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Abstract. One of the main problems in motor-control
research is the muscle load sharing problem, which
originates from the fact that the number of muscles
spanning a joint exceeds the number of degrees of
freedom of the joint. As a consequence, many different
possibilities exist for the activation of muscles in order to
produce a desired joint torque. Several models describing
muscle activation have been hypothesized over the last
few decades to solve this problem. This study presents
theoretical analyses of the various models and compares
the predictions of these models with new data on muscle
activation patterns for isometric contractions in various
directions. None of the existing models fitted the exper-
imental data in all aspects. The best fit was obtained by
models based on minimization of the squared sum of
muscle forces (37, ¢%, which is almost equivalent to the
Moore-Penrose pseudo-inverse solution), muscle stress ¢

2 activat] 2 .
(>_,, ;) or muscle activation o (3, o, ). Since muscle

activation patterns are different formisgmetric contrac-
tions and for movements, it could well be that other
models or optimization criteria are better suited to
describe muscle activation patterns for movements. The
results of our simulations demonstrate that the predicted
muscle activation patterns do not depend critically on the
parameters in the model. This may explain why muscle
activation patterns are highly stereotyped for all subjects
irrespective of differences between subjects in many
neuro-anatomical aspects, such as, for example, in the
physiological cross-sectional area of muscle.

1 Introduction

For most isometric forces and movements of a limb,
subjects could, in principle, use a multiplicity of possible
muscle activation patterns. One of the major problems
in motor control deals with this problem of having an
apparently redundant effector system (see, for example,
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Mussa-Ivaldi and Hogan 1991; Gielen et al. 1995). We
prefer to add the adverb ‘apparently”, since the
versatility and flexibility of limbs allow most positions
in space to be reached by multiple joint configurations
and muscle activation patterns. Yet, any disorder of the
effector system will become prominent in one way or
another, most obviously during complex movements.

The apparent redundancy becomes evident in several
aspects. One aspect concerns the relatively large number
of joints which allows an infinite number of possible
movement trajectories for the limb to reach a target
position. Yet, humans show highly stereotyped move-
ment trajectories and this aspect has received much at-
tention recently (see, for example, Sabes and Jordan
1997; Harris and Wolpert 1998).

In this manuscript, we will focus upon another aspect
of apparent redundancy, i.e. the muscle load sharing
problem which is related to the fact that the number of
muscles acting across a joint exceeds the number of
degrees of freedom of the joint. For example, the human
elbow has two degrees of freedom (elbow flexion/ex-
tension and supination/pronation) and there are at least
seven muscles acting across the elbow joint. The rela-
tively large number of muscles allows an infinite number
of possible muscle activation patterns for the same joint
torque. Yet, subjects tend to reveal the same activation
patterns for a given task (e.g. van Zuylen et al. 1988a;
Tillery et al. 1995; van Bolhuis et al. 1998).

When muscles are activated to produce force, the
resulting joint torques 7; are related to the muscle forces
¢, by the following equation

T=4G)¢ . (1)

Here T € R" is a vector representing the (n) joint
torques and ¢ € R™ is a vector representing the (m)
muscle forces. The component 4,;(§) of matrix A(g)
represents the moment arm of muscle j with respect to
the joint i for a limb configuration for joint angles
g € R". The fact that there are more muscles than
degrees of freedom (m > n) means that a particular joint
torque component 7; can be produced by a large number
of muscle activation patterns (¢). The underlying



250

principles for the selection of one solution out of the
many possible activation patterns have been the topic of
many studies in the last decades (e.g. Yeo 1976;
Crowninshield and Brand 1981; Happee 1992; Collins
1995). The approaches to solve this problem can roughly
be subdivided into two groups.

The first type of approach tries to find an inverse of
the matrix 4 in Eq. (1). The fact that 4 has more col-
umns than rows means that the regular inverse A~ of 4
does not exist. However, it is possible to define a so-
called pseudoinverse A" which obeys the equation

AT=4¢ . 2)

Klein and Huang (1983) showed that, for an underde-
termined problem, the most simple pseudoinverse, the
so-called Moore-Penrose pseudoinverse which satisfies
Eq. (2), is given by

At =474 3)

where A7 refers to the transpose of matrix 4. The use of
the Moore-Penrose pseudomverse leads to solutions db
with the minimal norm ", ¢2, where the index m runs
over all muscles. In Sect. 2 we will discuss the pseudo-
inverses in more detail.

In addition to approaches using pseudoinverses, ap-
proaches of a more phenomenological nature have been
proposed. These approaches hypothesize new con-
straints such as minimization of the total muscle force
(Yeo 1976) or minimization of the total metabolic en-
ergy consumption (Happee 1992), in addition to the n
constraints stated in Eq. (1) to resolve the redundancy.

As explained above, several approaches have been
proposed to explain or to describe muscle activation
patterns that have been observed in various experiments.
In many studies, the predictions of a single model were
compared with data obtained in one particular experi-
mental paradigm, which was usually different for different
models (see, for example, Yeo 1976; Crowninshield and
Brand 1981; Happee 1992; Doorenbosch and van Ingen
Schenau 1995; Prilutsky and Gregor 1997). Due to the
different experimental paradigms and data sets the results
of these studies do not allow the performance of the var-
ious models to be compared with each other, which makes
it hard to verify or falsify the predictions of various
models on the same data set. The aim of this study was to
compare various models by calculating the predicted
muscle-force distributions of human arm muscles for each
model from the same set of experimental data. These
predicted muscle activations were compared with the
electromyographic (EMG) activity measured in various
arm muscles. The results suggest that models minimizing a
function of some muscle property, such as muscle force,
stress or activation, provide the best description of the
isometric activation patterns.

2 Theory

In this section we will first discuss models using
pseudoinverses. Subsequently, models optimizing differ-
ent objective functions will be considered.

2.1 “Pseudoinverse’ models

As explained by Klein and Huang (1983), a pseudoin-
verse of a matrix 4 is most often defined as a matrix 4"
satisfying the equation

AATA =4 . (4)

Besides satisfying Eq. (4), the Moore-Penrose pseudo-
inverse (Eq. 3) also satisfies the equations 4T44™ = 4%,
(ATA)" =ATA4 and (AA")" = AA", where the super-
script * indicates the complex conjugate transpose. The
Moore-Penrose pseudoinverse (which will be referred to
as the MP model) finds the vector (]5 which has the norm
|¢nuu| = 0 in the null space of matrix 4. This means that
any solution glven by the MP model corresponds to a
solution with minimum norm (3, o ) (see Klein and
Huang 1983).

A well known problem with the Moore-Penrose
pseudoinverse is that it is non-integrable. This means
that integration of muscle force along a closed path in
torque space will, in general, lead to non-zero results

(§ d)MP T)dT +# 0). This implies that the Moore-Penrose

pseudomverse predicts that the muscle activation pat-
tern depends on previous activations. Klein and Huang
(1983) addressed the problem of non-integrability for
the case of a kinematically redundant manipulator by
simulating repeated closed-loop movement trajectories
of the end effector. Their study demonstrated that the
simulated joint angle geometries are different for the
same position of the end effector in subsequent cycles of
the trajectory. Since history-dependent joint angle con-
figurations have not been reported in the literature, the
MP model was rejected for the kinematic redundancy
problem. When the MP model is used for the muscle
load sharing problem, relating joint torques to muscle
forces, it will predict a hysteresis for muscle activations
for repeated changes in isometric force at the end ef-
fector. For muscle activations, hysteresis effects have
been demonstrated for periodic force tasks (Entyre et al.
1987; Entyre and Kelly 1989; Kostyukov 1998), which
was the reason for us to take the MP model into con-
sideration for this paper.

2.1.1 Derivation of a class of integrable pseudoinverses
In 1991, Mussa-Ivaldi and Hogan derived a class of
integrable pseudoinverses for impedance control by
kinematically redundant manipulators. Similar to their
derivation, we will now present a derivation for
integrable pseudoinverses relating a set of joint torques
to a set of muscle forces in a unique way.

As illustrated by Fig. 1, a set of infinitesimal changes
in joint angle (dg) can be related to a set of infinitesimal
changes in joint torque (d7) by equation

dT =Rdj & dg =R 'dT | (5)

where R (R7!) is the (inverse of the) joint-stiffness
matrix. When R is negative definite, the system will be
stable and the existence of an inverse of R (R7') is
guaranteed (see Sect. 2.1.2). Similarly, the corresponding

set of infinitesimal changes in muscle length (d;f) can be
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Fig. 1. Schematical representation of a network indicating the
relations between infinitesimal changes in joint torque (d7), joint
angle (dg) and muscle force (d¢) muscle length (d}) (see also Mussa-
Ivaldi et al. 1988)

related to a set of infinitesimal changes in muscle force
(dg) by

dp=Kdiedi=K"d¢ , (6)

where K (K~') is the (inverse of the) muscle-stiffness
matrix. Since K is a diagonal matrix with non-zero
diagonal elements, the existence of the inverse K~! of K
is guaranteed. Since the moment arm of a muscle can be
written as the derivative of muscle length with respect to
joint angle, we obtain

ATdg =d7 , (7)

where A7 is the transpose of the matrix containing the
moment arms of the muscles acting over the joints.
Using Eq. (5) and Eq. (6), Eq. (7) can be transformed
into another basis by

d¢) <

The product of matrices KATR™! denotes the new
pseudoinverse. From Eq. (1), we obtain

AT(RYAT) = (K~ (KATR™NAT = d¢ . (8)

M M
A% =" Aimdd, + Y ddind,, , ©)
m=1 m=1

where the summation is over all M muscles. Mussa-
Ivaldi and Hogan (1991) showed that non-integrability
of the pseudoinverse arises from the fact that often only
the first term of Eq. (9) is taken into consideration,
neglecting the change of the muscles moment arm (dA4).
Since the moment arms A4;; depend on the joint angles,
the second term of Eq. (9) can be rewritten as

Lol B i)

=> Tiydg,=T,dg . (10)

Substitution of Eq. (10) in Eq. (9) and using Eqgs. (6)
and (7) results in

dT =A4d¢ +Idg= (4K AT +T)d7 . (11)

251

In Eq. (11), the term in parentheses represents the joint
stiffness (R). Substituting this joint stiffness into the
right-hand side of Eq. (8) results in the description of the
integrable pseudoinverse for stiffness control as given in
the following equation

t—KAT(4KAT +T)"

(12)
Equation (12) gives the most general expression for a
generalized pseudoinverse (Foster 1961; Strand and
Westwater 1968).

The model using the pseudoinverse of Eq. (12) will be
referred to in this paper as the passive-motion paradigm
(PMP; Mussa-Ivaldi et al. 1988) and corresponds to
minimization of the expression quT K~ lqu (Ben-Israel
and Greville 1974; Mussa-Ivaldi and Hogan 1991).

Using Eq. (6), we can write this expression as d(ﬁT d7,
which is related to the amount of work produced by a
muscle for an infinitesimal change of muscle length.
Therefore, this paradigm is related to the principle of
minimization of total work delivered by all muscles,
proposed by Gielen and van Ingen Schenau (1992). A
difference, however, between the PMP model and the
principle stated by Gielen and van Ingen Schenau (1992)
is that the latter can only be used for movements,
whereas the PMP model can also be used in isometric
situations by assuming virtual passive displacements of
the end point near an equilibrium position of minimum
potential energy.

2.1.2 Stability constraints

Stability of a limb posture requires that a change in joint
angle due to an external perturbation induces a joint
torque acting against the perturbation. Therefore, in
order to guarantee stability in the joints, all eigenvalues
of the joint stiffness matrix R (see Egs. 5 and 11) have to
be negative. This means that R has to be negative definite
(see Ogata 1970). Dornay et al. (1993) showed that in
order to maintain stability in the posture of a limb, the
following equation should be satisfied for all joints i and
j of the limb:

Fij + Z(:um,i /“‘m,ij) < 0. (13)

where p,,; = 04, /0q; denotes the moment arm of muscle
m with respect to joint i.

Since muscle can only pull, not push, the sign of
muscle force ¢,, is defined negative. Then muscle stiff-
ness K,, = 572 of muscle m is negative too for all m and
the product f,, il ;K < 0 fori=j. For mono-articular
muscles, we have the equality w,, 1, K, K = =0 fori#j
and i1, ;K = 112,;Kn <0 for i = j. The bi-articular
muscles spanning the elbow and shoulder joints con-
tribute to either flexion of both joints (biceps) or to ex-
tension of both joints (m. triceps longum). This means
that w, ; and p,, ; will have equal sign and therefore their
product will always be positive. So, for all arm muscles,
the second term in Eq. (13) is always smaller than or
equal to zero, which is favourable for stability.
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From Eq.10 it follows that I;; defined by
> {[(0%%n)/(0q:0q;)]$,} is proportional to muscle
force ¢,,, which is always negative since muscles pull
and do not push. This means that when 82/1,,,/861,»6%, ie.
the second derivative of the length of muscle m with
respect to joint angles ¢; and g;, is negative for a par-
ticular muscle, the term (0%4,/0q;0q;)¢,, will become
positive. Since I';; is the summation of these terms over
all muscles, I';; could become positive. This could lead
to violation of Eq. (13) and, therefore, to joint insta-
bility. Generally, in order to maintain stability in the
joints, an increase of a positive value of I';; due to an
increase of muscle force should always be smaller than
the corresponding increase of the absolute value of the
negative second term in Eq. (13) due to an increase in
muscle stiffness. The way the motor-control system
deals with the above-mentioned problem has been a
topic of several studies (Dornay et al. 1993; Shadmehr
1993) and will be discussed in more detail in the Dis-
cussion.

2.2 “Optimization” models

In the last 20 years, several optimization criteria have
been suggested to reduce the number of possible
solutions of Eq. (1) to one unique solution. Most of
these optimization criteria suggested a minimization of
the sum over all muscles of some muscle-related
property, for instance muscle force, muscle stress or
muscle activation, or the amount of metabolic energy
consumed by a muscle, under the constraint that all
muscles together produce the required joint torques.
Therefore, the general cost function to be minimized is

C($) =D _fh($)+MT - 4¢) ,
where f(¢) stands for muscle force, muscle stress,
muscle activation or metabolic energy consumption
and where A is a so-called Lagrange multiplier.

In this section we will first discuss the various sug-
gested properties. Then we will discuss the effects of
minimizing the sum of quadratic or third order powers

of these quantities. Thirdly, we will briefly mention some
other optimization principles.

2.2.1 Total muscle force

The most simple criterion is the minimization of the
total sum_of muscle forces (3, ¢,,) under the constraint
T =A4(9)¢ (e.g. Yeo 1976; Kaufman et al. 1991). With
this model, the distribution of muscle forces is such that
the muscles with the largest moment arms are preferably
activated, since this gives the largest joint torques T for
the smallest muscle forces ¢.

2.2.2 Total muscle stress

Cholewicky et al. (1995) and Collins (1995) suggested
the minimization of the total amount of muscle stress
(3, 0m). Muscle stress (o) is defined as the amount of
tensile muscle force (¢) per unit of physiological cross-

sectional area (PCSA) of the muscle. Therefore, under
isometric conditions, muscle stress is a measure of the
amount of muscle activation.

2.2.3 Total muscle activation

The amount of muscle force for a given muscle
activation also depends on the muscle length and on
the shortening or lengthening velocity of the muscle.
Therefore, in order to obtain a measure for the amount
of muscle activation («), taking into account limb
position and movement velocity, one has to correct for
the effects of the force-length and force-velocity rela-
tionship of muscles. In Eq. (14), « is a measure for the
amount of muscle activation in units of N/cm?. FL is a
factor accounting for the force-length relationship of
muscles and FV is a factor accounting for the force-
velocity relationship of muscles. The product in paren-
theses equals muscle stress (o).

¢ = («-FL-FV)-PCSA . (14)

When FL and FV are set to the value 1 (which implies
isometric contractions), minimization of the total
amount of muscle activation (3, a,) is identical to
minimization of the total amount of muscle stress.

2.2.4 Total muscle metabolic energy consumption
Happee (1992) suggested a minimization of the amount
of metabolic energy consumption of muscles. He
suggested that the amount of metabolic energy con-
sumption of a muscle is the product of the amount of
muscle activation (¢,,) and the muscle volume, where
muscle volume is given by the product of muscle length
Am and the cross-sectional area PCSA,, of the muscle. By
this definition, the metabolic energy consumption to be
minimized is 3%, 2,,PCSA,,0,,.

2.2.5 Nomenclature

For the remainder of the paper, we will refer to the
minimization of total muscle force as model F, the min-
imization of total muscle stress as model S, the minimi-
zation of total muscle activation as model A and to the
minimization of the total amount of metabolic energy
consumption as model E.

2.2.6 The effect of minimizing the sum of quadratic

or third-order power terms

In the models discussed so far, a linear sum of the muscle
properties is minimized (3, (muscle property,,)”,
p=1). Minimizing a linear sum (for p = 1) leads to
predictions of muscle-force distributions, where the
contribution of one “most effective” muscle is maximal
and where the number of activated muscles is minimal.
For instance, for minimization of total muscle force, the
muscle with the largest moment arm will be the most
effective muscle, as already explained before.

In addition to minimizing the linear sum of the
above-mentioned quantities, it has also been suggested
to minimize the sum of squares (p =2) (e.g. van der
Helm 1991; Karlson 1992), or the sum of the third-order
powers (p =3) (e.g. Crowninshield and Brand 1981).
Taking p > 1 favours muscle-force distributions where



all muscles contribute a little, rather than one muscle
taking all the load. This can be understood from the
following. Since ¥ < x for 0 <x < 1 and p > 1, it may
be more advantageous to activate several muscles a little
with activation y,, rather than one single muscle with
activation x. Although not all muscles will be equally
effective such that ) v, >x, the sum ) 1» may be
smaller than x” since y,, < x for all m. Therefore, po-
tential synergistic muscles tend to be activated together
and less differentiation with respect to the anatomical
parameters A, PCSA, FL, FV or 4 will occur. Models
with p > 2 will strive for extensive synergies in muscle
activation in order to keep the contributions of each
single muscle as small as possible.

2.3 Other models

In addition to models minimizing the sum over all
muscles of some muscle-related property, also models
minimizing macroscopic quantities, such as total fatigue,
have been suggested (e.g. Dul et al. 1984). Minimizing
total fatigue of the system is equivalent to maximizing
the minimal endurance time of a muscle to produce a
force. Since endurance time is a continuously decreasing
function of muscle stress, this is identical to minimizing
the maximal muscle stress over all muscles. However, as
was shown by Dul et al. (1984) and Happee (1992), this
model does not always reduce the number of solutions to
one unique solution. For this reason we did not consider
this model in this study.

3 Methods
3.1 Simulation methods

To obtain a better insight in the extent to which various
minimization principles lead to different predictions,
the distribution of muscle forces as a function of the
direction of isometric force at the wrist was calculated
for each minimization principle. For this purpose, we
defined six groups of muscles [mono-articular elbow
flexors (MEF) and extensors (MEE), mono-articular
shoulder flexors (MSF) and extensors (MSE), bi-
articular flexors (BIF) and extensors (BIE)]. All simu-
lations were performed for these six muscle groups. By
forming muscle groups, the assumption is made that
the muscles within each group are activated propor-
tionally with a constant ratio under all conditions of
the experimental paradigm. In Sect. 5 the question
whether or not this assumption is valid will be
discussed.

For each muscle group, an effective value for the
anatomical parameters was calculated The effective
value PCSA. was defined as the sum Z , PCSA,, over
all muscles in the muscle group. The effective moment
arm and muscle length of a muscle group were mean
values, averaged over all muscles of the group, each
weighted by the factor PCSA,,/PCSA.s. For each
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muscle group, the effective FL relationship was esti-
mated with the FL relationship for sarcomeres given by
van Zuylen et al. (1988b). This resulted in the following
relationship of FL as a function of joint angle

FL=1+40.78 x [(¢; — gi0) /4i0], 9i < 4qip
FL=1, gi0 < q; < 1.06g;0
FL=1-1.75x [(q,- — 1.06q,-,0)/q,4?0], 1.06gi0 <gq; ,

where ¢; represents the relevant joint angle. g;0 is the
joint angle corresponding to the rest length of the muscle
group. For each group, ¢;o was chosen to be in the
middle of the total physiological range (—45° to 100° for
shoulder flexion/extension in a horizontal plane at
shoulder height and 0° to 140° for elbow flexion/
extension) For the bi-articular muscles, ¢; was replaced
by g7 +¢;, and g0 by ¢7 + g}, where the superscripts e
and s represent the elbow and shoulder ]omt respec-
tively. The values of FV were all set to one, since only
simulations for isometric contractions were done. Esti-
mates of the derivatives of the moment arms with respect
to joint angle, which occur in the calculation of the term
I' in Eq. (10), were obtained using data from Pigeon
et al. (1996). The effective values for all anatomical
parameters used in this study are presented in Table 1.

We have to keep in mind that the parameter values
used in our simulations are taken from the literature and
usually represent average values of data obtained from
several subjects. Moreover, since effective values were
calculated for the parameters, relatively large uncer-
tainties in these values can be expected. By varying the
parameter values one by one by 25% for each model, it
was possible to investigate the effects of the uncertainties
in the parameter values on the predictions of each
model.

Simulations using the optimization models F, S, A
and E were performed with the CONSTR-routine from
MATLAB, which uses a sequential quadratic program-
ming method (Branch and Grace 1996) Simulations
of models MP and PMP were done using a different
iterative _ procedure. In N steps of  size AT
(AT = (T — Ty)/N) a torque distribution (T) was _built
up from the starting point Ty = 0. For each AT the
corresponding Ad) was calculated using A" of Egs. (3)
and (12) for the MP and PMP models, respectively, and
¢ was adjusted by ¢ = Do + L¢p. For model PMP,
muscle stiffness was chosen to increase linearly with
muscle force (K,, = ¢¢,,), where ¢ is a constant which
was set to 20 or higher in the simulations. To prevent
zero muscle stiffness, which leads to a matrix 4" with
zeros only, the starting point for qb was chosen to be
(]50 —0.0001N. The direction of muscle force was
chosen negative, since muscles can only pull. The choice
of the starting point (¢,) did not have an effect on the
results of the simulations. For model PMP, the value of
K,,, and therefore the value of AT, was adjusted at each
iteration using Eq. (12) and the above-mentioned
equation for K,,. This was different for model MP, where
the value of A" remained constant during the whole it-
eration process.
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Table 1. Literature values used for the parameters in the models in this study. The first row indicates the muscle groups taken into
consideration. The abbreviations for the muscle groups refer to mono-articular elbowflexors (M EF) and extensors (M EE), mono-articular
shoulder flexors (MSF) and extensors (MSE), bi-articular flexors (BIF) and extensors (BIE). The muscle group MEF consisted of bra-
chioradialis (BRD) and brachialis (BRA), MEE of triceps caput lateralis (TLA) and triceps caput medialis (TME) and MSF of deltoideus
anterior (DAN) and pectoralis (PEC). The second and third rows present the muscle lengths (1) and the physiological cross-sectional areas
(PCSA) of the muscle groups, respectively. The fourth and fifth rows give the moment arms of the muscles with respect to the shoulder (y;)
and elbow (u,) joint, respectively. The sixth and seventh rows give the estimates of the derivatives of shoulder moment arms to shoulder
rotation (dyu, /dg;) and of elbow moment arms to elbow rotation (du,/dg»), respectively. The last rows give the correction factor (FL) for
the force-length relation. Data was obtained from Wood et al. (1989) for rows two and three, from An et al. (1981) for row three, from
Pigeon et al. (1996) for rows four, five, six and seven and from van Zuylen et al. (1988) for row eight

Elbow angle MEF MEE BIF BIE MSF MSE
A (cm) 17 23 32 31 19 19
PCSA (cm?) 9.4 10 3.9 5.9 9.7 3.9
1 (cm) - - 2.9 2.5 43 7.9
1 (cm) 60 2.8 22 2.9 22 - -
90 -3.6 1.9 -4.2 1.9 - -
120 -3.8 1.6 -4.8 1.6 - -
du,/dg; (cm/rad) 0 0 1 -1 1 -1
du,/dg> (cm/rad) 60 ~0.1 ~0.1 ~0.1 ~0.1 0 0
90 0.1 0.1 0.1 0.1 0 0
120 0.5 0.1 0.5 0.10 0 0
FL 60 0.72 0.48 0.94 0.97 1 1
90 0.89 0.85 1 0.98 1 1
120 0.98 0.94 0.87 0.90 1 1

For models with p =1, two possible scenarios of
muscle-force distributions can be observed. To illustrate
this, Fig. 2 shows three schematical drawings of a sub-
ject producing a constant force F at the wrist in a di-
rection of approximately 240°. The solid and dashed
circles give polar plots of the flexion torque in elbow and
shoulder, respectively, as a function of the direction of
force F. Therefore, OE gives the amount of elbow torque
and OS the amount of shoulder torque corresponding to
the force F in the direction of 240°. The first scenario of
how the muscle forces may be distributed could be such
that the mono-articular muscle groups will produce the
total torques with the contribution of the bi-articular
muscles set to zero. In this scenario, the distribution of
muscle forces as a function of the direction of a force F
for the mono-articular elbow and shoulder flexor groups
will be equal to the solid and dashed circles, respectively,
in Fig. 2. A second scenario could be that the bi-artic-
ular muscles are activated such that their contributions
to joint torque are maximal. In that case, the contribu-
tion of the bi-articular muscle, will be equal to the elbow
or shoulder torque, whichever is smallest. In the

20

20

180~

situation of Fig. 2, this is the elbow torque (OE). The
remaining shoulder torque (ES) will then be contributed
by the mono-articular shoulder flexor group. This sce-
nario will lead to muscle-force distributions as indicated
by the thick solid lines in Fig. 2. The thick solid lines in
Fig. 2A, B and C give polar representations as a func-
tion of the force direction, of the muscle forces of the
mono-articular elbow-flexor group, the bi-articular
flexor group and the mono-articular shoulder-flexor
group, respectively.

3.2 Experimental procedure

The experimental procedures used in this study have
been approved by the medical/ethical committee of the
University of Nijmegen and were set up in accordance
with the ethical standards laid down in the 1964
Declaration of Helsinki. All subjects tested (n = 7) gave
their informed consent prior to each experiment. None
of the subjects had any known history of neurological or
musculoskeletal disorder.

90

Fig. 2. A Schematical drawing of a subject pro-
ducing a force at the wrist in a direction of
approximately 240°. The thin solid and dashed
circles are polar representations of the elbow and
shoulder torque as function of the direction of the
externally produced forces, respectively. The thick
solid line indicates the muscle-force distribution of
the mono-articular elbow-flexor muscle as a
function of force direction for the second activa-
tion scenario. B and C give similar representations
as A for the bi-articular flexor muscle and the
mono-articular shoulder-flexor muscle, respectively




In order to compare the simulated activation patterns
with measured muscle-activation patterns, electromyo-
graphic activity (EMG) was measured from seven arm
muscles; two mono-articular elbow flexors [brachialis
(BRA) and brachioradialis (BRD) muscle], one mono-
articular elbow extensor [triceps lateralis (TLA)] one bi-
articular flexor [biceps brachii (BIB)], one bi-articular
extensor [triceps longum (TLO)], one mono-articular
shoulder flexor [deltoideus anterior (DAN)] and one
mono-articular shoulder extensor [deltoideus posterior
(DPO)]. Since EMG signals of the BRA and the TLA
could not be measured with surface electrodes without
an acceptable amount of cross-talk, EMG signals from
these muscles were obtained with intra-muscular wire
electrodes. For details about the procedure used, see van
Bolhuis and Gielen (1997).

The upper arm was horizontal along the line passing
through the shoulders. The arm was hanging in a long
sling, attached to the ceiling, such that the arm was al-
ways in a horizontal plane at shoulder height without
any effort being exerted by the subject. Subjects had to
exert an isometric force of 20 N at the wrist in 16
equidistant directions in the horizontal plane. Isometric
contractions were repeated twice for each direction.

Since the ratio between elbow and shoulder torques
for a specific force at the wrist varies as a function of the
elbow angle, a change in the torque contributions of the
various muscles as a function of elbow angle is expected.
Therefore, we measured the activation patterns as a
function of force direction for three different arm posi-
tions at elbow angles of 60, 90 and 120°. The position of
the wrist is defined as the origin. The positive x-axis is
defined along the forearm in the direction of the elbow.
For details of the experimental set-up, see van
Bolhuis et al. (1998) (third protocol) and Fig. 3.

In order to obtain an indication of the ratio between
the forces of 20 N in the various directions and the
maximum voluntary forces which could be produced in
these directions by the subjects, subjects were instructed
to produce a maximal force in four different directions-
Eq. 0, 90, 180 and 270°. Mean values for the maximal
force were near 100 N (for 0° and 180°) and 200 N (for
90° and 270°). This means that the forces of 20 N, used in
our experiment, were approximately 10-20% of the
maximal voluntary contractions. In the range of forces
between 0% and 20%, a linear relationship between the
amount of EMG activity and muscle force was assumed.
With this assumption, a comparison between the pre-
dicted muscle-force distributions and the measured ac-
tivation patterns as a function of force direction and
elbow angle is valid (see van Bolhuis and Gielen 1997).

For each muscle, the muscle activation was normal-
ized with respect to the maximal amount of EMG ac-
tivity measured in all force directions and elbow angles.
The same normalization was applied to the results of the
simulations. A quantitative measure for the goodness of
fit between data and simulations was obtained by cal-
culating the normalized correlation coefficient between
the data and the simulations for each subject. Averaging
over all subjects resulted in a mean value for the nor-
malized correlation coefficient.
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Fig. 3. Drawing of a subject in the experimental setup

4 Results

We will first focus on the differences between the
predictions of the various models. For this we will focus
on the predicted muscle-force distributions for an arm
posture with an elbow angle of 90°. Subsequently, the
differences in the predictions as a function of arm
posture will be discussed, and after that we will compare
the measured EMG data with the predicted muscle-force
distributions for each arm posture. Finally, we will
discuss the effects of the uncertainties in the parameter
values on the model predictions.

4.1 Differences between the models

The dashed lines in Fig. 4 are polar representations of
the predicted muscle forces as a function of force
direction for the six muscle groups, calculated with
model MP for an arm posture with an elbow angle of
90°. The muscle activation patterns are circular, indi-
cating that muscle activation is proportional to the inner
product between external force and a muscle-specific
preferred direction (see e.g. Georgopoulos et al. 1986).
Note, that coactivation of antagonistic muscles is not
predicted.

The solid lines in Fig. 4 give polar representations of
the predicted muscle forces, as a function of force di-
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Fig. 4. Polar plots of the predicted distributions of muscle force as a
function of force direction using model MP (thick dashed lines) and
model PMP (thin solid lines). The elbow angle was 90°. The position of
the wrist was assumed to be at the origin and the forearm was along
the positive x-axis. The abbreviations indicate the six groups, as in the
Methods section

rection, as predicted by model PMP. A comparison of
the shape of the patterns as a function of the force di-
rection to those shown by the thick lines in Fig. 2 shows
that the predictions of model PMP are close to the
muscle activations predicted by the second activation
scenario described in Sect. 3, in which the joint torques
are generated both by the bi-articular and mono-artic-
ular muscle groups.

In order to illustrate the effect of the exponent p for
the models F, S, A, and E, we will first show the pre-
dictions for the minimization of total muscle force for
two artificial muscle configurations. In the first toy
model, we consider a two-joint system with mono-ar-
ticular and bi-articular muscles, all with the same mo-
ment arms and with the same maximal force for each
muscle. The mechanical action of the muscles is chosen
such that the orientations of the muscle vectors in the
two-dimensional joint space are equidistantly distributed
(see upper left inset in Fig. 5). For p = 1, minimization
of the total muscle force favours the muscle with the
most favourable moment arm. For a force in the direc-
tion 90°, this is the muscle with the mechanical action in
the direction of 90°. Therefore, only one muscle is acti-
vated when the torque coincides with the torque con-
tribution of a muscle. When the desired torque is in the
middle between the torque contributions of two muscles,
both will be activated equally if the mechanical advan-
tage is the same. This gives rise to the activation patterns
shown in Fig. 5A. For muscles with different pulling
directions (as shown in the lower left inset of Fig. 5), the
activations change accordingly, as illustrated in Fig. 5D.
The basic results remain the same. When the direction of
force coincides with the optimal torque direction of a
muscle, that single muscle will be activated. When the
direction of force is in the middle of the optimal torque
contributions of two muscles, both muscles are activated
by the same amount.

Fig. 5. Predictions of muscle activation
patterns for isometric force in various
directions for a model based on minimiza-
tion of muscle force (3, f7) with p = 1 (left
column), p = 2 (middle column), and p = 3
(right column) for two muscle configura-
tions (upper and lower row). The panels in
the upper row present data for muscles with
torque directions equidistantly distributed in

the two-dimensional torque space (see inset).
In both models all muscles have the same
moment arms and the same maximal force

fmax




For p = 2, the activation patterns always have a cir-
cular shape (see Fig. 5B and E), indicating that the ac-
tivation of a muscle is proportional to the inner product
between the torque direction and the torque action of
the muscle, qualitatively similarly to the coding of
movement direction by motocortical cells (Georgopou-
los et al. 1986). Changing the muscle configuration has
no effect on the circular shape of the muscle activation
patterns but only affects their size.

For p =3, the muscle activation patterns become
widely tuned, favouring a synergy of muscle activation.
This shape is not affected by the muscle configuration.
Changing the muscle configuration only affects the size
of the muscle activation patterns, as it did for p = 2.

With this information, it will be easier to understand
the predictions of muscle activation for the various
models.

Figure 6 shows the predicted activation patterns for
the models F, S, A and E with p=1 and p = 3. For
p = 1, the muscle activation pattern is similar to those
predicted by the second activation scenario, as explained
in the Methods (see thick lines in Fig. 2), for models F
and E for all force directions, and for model A only for
forces in extension directions. Model S, for all force
directions, and model A, only for forces in flexion di-
rections, predict muscle-force distributions for which the
joint torques are produced by the mono-articular mus-
cles with zero contribution of the bi-articular muscles.
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This corresponds to the predictions by the first activa-
tion scenario, as described in the Methods.

For p =2, all “optimization models” (F, S, A and
E) lead to circular patterns as observed for model MP.
Therefore, the results of these simulations are not
shown. For p =3, Fig. 6 shows polar representations
of the muscle-force distributions for the model which
minimizes the sum of muscle activations (model A)
with p =3. The muscle activation patterns reveal a
broader tuning than those shown for p=1. As ex-
plained in Sect. 2.2.6, it is more advantageous to acti-
vate more muscles by a small amount for p = 3, which
leads to a broad tuning as a function of the force di-
rection. For the other models (models F, S and E) the
predicted activation patterns were very similar to those
shown for model A.

Figure 7A—C gives the predicted muscle-force distri-
butions for the MEE group for three different elbow
angles for model E for p =1 (Fig. 7A), p = 2 (Fig. 7B)
and p = 3 (Fig. 7C), respectively. The thick solid, dashed
and thin solid lines give polar representations of the
predicted muscle forces as a function of force direction
for elbow angles of 60, 90 and 120°, respectively. For

p =1 (Fig. 7A), the difference between the three distri-

butions is much larger than that for p =2 (Fig. 7B) or

p =13 (Fig. 7C). Similar results were also obtained for

the mono-articular elbow flexors and for models F and
A (for forces in extension directions).

Fig. 6. Polar plots of the simulated activation patterns as a
function of force direction using models F (solid), S (dotted), A
(dashed) and E (dashed-dotted) with p = 1, for an arm posture at
an elbow angle of 90°. The predictions by models F and E
overlap for mono-articular elbou flexor (MEF), mono-articular
shoulder flexor (MSF) and mono-articular shoulder extensor
(MSE). For MSF also the predictions by models S and A
overlap (dashed-dotted circle). For models S and A the

contributions of bi- articular flexor (BIF) and bi-articular
extensor (BIE) are zero. The contribution of BIE is also zero
for model S. Polar plots of the simulated activation patterns as a
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function of force direction using model A with p =3



Fig. 7. A Polar plots of the simulated muscle-force distributions as a
function of force direction for model F with p = 1. The thick, dashed
and thin lines correspond to elbow angles of 60, 90 and 120°,
respectively. B and C give similar representations as A for p = 2 and
p = 3, respectively

4.2 Comparison between simulations
and measured EMG data

Figure 8 shows polar plots of the averaged EMG
activity over all subjects as a function of the isometric
force direction for various muscles. As indicated sche-
matically in the upper right corner, Fig. 8A—C presents
data measured for arm postures with elbow angles of 60,
90 and 120°, respectively. The thick lines represent the
mean EMG activity and the thin lines indicate the mean
activity plus or minus the standard deviation. Each
muscle reveals a preferred force direction for which it
shows maximal activation. The EMG activity patterns
of the mono-articular elbow flexors BRA and BRD are
shown in the upper left corners of Fig. 8A—C. The shape
and size of the activation as a function of force direction
is very similar for these two muscles for each elbow joint
angle. The shape and size of the mean EMG acivity and
the thin lines indicate the mean activity plus or minus the
standard deviation.

A comparison of Fig. 8A, B and C shows that the
activation patterns of the mono-articular elbow muscles
(BRA, BRD and TLA) reveal only minor changes as a
function of arm posture, whereas the activation of the
muscles spanning the shoulder joint (BIB, TLO, DAN
and DPO) changes quite significantly. A shift of the
preferred direction can be seen for DAN and DPO, and
an increase in the overall size of the patterns for arm
postures with increasing elbow angle can be seen for
BIB, TLO, DAN and DPO.

A qualitative comparison of the experimental data
with the model predictions can be performed by focus-
sing on two items. First, comparing the shapes of the
mean EMG activity as a function of the force direction
(Fig. 8A—C) with the patterns presented in Figs. 4 and 6
shows that the largest differences between the predicted
and experimental data are found for p = 3 (Fig. 6). The
experimental data do not show the broadly tuned pat-
terns as predicted by models with p = 3, but reveal more
sharply tuned distributions as a function of force di-
rection. A second item for comparison concerns the
changes in the distributions as a function of the elbow
angle. As shown in the last paragraph of Sect. 4.1
(Fig. 7), models with p = 1 predict the largest changes in
the contributions of the mono-articular elbow muscles
as a function of the elbow angle. Figure 8A-C shows,
however, that almost no change occurs in the contri-
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Fig. 8A—C. Polar plots of measured EMG activity as a function of
force direction for the brachialis (BRA) and brachioradialis (BRD),
triceps caput laterale (7LA), biceps brachii (BIB), triceps caput
longum (7'LO), deltoid anterior (DANF) and deltoid posterior (D PO).
A, B and C give the data recorded for an arm posture at an elbow
angle of 60, 90 and 120°, respectively. The thick lines indicate the
mean EMG activity (averaged over the seven subjects) and the thin
linesF indicate the standard deviation around the mean

butions of the mono-articular elbow muscles as a func-
tion of the elbow angle.

The data presented above was also quantitatively
compared to the predictions of the various models.
For each model, the mean normalized coefficient was
calculated for the simulated muscle-force distributions
and the measured activation patterns. Model MP and
models F, S and A with p =2 gave the highest correla-
tion coefficients (near 0.75, which is good considering
the variability on the experimental data). For other
models, the correlation coefficients were significantly
smaller.

Summarizing, we found that models with p =3 led
to a poorer fit than models with p =2 due to the
problem concerning the shapes of the broad versus
narrow tuning of the muscle activations as a function of
force direction. Models with p =1 led to poorer fits,
compared to models with p =2, due to the fact that
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models with p =1 predicted muscle-force distributions
where the contributions of the mono-articular elbow
muscles reveal relatively large changes for the differ-
ent arm postures, which is not seen in the experimental
data.

4.3 The effects of the uncertainties
in the parameter values

By varying the parameter values for A, PCSA, FL and
Ot/ 0q; one by one by 25%, then re-calculating the
simulated muscle-force distributions and the correlation
coefficients, an indication was obtained on the relevance
of the accuracy of the parameter values. The largest
changes in the correlation coeflicients were observed for
p=1(F1, S1 and A1l). This was mainly caused by the
fact that changing a parameter might sometimes change
the ranking of most favourable muscles, such that a
muscle, which took most of the load, was not activated
anymore, in exchange of activation of a previously silent
muscle. For the other models, the correlation coefficient
changed typically by 0.03 or less, indicating that
uncertainties in the parameter values have only a minor
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effect on the outcome of these simulations. This
indicates that variations in the anatomical parameter
values do not give rise to qualitatively different predic-
tions for the muscle activation patterns.

5 Discussion
5.1 Conclusions

Based on the comparison between experimental and
predicted results, it is not possible to identify one single
model which fits significantly better than all other
models. It is, however, clear that the predictions of
models with p = 1, as well as of models PMP, F and E,
give fits to the measured data which are inferior to fits by
the other models. Therefore, the current data rejects
models PMP, F and E, as well as models with p =1 as
minimization principles solving the muscle load-sharing
problem for isometric force tasks. Moreover, models
with p =3 predict broadly tuned activation patterns,
which are not observed. In general, models with p =2
resulted overall in the best fits.
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5.2 Task dependency

Several studies (e.g. Tax et al. 1990; Theeuwen et al.
1994; van Bolhuis et al. 1998) have reported that
muscle activation patterns are different in isometric
contractions and in movement tasks. These observa-
tions in the literature suggest a different minimization
principle describing the motor-control system for
isometric force tasks and for force tasks during slow
movements. These results and the results of this study
led us to suggest the possibility that when force tasks
are performed during slow movements, other con-
straints might replace or might be added to the
constraints which determine the activation strategy
during isometric force tasks.

5.3 Assumptions

The simulations were performed using only six groups of
muscles. The assumption was made that all muscles
within one group are activated proportionally with a
constant ratio. This means that the shape, as a function
of the force direction, of the activation patterns of all
muscles of the same group is identical. The measured
activation patterns of the two MEF muscles BRA and
BRD (Fig. 8) are very similar, which supports the
validity of the assumption.

Since averaged values for the anatomical parameters
were used, uncertainties occurred in the parameter val-
ues. The fact that effective parameter values were cal-
culated for each muscle group resulted in relatively large
uncertainties in these parameter values. Varying the
parameter values, however, revealed relatively small
changes in the predicted muscle activation. The changes
in the correlation coefficients of the simulated and
measured muscle activation patterns obtained by vary-
ing the parameter values were overall smaller than the
differences between the correlation coefficients for the
various models. This indicates that variations up to 25%
in the parameter values do not give rise to very different
activation patterns. This result may explain the findings
of more or less similar activation patterns for different
subjects, although subjects do vary in muscle-skeletal
parameters such as, for example, the physiological cross-
sectional area of the muscle.

5.4 Stability

As shown in Sect. 2, Eq. (13) should be satisfied in order
to guarantee stability of the system. For this, an increase
of a positive value of I';;, due to an increase of muscle
force, should always be smaller than the corresponding
increase of the absolute value of the negative second
term in Eq. (13) due to an increase in muscle stiffness.
Dornay et al. (1993) showed that connective tissue
(e.g. skin) causes the derivative of muscle moment arm
with respect to joint angle to stay relatively small. Since
this leads to smaller values of I';;, it has a favourable
effect on the stability. Besides the fact that a decrease of

O,y i/ 0q; has a favourable effect on the stability, also an
increase in the ratio between muscle stiffness and muscle
force (i.e. the parameter ¢ in the relation between muscle
stiffness K, and muscle force ¢, in Sect. 3.1) has a
favourable effect on the stability, due to a larger increase
of the second term of Eq. (13) (see also Shadmehr and
Arbib 1992). From this, it can be understood that for
high values of ¢ (e.g. ¢ > 20), the system is stable,
whereas for smaller values of ¢ (¢ < 20) the system may
become unstable.

5.5 Alternative models

The results of this study do not reveal a single model
which gives significantly better predictions than any
other model. In summary, the best fit was obtained using
models minimizing the sum of squares of muscle force,
muscle stress and muscle activation. Since all simula-
tions were done starting from force zero, the predictions
for the MP model are same as that for model F with
p =2, which minimizes the sum of squared muscle
forces 3, ¢7Z. One might wonder whether other models
might give better fits.

Recently, Harris and Wolpert (1998) proposed that
minimization of the variance of the final position might
give optimal predictions for movement trajectories. It is
interesting to speculate whether the same principle might
also explain the muscle activation patterns for isometric
contractions. Since empirical observations have shown
that the standard deviation of motoneuronal firing in-
creases with the mean firing level (Clamann 1969; Mat-
thews 1996), the variance of muscle force is assumed to
increase with mean muscle force. Minimization of the
variance in force would then predict that it is more ad-
vantageous to have many muscle fibres active at a small
firing rate, than a smaller number of muscle fibres active
at a high firing rate. This favours the activation of
synergistic muscles (arguing against the case p =1). It
also favours the activation of muscles with a large
physiological cross sectional area and since variance is
the square of standard deviation, it corresponds to the
minimization of muscle stress with p = 2. Therefore, the
model based on minimization of force variance is
equivalent to the model based on minimization of the
sum of squares of muscle stress, which was shown to be
one of the models which gave the best predictions.

5.6 Implications for the neural control of movements

The results in this study and in previous studies clearly
demonstrate that subjects tend to use rather stereotyped
muscle activation patterns, which can be explained as
the result of some constraints which have to be met in
order to guarantee accurate and efficient motor perfor-
mance. [t seems most likely that these muscle activation
patterns are the result of a long-term learning process.
This raises the question at which stage of motor
programming the central nervous system implements
the muscle synergies to generate the appropriate muscle



activation patterns. In this context, it is also relevant to
mention that the relative activation of muscles is
different in position and force control tasks (Tax et al.
1990; Theeuwen et al. 1994). Most likely, this reflects
different, task-dependent constraints, which give rise to
different muscle synergies as “‘base vectors’ for muscle
activation. The limited data on motor cortical areas
hardly permit a good comparison of neuronal activity in
various motor tasks (e.g. position versus force control).
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