of gie.

2.7 Visualizing the synchronizing effect of inhibition

To illustrate the synchronizing effect of a pulse of
inhibition, we consider a model neuron (either a theta
neuron, or a classical Hodgkin–Huxley neuron), with
constant drive I above the spiking threshold. We de-
note by T the natural period of the neuron, that is, the
period that would be seen without any additional input.

We assume that at time t = 0, the neuron spikes.
For a theta neuron, this means θ = −π mod 2π . For
a classical Hodgkin–Huxley neuron, it means V = 0
and dV/dt > 0 (compare Eq. (14)). For the classi-
cal Hodgkin–Huxley neuron, we also assume, in ad-
dition to V(0) = 0 and dV/dt(0) > 0, that the point
(V(0), m(0), h(0), n(0)) lies on the limit cycle. (These
conditions uniquely determine m(0), h(0), and n(0).)
We now consider an inhibitory pulse arriving at some
time t∗ with 0 < t∗ < T. We denote by t1 and t2 the
times of the first and second spikes following time t∗,
respectively, and define

Ti = ti − t∗, i = 1, 2.

Plots of T1 and T2 as functions of t∗, as for instance
in Fig. 1, help visualize the synchronizing effect of
inhibition. Immediate and perfect synchronization
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Fig. 1 Graphs of T1 and T2, the time delays between the arrival
time t∗ of the inhibitory pulse and the first and second spikes
following it, respectively, for the theta neuron. Here and in later
figures, relevant parameter values are shown at the top



514 J Comput Neurosci (2010) 28:509–526

would correspond to T1 being independent of t∗: If the
delay between the arrival of the inhibitory pulse and
the next spike is independent of the phase at which the
pulse arrives, then all neurons resume spiking at the
same time following the inhibitory pulse.

2.8 Numerics

All differential equations were solved using the mid-
point method, with the fixed time step �t = 0.02. All
codes are available from the first author upon request.

3 Results

3.1 Synchronization of theta neurons by a pulse
of inhibition

The effect of adding an exponentially decaying in-
hibitory term to Eq. (1), as shown in Eq. (3), was dis-
cussed in detail in Börgers and Kopell (2003, 2005). We
review some of the material from Börgers and Kopell
(2003, 2005) here, and add, in Section 3.3, a discussion
of the parameter regime in which an inhibitory pulse
synchronizes effectively.

First, to illustrate the synchronization resulting from
an inhibitory pulse, we show in Fig. 1 the delays T1 and
T2 between the arrival time t∗ of a pulse of inhibition
and the next two spikes (see Section 2.7). T1 and T2

depend on I, g, and τi. Figure 1 shows the example I =
0.1 (thus T = π/

√
I ≈ 9.935), g = 0.25, and τi = 10.

In this example, T1 is approximately independent of t∗
as long as t∗ is not too close to T. Thus most neurons in
an asynchronous population will be brought to approx-
imate synchrony by a single pulse of inhibition. Only
those neurons that are quite close to spiking when the
inhibition arrives (t∗ ≈ T) will escape. These neurons
will spike soon after the arrival of the inhibitory pulse.
However, Fig. 1 also shows that nearly all of those
neurons will spike a second time at approximately the
same time at which the others spike first. Thus a single
pulse of inhibition comes very close to synchronizing
the entire population.

The mathematics underlying this synchronization
effect were discussed in Börgers and Kopell (2003).
There, the synchronization was interpreted as the effect
of an attracting “river” (Diener 1985a, b)1 in a phase
plane parameterized by θ and the variable J = I −

1Stable rivers correspond to stable Fenichel slow manifolds
(Fenichel 1979). We use the more intuitive term ‘river’ in this
paper.

ge−(t−t∗)/τi . We will review and discuss the “river” pic-
ture below. Briefly, and without making reference to
the geometry, the mechanism can be described as fol-
lows. If g > I, the inhibitory pulse transiently creates an
attracting quasi-steady state, which is initially located at

θ−
g = − arccos

1 + (I − g)

1 − (I − g)

(compare Eq. (2)). While the inhibition decays, tra-
jectories track this quasi-steady state, and thereby
approach each other.

3.2 The river picture for theta neurons

We briefly review here the “river” picture described
in Börgers and Kopell (2003, 2005), and add some
observations relevant to the present work. We consider
a theta neuron with an inhibitory pulse arriving at time
t∗ = 0:

dθ

dt
= 1 − cos θ + (

I − ge−t/τI
)
(1 + cos θ) for t ≥ 0.

(25)

If g > I, the inhibitory pulse creates a quasi-steady
state. As inhibition decays, this quasi-steady state
moves. As explained in detail in Börgers and Kopell
(2003, 2005), the trajectory is exponentially attracted to
a stable river that is close to, but not identical with the
quasi-steady state. As a result, the time T at which θ

reaches π (the “spike time”) is nearly independent of
θ(0), implying synchronization.

We note that trajectories with different initial condi-
tions typically come far closer to each other (and to the
stable river) than to the quasi-steady state. This point,
which will play a role later on, is demonstrated by Fig. 2,
which shows θ as a function of t for several different
initial conditions, together with the quasi-steady state
(indicated in bold), for I = 0.1, g = 0.3, and τi = 10.

0 5 10 15
−1

−0.5

0

t

θ

Fig. 2 Graph of θ(t) for several different initial values θ(0), and
the quasi-steady state (bold), for I = 0.1, g = 0.3, and τi = 10.
The dashed line indicates the time at which the quasi-steady state
ceases to exist
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Intuitively, the trajectories cannot come very close
to the quasi-steady state because the quasi-steady state
represents a “moving target”. The sense in which there
is a nearby “stable river” that the trajectories do come
very close to was explained in detail in Börgers and
Kopell (2003, 2005).

3.3 On the parameter range in which a pulse
of inhibition synchronizes a population
of theta neurons

It is not easy to analyze rigorously for which values of
I, g, and τi tight synchrony will be obtained by a single
pulse of inhibition. However, the following argument
does come close to answering this question. At time t∗,
the time constant associated with the approach to the
stable quasi-steady state is the reciprocal of

− d
dθ

(1 − cos θ + (I − g)(1 + cos θ))

∣∣∣∣
θ=θ−

g

= − (1 + (g − I)) sin θ−
g

= (1 + (g − I))
(

1 − cos2 θ−
g

)1/2

= (1 + (g − I))

(
1 −

(
1 − (g − I)
1 + (g − I)

)2
)1/2

= (
(1 + (g − I))2 − (1 − (g − I))2

)1/2 = 2(g − I)1/2 .

The stable quasi-steady state exists as long as

ge−(t−t∗)/τi > I ,

that is, as long as

t − t∗ < τi ln
g
I

.

This reasoning suggests (disregarding the fact that the
quasi-steady state becomes less strongly attracting as
the inhibition decays) that good synchronization should
be expected as long as

τi ln
g
I


 1

2(g − I)1/2
.

Numerical experiments indicate that indeed, for a sur-
prisingly broad range of values of I, g, and τi, synchro-
nization by a single pulse of inhibition is quite tight if

τi ≥ 6τ0, (26)

and fairly loose if

τi ≤ 2τ0, (27)

with

τ0 = 1

2(g − I)1/2 ln (g/I)
. (28)

Note that τ0 is small (and therefore synchronization
occurs for moderate values of τi) if g is sufficiently
large in comparison with I; both g − I and g/I matter.

3.4 PING in E/I networks of theta neurons

Oscillations are common in networks of synaptically
coupled excitatory and inhibitory theta neurons. In
many cases, such oscillations can be understood as a
consequence of the synchronization mechanism dis-
cussed in the preceding subsections. To illustrate this,
Fig. 3 shows a spike rastergram representing the results
of a simulation of an E/I network of theta neurons. This
simulation is very similar to one presented in Börgers
and Kopell (2003); see Methods for the details. At
the start of the simulation, the E-cells spike asynchro-
nously, and as a result the I-cells are gradually driven
away from rest. Eventually, a population spike volley
of the I-cells is triggered. The result is a strong common
pulse of inhibition to all E-cells. Soon after the arrival
of the inhibitory pulse, the activity in the E-cells halts. It
resumes in near-synchrony approximately 25 ms later.
Thus T1, in the notation used earlier, is approximately
25 ms.

The time between the spike volley of the I-cells and
the resumption of spiking in the E-cells depends, in
general, on the decay time constant τi of inhibition and,
to a lesser extent, on the inhibitory conductances and
external drives; see Eq. (3.12) of Börgers and Kopell
(2003). The second spike volley of the I-cells, following
the second spike volley of the E-cells, makes the syn-
chrony perfect within plotting accuracy.

As discussed in Börgers and Kopell (2003,
2005), similar rhythms, called PING (Pyramidal-
Interneuronal Network Gamma) rhythms (Whittington
et al. 2000), generally occur in networks of excitatory
and inhibitory theta neurons whenever the E-cells
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Fig. 3 Gamma oscillation in a network of 400 excitatory and 100
inhibitory theta neurons
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spike spontaneously at a sufficiently high rate, the
I-cells spike only in response to the E-cells but not on
their own, and the E→I and I→E synaptic connections
are sufficiently strong.

3.5 Dynamics of the classical Hodgkin–Huxley neuron

The central point of this paper is that for classi-
cal Hodgkin–Huxley neurons, synchronization by in-
hibitory pulses does not always work in the same way
as for theta neurons. To explain this point, we must
first review some relevant dynamical properties of the
Hodgkin–Huxley neuron.

Bifurcations in the classical Hodgkin–Huxley system
(Eqs. (4)–(13)) have been studied in considerable detail
(Hassard 1978). For I between I0 ≈ 6.3 and I1 ≈ 9.8,
a stable focus and a stable limit cycle coexist. When I
rises above I1, the focus loses its stability in a subcritical
Hopf bifurcation. For I < I0, there is no stable limit
cycle, and only a stable focus near V = − 70 mV exists.

In Section 3.6, we will refer to shunting inhibition,
that is, inhibition with a reversal potential close to the
equilibrium potential. It is of interest in this context
to note that the equilibrium potential (and therefore
the meaning of “shunting”) depends only mildly on the
value of I < I1. For instance, the equilibrium value Veq

of the membrane potential V increases from approxi-
mately −70 to approximately −65 as I increases from 0
to I1; see Fig. 4.

Since we are interested in the effects of synaptic in-
hibition, we modify Eq. (4) by adding the term g(Vsyn −
V) to the right-hand side, modeling constant inhibition;
see Eq. (15). Numerical experiments indicate that bi-
furcations similar to those described above also occur
when I > I1 is fixed and g is varied. In a range of
conductances g0 < g < g1, a stable limit cycle and a
stable focus coexist. The focus loses its stability in a
subcritical Hopf bifurcation when g falls below g0. For
g > g1, there is no stable limit cycle, and only a stable
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Fig. 4 Graph of the equilibrium potential of the classical
Hodgkin–Huxley equations as a function of I

Table 1 For constant inhibition with g0 < g < g1, a stable limit
cycle and a stable focus coexist

Vsyn = −80 Vsyn = −65

g0 g1 g0 g1

I = 10 0.0066 0.11 0.012 0.21
I = 12 0.064 0.17 0.11 0.31
I = 15 0.15 0.26 0.25 0.46
I = 20 0.29 0.41 0.47 0.68

As g falls below g0, the focus loses its stability in a subcritical
Hopf bifurcation. For g > g1, there is no stable limit cycle

focus remains. The values of g0 and g1 depend on I and
Vsyn; Table 1 shows some examples.

3.6 Synchronization of classical Hodgkin–Huxley
neurons by a pulse of inhibition

We consider a classical Hodgkin–Huxley neuron with
I > I1. We will again illustrate the effect of a decaying
pulse of synaptic inhibition by plotting the time delays
T1 and T2 between the arrival time t∗ of the inhibitory
pulse and the first and second spike, respectively (see
Section 2.7). Note that T1 and T2 now depend on the
four parameters I, Vsyn, g, and τI .

Before presenting the details, we summarize our
findings. A sufficiently strong inhibitory pulse gen-
erates an attracting spiral. As inhibition decays, the
spiral undergoes a Hopf bifurcation, becoming weakly
repelling. If a population of Hodgkin–Huxley neurons
are subjected to the same inhibitory pulse, they may
synchronize (Section 3.6.1), but only if the inhibitory
pulse does not bring the trajectories very close to the
fixed point. If the trajectories do come very close to the
fixed point by the time when the fixed point becomes
weakly repelling again, they must take several turns
around the fixed point before leaving its vicinity. The
precise number of turns required is highly sensitive
to the precise location of the trajectory at the time
when the fixed point becomes unstable. This location
is, of course, slightly dependent on initial conditions.
As a result, different trajectories experience delays of
substantially different durations, and synchronization
fails. This effect is promoted if inhibition is shunting
(Section 3.6.2), strong (Section 3.6.3), or long-lasting
(Section 3.6.4).

Our arguments here will be heuristic, based on nu-
merical results. Whether or not trajectories synchronize
depends sensitively on their initialization, not just on
local properties of the focus. A quantification of the
delay effect and a rigorous mathematical analysis would
therefore not be simple, and is beyond the scope of this
paper.



J Comput Neurosci (2010) 28:509–526 517

3.6.1 Synchronization by a pulse of hyperpolarizing
inhibition can work well

Figure 5 shows T1 and T2 for I = 12, Vsyn = −80, g = 1,
τi = 10. Here T1 is approximately independent of t∗ as
long as t∗ is not too close to T, the period in the absence
of inhibition. Only those neurons that are quite close
to spiking when the inhibition arrives will escape, and
will spike soon after the arrival of the inhibitory pulse.
However, even most of those neurons will spike again
at approximately the same time at which the others
spike for the first time, as for the theta neuron (Fig. 1).
This behavior is often seen for hyperpolarizing (Vsyn =
−80) inhibitory pulses; see, however, the examples of
Figs. 11 and 12.

A comparison of Fig. 5 with Fig. 1 shows that the
synchronization is not as tight as for the theta neuron.
One might think that this is a matter of the strength
or duration of inhibition, and that with stronger or
longer-lasting inhibition, tighter synchrony would be
obtained. The opposite is the case, as will be shown in
Sections 3.6.3 and 3.6.4: With stronger or longer-lasting
inhibition, synchronization may fail altogether.

3.6.2 Synchronization by a pulse of shunting inhibition
often fails

Figure 6 shows an example with shunting inhibition:
I = 12, Vsyn = −65, g = 1, τi = 10. (The arrows indicate
four values of t∗ for which trajectories and voltage
traces are plotted in Figs. 7 and 8.) Here it is evident
that a single pulse of inhibition does not have a syn-
chronizing effect at all.

A look at individual trajectories explains Fig. 6.
Figure 7 shows projections of the trajectories into the
(V, n)-plane for t∗ = 1.5, 3.0, 4.5, and 6.0, and Fig. 8
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Fig. 5 Graphs of T1 and T2, the delays between the arrival time
t∗ of the inhibitory pulse and the first and second spikes following
it, respectively, for the classical Hodgkin–Huxley model with
hyperpolarizing inhibition
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Fig. 6 Graphs of T1 and T2, the delays between the arrival time
t∗ of the inhibitory pulse and the first and second spikes fol-
lowing it, respectively, for the classical Hodgkin–Huxley model
with shunting inhibition. (Arrows indicate values of t∗ for which
trajectories and voltage traces are plotted in Figs. 7 and 8)

shows the corresponding voltage traces. The pulse of
inhibition transiently creates a weakly attracting focus,
which becomes weakly repelling as inhibition decays.
If (V, m, h, n) is in the close vicinity of the focus when
it loses its stability, the trajectory may have to follow
one or several turns of the spiral before it escapes and
another voltage spike can occur (Fig. 7). As the trajec-
tory moves along the turns of the spiral, the membrane
potential undergoes sub-threshold oscillations (Fig. 8).
The values of T1 and T2 depend sensitively on the
number of turns traced before the trajectory escapes.
Each turn requires approximately the same amount of
time, approximately 10 ms in the example of Fig. 6. This
explains the staircase-like nature of the graphs in Fig. 6.
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Fig. 7 Projections of trajectories into the (V, n)-plane of the
classical Hodgkin–Huxley neuron model for pulses with shunting
inhibition corresponding to the values of t∗ indicated by arrows
in Fig. 6
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Fig. 8 Voltage traces corresponding to the values of t∗ indicated
by arrows in Fig. 6

A particularly striking example of the same phenom-
enon is given in Fig. 9. In this example, I = 10, Vsyn =
−65, g = 1, and τi = 10. Depending on the exact value
of t∗, an inhibitory pulse can cause a very long delay,
corresponding to many sub-threshold oscillations, be-
fore spiking resumes. Note that for t∗ = 7 (right panel
of Fig. 9), the resumption of spiking occurs only after
inhibition has decayed by many orders of magnitude.
The timing of the resumption of spiking has nothing to
do with the decay time constant of inhibition here.

What distinguishes cases like that of Fig. 5 from
those of Figs. 6, 7, 8, and 9? Approximate synchro-
nization fails if some trajectories are “trapped” in the
vicinity of a focus, as shown very clearly in Fig. 7. This
suggests that synchronization should fail if and only if
the inhibitory pulse triggers, for some values of t∗, sub-
threshold oscillations, as in Figs. 8 and 9. Indeed there
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Fig. 9 A particularly striking example of failure of synchroniza-
tion. Left: Graphs of T1 and T2, the delays between the arrival
time t∗ of the inhibitory pulse and the first and second spikes
following it, respectively. Right: Voltage trace for t∗ = 7

0 10 20 30
−80

−70

−60

−50

v

t∗=2.

0 10 20 30
−80

−70

−60

−50

v

t∗=4.

0 10 20 30
−80

−70

−60

−50

t

v

t∗=6.

0 10 20 30
−80

−70

−60

−50

t

v

t∗=8.

Fig. 10 Voltage traces for the example of Fig. 5, for four different
values of t∗

are no sub-threshold oscillations in the voltage traces of
the trajectories of Fig. 5. This is demonstrated in Fig. 10,
which shows, for the same parameter values as in Fig. 5,
voltage traces for four values of t∗.

3.6.3 Synchronization by a pulse of hyperpolarizing
inhibition may fail when inhibition is too strong

For type I neurons, a stronger inhibitory pulse always
has a more strongly synchronizing effect (see (26)–
(28)). For classical Hodgkin–Huxley neurons, the op-
posite is sometimes the case: A stronger inhibitory
pulse may bring some trajectories so close to the quasi-
steady state that they must spend a long time spiraling
around it even after it becomes (weakly) repelling, as
shown in Fig. 7. This is illustrated by Fig. 11, where
the value of g, which was 1.0 in Fig. 5, has been raised
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Fig. 11 Graphs of T1 and T2, the delays between the arrival time
t∗ of the inhibitory pulse and the first and second spikes following
it, respectively. Parameters as in Fig. 5, but with g increased from
1.0 to 1.5
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to 1.5. Depending on t∗, there may or may not be
a subthreshold oscillation prior to the resumption of
spiking in this example.

3.6.4 Synchronization by a pulse of hyperpolarizing
inhibition may fail when inhibition decays
too slowly

For type I neurons, synchronization improves with in-
creasing decay time τi (see inequalities (26) and (27)
and the discussion preceding them). Again, for classi-
cal Hodgkin–Huxley neurons, the opposite can be the
case: A longer-lasting inhibitory pulse may bring some
trajectories so close to the quasi-steady state that they
must spend a considerable amount of time spiraling
away from it after it becomes repelling. This is illus-
trated by Fig. 12, where the value of τi, which was 10
in Fig. 5, has been raised to 20. Notice that doubling
τi dramatically lengthens the time interval between
the inhibitory pulse and the resumption of spiking. As
pointed out earlier, the duration of this interval is not
related to the time that it takes for inhibition to decay,
but rather to the time that it takes to escape the weakly
repelling focus after inhibition has decayed.

3.7 The river picture for classical Hodgkin–Huxley
neurons

For the classical Hodgkin–Huxley neuron, there is a
“river” just as for the theta neuron. However, there is
a crucial difference: For the theta neuron, there is no
quasi-steady state past the bifurcation, and no river.
For the Hodgkin–Huxley neuron, there is an unstable
quasi-steady state past the bifurcation, and there is an
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Fig. 12 Graphs of T1 and T2, the delays between the arrival time
t∗ of the inhibitory pulse and the first and second spikes following
it, respectively. Parameters as in Fig. 5, but with τi twice as large
(20 instead of 10)
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Fig. 13 Voltage traces for the classical Hodgkin–Huxley neuron
for I = 15, with an inhibitory pulse of strength 6e−t/10 with
reversal potential vsyn = −65. The quasi-steady state is shown in
bold. At the time indicated by the dashed vertical line, it becomes
unstable, and the oscillation amplitudes begin to increase

unstable river, i.e., a river that is exponentially stable in
backward time. Trajectories follow the unstable river
past the bifurcation, and are thereby exponentially re-
pelled from each other; the synchronization achieved
prior to the bifurcation can be undone as a result.
Figure 13 shows V as a function of t for I = 15, vsyn =
−65, with an inhibitory conductance of ge−t/τi at time t,
with g = 6 and τi = 10.

3.8 PING in E/I networks in which the E-cells
are classical Hodgkin–Huxley neurons

Here we present numerical results for networks in
which the E-cells are classical Hodgkin–Huxley neu-
rons, and the I-cells are Wang–Buzsáki neurons (Wang
and Buzsáki 1996); see Methods for details. We demon-
strate that rhythms tend to break down when inhibition
is shunting (Fig. 15), strong (Fig. 17), or long-lasting
(Fig. 18)—that is, precisely in those circumstances when
synchronization by a single inhibitory pulse does not
work well. In addition, when the rhythm breaks down,
there are sub-threshold oscillations in the membrane
potentials of those E-cells that are silenced for longer
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Fig. 14 PING rhythm in a network of excitatory classical
Hodgkin–Huxley neurons and inhibitory Wang–Buzsáki neu-
rons, without and with heterogeneity and noise (left and right
panels, respectively), when inhibition is hyperpolarizing (Vsyn,i =
−80)
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periods of time. There is therefore ample, albeit in-
direct evidence suggesting that the disruption of the
rhythms in Figs. 15, 17, and 18 is attributable to the
mechanism explained in Sections 3.6 and 3.7.

3.8.1 PING can work well when inhibition
is hyperpolarizing

Figure 14 shows results of network simulations with
Ie = 12, Vsyn,i = −80 mV, gie = 1, and τD,i = 10 ms.
The left panel of the figure shows results of a network
without any heterogeneity and noise, and the right
one shows results with heterogeneity and noise. When
inhibition is hyperpolarizing, PING works for a broad
range of parameters.

3.8.2 PING typically breaks down when inhibition
is shunting

The experiments of Fig. 15 are precisely like those of
Fig. 14, except that Vsyn,i has been raised from −80
to −65 mV, so inhibition is now shunting rather than
hyperpolarizing. In the absence of heterogeneity and
noise (left panel), there is a PING rhythm, but now
many E-cells are permanently suppressed. Which of the
E-cells are suppressed depends on nothing other than
the initialization. With heterogeneity and noise (right
panel), the rhythm in the E-cells breaks down.

Note that in the right panel of Fig. 15, one does see
a rhythm in the I-cells, even though there is none in
the E-cells. This is a purely inhibition-based rhythm:
The I-cells are excited by the (non-rhythmic) activity
of the E-cells, and synchronize as a result of I→I-
connections. To confirm this, we removed the I→I-
synapses by setting gii = 0, and saw the rhythm break
down (data not shown). In more realistic models purely
inhibition-based rhythms may be fragile for several
reasons; see Discussion.

The gamma rhythm is not improved, but rather
breaks down further, if gie is raised in the simulations
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Fig. 15 Same as Fig. 14, but with shunting, not hyperpolarizing
inhibition
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Fig. 16 Same as Fig. 14, but with reduced drive (Ie = 10 instead
of 12) and reduced inhibitory conductance (gie = 0.5 instead
of 1)

of Fig. 15. This is expected from our earlier discussion:
Strengthening gie makes it more likely for trajectories
to be trapped in the spiral.

3.8.3 An increase in the inhibitory conductance can
abolish PING even for hyperpolarizing inhibition

In spite of the simulation results shown in Fig. 11, an
increase of gie to 1.5 in the simulation of Fig. 14 does
not abolish the PING oscillation (results not shown). It
appears that here all trajectories avoid being trapped
in the spiral, even for large gie. There are, however,
other cases in which an increase in gie does abolish the
PING oscillation. For instance, Fig. 16 shows the case
Ie = 10, Vsyn,i = −80, gie = 0.5, τD,i = 10, again without
and with heterogeneity and noise (left and right panels,
respectively). (For these parameter values, many E-
cells are suppressed.)

Figure 17 shows results of the same simulation with
a four-fold increase in the inhibitory conductance, i.e.,
gie = 2. The rhythm is abolished. (Note that the time
interval simulated in Fig. 17 is of duration 400 ms, i.e.
twice as long as in the previous figures.)

3.8.4 An increase in the inhibitory decay time constant
often abolishes PING even when inhibition
is hyperpolarizing

Figure 18 shows results of a simulation similar to that of
Fig. 14, but with the decay time constant of inhibition
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Fig. 17 Same as Fig. 16, but with higher inhibitory conductance
(gie = 2)
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Fig. 18 Same as Fig. 14, but with increased decay time constant
of inhibition (τD,i = 15)

raised to τD,i = 15. Without heterogeneity and noise,
the increase in τD,i from 10 to 15 leads to a dramatic
slowdown of the rhythm. (Note that the simulated time
interval in Fig. 18 is twice as long as in Fig. 14.) With
heterogeneity and noise, the rhythm in the E-cells is lost
altogether.

3.9 Does the delay effect occur in hippocampal or
cortical pyramidal cells?

It is natural to ask to what extent the delay effect de-
scribed in this paper affects the participation of pyrami-
dal cells in the brain in rhythmic, synchronized firing. A
conclusive answer to this question is subtle and beyond
the scope of this paper, but we offer some relevant
considerations here.

We have identified several features of the classical
Hodgkin–Huxley model related to the delay effect: the
Hopf bifurcation, the presence of an unstable focus,
and subthreshold oscillations. These features are linked
with type II excitability. Lengyel et al. (2005) reported
evidence that hippocampal pyramidal cells have phase
response curves (PRCs) of type II. (See Section 4.3
for a discussion of the link between bifurcation type
and PRC type.) A number of recent studies have re-
ported that cortical pyramidal cells can switch between
type II and type I by means of cholinergic modulation
(Ermentrout et al. 2001; Jeong and Gutkin 2007; Stiefel
et al. 2008, 2009). This suggests that indeed the de-
lay effect that we have described might play a role
in gamma rhythms involving hippocampal or cortical
pyramidal cells.

There are, of course, important differences between
the classical Hodgkin–Huxley neuron and pyramidal
cells in the brain. In particular, the Hodgkin–Huxley
neuron spikes at approximately 50 Hz at the onset of
firing. Pyramidal cells in the brain, by contrast, are
usually capable of spiking at much lower frequencies,
even when they have PRCs of type II. The delay effect
that we have described occurs in the vicinity of the Hopf

bifurcation, that is, at firing rates close to those seen at
the onset of firing. We would therefore not expect to
see it in a pyramidal cell firing at gamma frequency.

On the other hand, individual pyramidal cells often
fire at low frequencies (10 Hz or even lower) while
participating in a gamma rhythm (Cunningham et al.
2003). Under such circumstances, the delay effect may
be seen in the pyramidal cells. When pyramidal cells
participate in population rhythms at gamma frequency
while spiking at much lower individual frequencies, sto-
chastic fluctuations in excitability are thought to play a
crucial role (Traub et al. 2000; Börgers et al. 2005). This
complicates the issue, but the results in Section 3.8.4
suggest that noise can in fact amplify rather than reduce
the impact of the delay effect in at least some circum-
stances.

Motivated by these considerations, we investigated
whether type II models of cortical pyramidal cells
do exhibit the delay effect near the onset of spik-
ing. Stiefel et al. (2009) recently explored how in-
trinsic mechanisms affected by acetylcholine influence
the phase response curve, using four different neu-
ronal models: the theta neuron, a simple single-
compartment Hodgkin–Huxley-like neuron, a complex
single-compartment model, and a multi-compartment
neuron. Their simple single-compartment model is
based on the pyramidal cell model by Golomb and
Amitai (1997). This model has the standard sodium
and potassium currents, a persistent sodium current,
and a slow potassium current modulated by acetyl-
choline. We found that this model shows the delay
effect for firing frequencies near 10 Hz when the re-
versal potential for shunting inhibition is near −55 mV.
The effect disappears for larger input currents, leading
to higher firing rates.

The complex single-compartment neuron model of
Stiefel et al. (2009) is an extension of the model
of Golomb and Amitai (1997): Model M- and AHP
(after-hyperpolarization) currents, IM and IAH P, were
added. Because IAH P is Ca2+-dependent, an L-type
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Fig. 19 Analogous to Fig. 6, for the complex single-compartment
pyramidal cell model of Stiefel et al.
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Ca2+-current and an exponential Ca2+ decay repre-
senting a Ca2+-buffer were included as well. Also, a
hyperpolarization-activated mixed cation (depolariz-
ing) current, Ih, and an inactivating fast K+-current,
IK A, were included. In the resulting model, we found
the delay effect to be present for intrinsic firing fre-
quencies up to about 15 Hz when the inhibitory reversal
potential is in the range between −60 and −55 mV.

For illustration, Fig. 19 shows results similar to those
of Fig. 6 for the complex single-compartment model
(with cholinergic modulation) of Stiefel et al. (2009).
We used the same parameter values as Stiefel et al.
(2009) (see caption of Fig. 3 of Stiefel et al. 2009),
the inhibitory conductance g = 2, and the inhibitory
reversal potential vsyn = −60. The results in Fig. 19
were obtained with a constant drive which led to a
firing rate of approximately 13 Hz in the absence of any
inhibitory synaptic currents. Figure 19 clearly shows
the presence of a phase-dependent delay, which would
likely disrupt synchronization by inhibition in cells with
the comparatively low level drive that we used. The
largest delay effect was obtained when the reversal
potential of the shunting inhibitory synapse was just
below the firing threshold. When the difference be-
tween the firing threshold and the reversal potential
for shunting inhibition increased, the variations in T
became smaller.

For other type II models, the delay effect can be
minor even near the Hopf bifurcation. For instance,
Börgers et al. (2005) and Jeong and Gutkin (2007)
used a reduced Traub–Miles neuron (Traub and Miles
1991; Ermentrout and Kopell 1998) with a model M-
current (Crook et al. 1998); for this model, we found
the delay effect to be very minor or absent altogether
(depending on the strength of the M-current), even
near the bifurcation.

4 Discussion

4.1 Related recent studies

We have demonstrated a mechanism that can make
synchronization of type II neurons by inhibitory pulses
fail, especially if the inhibition is shunting, strong,
and/or long-lasting. At first sight, this result appears to
be in contradiction with two other recent studies: Vida
et al. (2006) and Jeong and Gutkin (2007).

Vida et al. (2006), reported that shunting inhibition
yields more robust oscillations than hyperpolarizing
inhibition. However, the simulations of Vida et al.
(2006) were based on the Wang–Buzsáki model for

interneurons (Wang and Buzsáki 1996). This model is
of type I, and therefore our analysis does not apply
to a network consisting exclusively of Wang–Buzsáki
model neurons. However, there is evidence that at least
some fast-spiking inhibitory interneurons are of type II
(Erisir et al. 1999; Kawaguchi 1995; Tateno et al. 2004).
We note that in our simulations, the I-cells are Wang–
Buzsáki model neurons as well. In our simulations, the
rhythms break down because the E-cells, not the I-cells
are of type II.

Jeong and Gutkin (2007) found that for type II
neurons, shunting or even depolarizing GABAergic
synapses tend to lead to synchronization, whereas hy-
perpolarizing synapses tend to lead to anti-synchrony;
see Fig. 9 of Jeong and Gutkin (2007), for instance.
However, it should be noted that Jeong and Gutkin
analyzed weak coupling, whereas our analysis refers to
a strong coupling regime in which a single inhibitory
pulse can synchronize a whole population. If gamma
oscillations in fact play a role in attentional processing,
as experimental evidence suggests (Jensen et al. 2007),
one would expect that brain networks can create them
rapidly, within tens of milliseconds. In vitro recordings
(Whittington et al. 1995, Fig. 4) indicate that in fact
stimulation can trigger gamma oscillations within tens
of milliseconds. We therefore believe that strong inhi-
bition, as assumed in our study, may well be relevant
physiologically.

4.2 Similarity with elliptic bursting

The phenomenon that we have studied is analogous to
the well-known phenomenon of elliptic bursting; see,
for example, Wang and Rinzel (1995) for a review.
Our explanation has been heuristic, along the lines
set out in Wang and Rinzel (1995). A rigorous math-
ematical analysis would be outside the scope of this
paper. Elliptic bursting occurs for a neuronal oscillator
with two components, i) a fast subsystem, which in
the simplest case can be two-dimensional, and ii) a
slow variable (in the simplest case one-dimensional),
which brings the system through the silent phase to the
spiking phase and back to the silent phase (Wang and
Rinzel 1995). The silent phase is characterized by small
oscillations, initially contracting and subsequently ex-
panding in amplitude, reflecting a slow passage through
a Hopf bifurcation, as described by Baer et al. (1989) in
the context of the FitzHugh–Nagumo equation with a
slowly varying input current. A delay effect due to the
slow passage was also described in Baer et al. (1989):
The solution remains small, but undergoes a growing
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oscillation, for some time after passage through the
Hopf bifurcation of the fast subsystem.

The problem studied in this paper is very similar.
We have considered the Hodgkin–Huxley equations
with slowly decaying inhibition, resulting in a slow
passage through a Hopf bifurcation. The quasi-steady
state undergoes a transition from a stable focus to an
unstable focus. Near the unstable focus, the dynamics
are expanding, and there is a potential for undoing the
synchronization achieved during the phase when the
focus is stable. On the other hand, for trajectories that
never come very close to the focus, the inhibitory pulse
can still have a synchronizing effect.

4.3 Bifurcation type vs. PRC type

To understand the possible implications of our conclu-
sions, one needs to examine, for neurons in the brain,
which type of bifurcation is involved in the transition
from rest to spiking. This is not an easy task. However,
indications can be obtained by studying phase response
curves (PRCs), which can be measured experimentally
(Galán et al. 2005; Netoff et al. 2005; Stiefel et al.
2008; Tsubo et al. 2007). The most common kind of
PRCs describe the response of a periodically spiking
neuron to an instantaneous injection of a small amount
of positive charge. If such an injection always advances
the next spike of the neuron, the PRC is called of type
I; if the injection can advance or delay the neuron,
depending on the phase at which it occurs, the PRC is
called of type II. There appears to be an approximate
correspondence between the type of a neuronal model
from the point of view of bifurcation structure, and the
type of the PRC: Neuronal models of type I usually
have PRCs of type I, and type II models have PRCs
of type II; see Ermentrout (1996) for supporting math-
ematical arguments, valid near the bifurcation point
for type I models, and for type II models in which
the Hopf bifurcation is supercritical. Unfortunately,
there is no general theorem rigorously establishing the
correspondence, and in fact there are counterexam-
ples: There are parameters for which the Morris–Lecar
model (Morris and Lecar 1981) is of type I from the
point of view of bifurcation structure, but has a PRC
of type II (Erik Sherwood, personal communication).
Nonetheless it seems reasonable to take a PRC of type
II as an indication of likely type II behavior from the
point of view of bifurcation structure. We note that
for the classical Hodgkin–Huxley neuron, there is no
complication in this regard: The fixed point loses its
stability in a Hopf bifurcation (Hassard 1978), and the
PRC is of type II (Hansel et al. 1995, Fig. 2).

4.4 Transition from type II to type I through
cholinergic modulation

Through a combination of analysis and computation,
Ermentrout et al. (2001) have shown that down-
regulation of a slow depolarization-activated potassium
current such as the M-current IM (Brown and Adams
1980) can take the PRC of a model pyramidal cell from
type II to type I. That the M-current tends to lead
to PRCs of type II can intuitively be understood as
follows. When a positive amount of charge is injected
instantaneously, the membrane potential V jumps up-
wards. This causes a near-instantaneous rise in the
spike-generating sodium current INa, since the sodium
gates open up rapidly as V rises. However, the hyperpo-
larizing (outward) M-current rises at the same time, as
a result of the increase in V − VK. (Recall that the M-
current is a potassium current; this is why the reversal
potential VK appears here.) If the current injection
occurs early in the cycle, when INa is weak but the
M-current, due to its long decay time constant, is still
strong, the overall effect can be a decrease in the total
driving current, which can persist for a significant time
while the M-current decays, delaying the next spike.

We note in passing that the type II character of
the PRC of the classical Hodgkin–Huxley neuron in
fact arises from a similar mechanism, with the delayed
rectifier potassium current IK playing a role similar to
that played by the M-current in the previous paragraph
(Prescott et al. 2008a). Although IK is much faster
than the M-current, it is much slower than the spike-
generating sodium current INa.

The M-current is suppressed by the activation of
muscarinic acetylcholine (ACh) receptors; this is how
it gets its name (Brown and Adams 1980). Therefore
the results of Ermentrout et al. (2001) suggest that ACh
or cholinergic agonists might have the ability to turn
PRCs of pyramidal neurons from type II to type I.
This is confirmed by recent slice recordings of Stiefel
et al. (2008), see also Prescott et al. (2008b). Stiefel
et al. (2008) showed that the PRCs of pyramidal cells
in layer 2/3 of mouse visual cortex turned from type
II to type I as a result of application of the cholinergic
agonist carbachol. In a computational companion paper
(Stiefel et al. 2009), Stiefel et al. modeled three effects
of ACh: down-regulation of IM, down-regulation of
a calcium-dependent after-hyperpolarization current
IAH P, and reduction of the leak conductance. The
modeling confirmed that these changes tend to take
the PRC from type II to type I, and suggested further
that the down-regulation of IM is the crucial effect, in
agreement with the earlier results of Ermentrout et al.
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(2001) showing that IM could cause a part of the PRC
to be negative, but IAH P could not.

A link between cholinergic modulation and gamma
rhythmicity is in fact thoroughly established exper-
imentally (Buhl et al. 1998; Fisahn et al. 1998;
Rodriguez et al. 2004). Mechanisms through which
cholinergic modulation may promote gamma rhyth-
micity have been proposed by Börgers et al. (2005,
2008). In those models, cholinergic modulation enables
gamma oscillations by increasing the excitability of the
E-cells (Börgers et al. 2005) or decreasing the excitabil-
ity of the I-cells (Börgers et al. 2008). Our results
raise the question whether cholinergic modulation may
also facilitate PING rhythms by turning pyramidal cells
from type II to type I. No conclusive answer to this
question is known at this time. Our preliminary inves-
tigation of pyramidal cell models (Section 3.9) suggests
that the delay phenomenon is probably not relevant in
a parameter regime in which individual pyramidal cells
spike at gamma frequency, but may well be relevant
in a parameter regime in which individual pyramidal
cells spike at much lower frequencies. In this paper, we
have focused on PING rhythms driven by strong deter-
ministic input to the E-cells—“strong” PING rhythms
in the terminology of Börgers and Kopell (2005) (see
also Kopell et al. 2010). In a strong PING rhythm, each
E-cell fires periodically at the population frequency.
By contrast, in a “weak” PING rhythm (Börgers et al.
2005), the E-cells are driven stochastically, and each in-
dividual E-cell fires irregularly and at a mean frequency
far below that of the population rhythm. Weak PING
was proposed by Börgers et al. (2005) as a caricature of
the kainate- or carbachol-induced “persistent” gamma
oscillations seen in vitro in hippocampus and neocortex
(Buhl et al. 1998; Fisahn et al. 1998; Cunningham et al.
2003; Dickson et al. 2000). In persistent gamma oscil-
lations, each pyramidal cell fires at a mean frequency
much below the gamma frequency, and in a seemingly
random manner. The delay mechanism described here
seems likely to be capable of disrupting such rhythms.
We leave the detailed examination of this issue to a
future study. In the present paper, our main aim has
been to demonstrate and explain the general principle
that synchronization by inhibitory pulses is more robust
for cells of type I than for cells of type II.

4.5 Role of the type of the I-cells

We have not examined whether the type of the I-
cells is relevant for PING. However, we believe that it
probably is not. The PING mechanism does not depend
on any subtleties of the dynamics of the I-cells; it merely

requires that the I-cells respond promptly, by firing a
spike volley, to a spike volley of the E-cells, and remain
quiet in the absence of input from the E-cells. Most
model I-cells will serve this purpose as long as their
external drive is in the right range.

Gamma oscillations can also arise in purely in-
hibitory networks: Fast-spiking interneurons can syn-
chronize as a result of synaptic interactions among
them, with no need for the presence of excitatory
cells. This mechanism, which is often called “ING”
(Interneuronal Network Gamma) (Whittington et al.
1995, 2000) has been shown to be fragile when there is
network heterogeneity (Wang and Buzsáki 1996; White
et al. 1998), but can easily be stabilized by gap junctions
among the inhibitory cells (Kopell and Ermentrout
2004; Traub et al. 2001). Our work suggests a new
reason why the ING mechanism may be fragile: There
is evidence that at least some fast-spiking inhibitory in-
terneurons are of type II (Erisir et al. 1999; Kawaguchi
1995; Tateno et al. 2004), and, interestingly, Bartos
et al. (2007) report that inhibition among fast-spiking
interneurons tends to be shunting, not hyperpolarizing.
In fact, preliminary numerical experiments (not shown
here) suggest that ING with I-cells of type II is quite
fragile, especially when inhibition is shunting, and may
not easily be stabilized by gap junctional connections.

4.6 Recurrent excitation

We have shown that for classical Hodgkin–Huxley neu-
rons, strong pulses of inhibition can have surprising
effects. We note that recurrent excitation, which we
have not included in this paper, can have counterin-
tuitive effects for classical Hodkgin–Huxley neurons as
well, for mathematically related reasons (Drover et al.
2004).

4.7 Summary

In summary, our work shows that the mechanism of
synchronization by strong inhibitory pulses, the basis of
the PING and ING mechanisms, depends on the bifur-
cation structure of the neurons being synchronized: It
works well for type I neurons, but is much less robust
for type II neurons. This fundamental point is likely to
have important biological consequences.
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