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Abstract: We developed an objective and automatic procedure
to assess the severity of levodopa-induced dyskinesia (LID) in
patients with Parkinson’s disease during daily life activities.
Thirteen patients were continuously monitored in a home-like
situation for a period of approximately 2.5 hours. During this
time period, the patients performed approximately 35 func-
tional daily life activities. Behavior of the patients was mea-
sured using triaxial accelerometers, which were placed at six
different positions on the body. A neural network was trained
to assess the severity of LID using various variables of the
accelerometer signals. Neural network scores were compared
with the assessment by physicians, who evaluated the contin-
uously videotaped behavior of the patients off-line. The neural
network correctly classified dyskinesia or the absence of dys-

kinesia in 15-minute intervals in 93.7, 99.7, and 97.0% for the
arm, trunk, and leg, respectively. In the few cases of misclas-
sification, the rating by the neural network was in the class next
to that indicated by the physicians using the AIMS score (scale
0–4). Analysis of the neural networks revealed several new
variables, which are relevant for assessing the severity of LID.
The results indicate that the neural network can accurately
assess the severity of LID and could distinguish LID from
voluntary movements in daily life situations. © 2002 Move-
ment Disorder Society
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Levodopa-induced dyskinesia (LID) is a disabling and
distressing complication of chronic levodopa therapy in
patients with Parkinson’s disease.1,2 Therefore, new
pharmacological and surgical treatments to reduce these
dyskinesias are of increasing interest.3–5 To evaluate
medication and surgical treatment, it is important that
dyskinesia can be assessed objectively in daily life. How-
ever, the commonly used methods to assess LID have
several limitations.6–8 For example, long-term assessment
by experts is not feasible as a routine procedure, and self-
assessment of LID by patients can be unreliable.9,10 More-
over, the ratings are subjective. For these reasons, a portable
device that can assess LID automatically and objectively in
daily life would be highly useful.11

Recently, several studies attempted to establish an
objective and automatic method to assess dyskinesia
using accelerometers, which can measure movements of
patients without any discomfort.12–15 Burkhard and col-
leagues12 used a rotation-sensitive movement monitor
(RoMM) and could successfully quantify and character-
ize dyskinesia for patients who were asked to abstain
from voluntary movements. In a study by Hoff and
associates,13 patients were tested in a set of seven tasks
of 1-minute duration each. These authors used a linear
discriminant analysis and could assess the severity of
LID for tasks in which patients abstained from voluntary
movements. However, they had problems in assessing
LID when voluntary movements were present, such as
during drinking and walking. Keijsers and coworkers14

used the same data set as that used in the study by Hoff
and colleagues13 but used neural networks instead of
linear discriminant analysis to assess LID. The neural-
network approach showed a better performance than the
linear classification technique used by Hoff and associ-
ates,13 and also appeared to better distinguish between
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LID and voluntary movements. However, the results of
Keijsers and coworkers14 were far from optimal, indicat-
ing that considerable improvement is needed to obtain a
reliable method which can be used in daily life. In
another study, Manson and colleagues15 attached a tri-
axial accelerometer to the shoulder and showed that the
accelerations in the 1 to 3 Hz frequency band correlated
well with the AIMS scale16 for various tasks. Like
Keijsers and associates,14 Manson and coworkers15 were
able to assess the severity of LID, even when patients
made voluntary movements. However, a main limitation
in the study by Manson and colleagues15 may be the low
specificity for mild dyskinesias. Because all patients in
that study suffered from severe dyskinesia during the
test, the method was not validated to assess mild dyski-
nesias, which is important to evaluate medication and
surgical treatment.

This overview of methods for the objective assessment
of LID illustrates that a successful method is not yet
available. One of the reasons for this may be related to
the limited set of tasks in which patients have been
tested. The currently available algorithms for the assess-
ment of LID were developed and applied to a small
number of daily life activities, which were performed in
a laboratory setting, each for a short duration (for exam-
ple 1 minute). It may be that the data, collected in the
small number of activities in these studies, did not con-
tain enough information to provide an accurate measure
to detect LID and to distinguish between LID and vol-
untary movements in daily life. If so, testing subjects
over a longer period of time in a larger variety of activ-
ities might provide more and new information, which can
be used by algorithms to detect and assess LID more
accurately. Another improvement in classification per-
formance may be obtained by recording movements in
three orthogonal directions for various segments, be-
cause previous studies were limited to movements in two
directions13,14 or to measurement of movements of a
single body segment.15 In addition to an increased num-
ber of activities, testing patients in a natural environment
for a long duration might provide more reliable data. A
longer duration of testing will have the added advantage
of showing various changing degrees of LID severity
during the tests, providing insight into the movement
variables which allow a distinction between LID and
voluntary movements.

We tested patients with Parkinson’s disease with var-
ious degrees of LID in a large variety of daily life
activities for a period of a few hours in a natural envi-
ronment to detect and assess the severity of LID. For the
analysis of the data, we used neural networks that are
known as adaptive techniques for complex classification

problems and which can also provide valuable informa-
tion on the movement variables that underlie a possibly
successful detection and rating of LID.

PATIENTS AND METHODS

Patients

Thirteen patients with Parkinson’s disease (8 men and
5 women) between 48 and 71 years old (mean, 61 � 8
years) participated in this study. The patients had a mean
duration of the disease of 15 � 4 years (range, 10–21
years) and were on levodopa medication for several
years. All patients suffered from LID. Mean levodopa
medication was 692 � 282 mg daily (range, 375–1,375
mg/day) and pergolide medication was 2.2 � 2.5 mg
daily (range, 0–8 mg/day). During the test, all patients
showed a variety of grades of severity of LID. Seven
patients showed a severity of dyskinesia varying between
no dyskinesia and mild dyskinesia (rating between 0 and
1 on the AIMS scale). The other 6 patients showed a
severity of dyskinesia varying between no dyskinesia to
moderate (rating between 0 and 3 on the AIMS scale).
The experiments were approved by the Medical Ethical
Committee of the University Medical Center of the Uni-
versity of Nijmegen. The study started between 1200 and
1300 hours. The patients were continuously monitored
for a period of approximately 2.5 hours. During this
period, the patients took their regular medication at their
usual time. However, when dyskinesia did not occur at
the halfway point, extra levodopa was taken to induce
dyskinesia.

The registration took place in a natural, home-like
setting in the occupational therapy department of the
University Medical Center. During the 2.5-hour moni-
toring session, the patients performed approximately 35
functional daily life activities, such as walking, putting
on a coat, making coffee, preparing lunch, eating, taking
off their shoes, reading a newspaper, drinking coffee, and
washing hands. The order of the activities was random-
ized between subjects by a dedicated computer program.
Subjects were allowed to carry out the activities in their
own way and at their own pace. They were free to take
a rest between activities at any time.

Data Acquisition

The movements and postures were automatically mea-
sured using accelerometers and a portable data recorder.
Six sets of three orthogonal accelerometers (ADXL-202;
Analog Devices, Norwood, MA) were used, which were
placed at six different positions of the body. These six
positions were at both upper arms (just below the shoul-
der), both upper legs (halfway the upper leg), at the wrist
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of the most dyskinetic side, and at the trunk (top of the
sternum; see Fig. 1). The accelerometer signals were
digitally stored on a recorder (Vitaport 3; TEMEC In-
struments, Kerkrade, The Netherlands) that was attached
to a belt around the patient’s waist. The accelerometer
signals were sampled at a frequency of 256 Hz, low-pass
filtered using a moving averaging window and stored at
a sample frequency of 64 Hz. Advantages of this proce-
dure are that it does not require a neurologist and that it
easily can be placed within 15 minutes.

Thus far, the most reliable method to assess the sever-
ity of LID in daily life is to have the performance rated
by experienced physicians. Therefore, the behavior of
the patients was videotaped. The videotapes were used to
rate the severity of LID on the modified AIMS scale16

(m-AIMS) off-line by 2 experienced physicians, inde-
pendently. The m-AIMS rating scale is a five-point scale
with a value between 0 (absence of dyskinesia) and 4
(extreme dyskinesia).16 Rating was done for each of the
four limbs and for the trunk, separately. Data in a hypo-
kinetic off-period without LID was excluded from further
analysis.

Each start and end of an activity was stored on the data
recorder using a radiographic system. A receiver was
connected to the data recorder, and a sender was attached
to a portable computer. When the patient started an
activity, the experimenter pressed a key on the portable
computer indicating the task that was started. The com-
puter immediately transmitted a code to the receiver and
the code was written on a separate channel of the data
recorder worn by the patient. Simultaneously with re-
cording onset and offset, an LED attached to the receiver
was switched on and off. This switching LED informed
the physicians to start or to end the video rating of LID.

Because different tasks had a different duration and
because the severity of LID could fluctuate during an
activity, we divided each task in subsequent time inter-
vals of 1 minute, because a time resolution of 1 minute is
clinically relevant and sufficient. Each 1-minute interval
was evaluated separately, i.e., the severity of LID was
video-rated by the physicians and the accelerometer
characteristics were calculated for all subsequent
1-minute intervals.

Data Analysis

For each 1-minute interval signal, several variables
were calculated from the accelerometer signals before
being presented to the neural network. The neural net-
work was trained with these variables as input and the
rating scores given by the physicians as output. First, the
preprocessing of the 1-minute accelerometer signals will
be described, followed by the training and classification
procedure with the neural network.

Preprocessing Accelerometer Signals.

Each raw accelerometer signal was filtered by a sec-
ond-order low-pass digital Butterworth filter with a 3-dB
cut-off frequency of 8 Hz. Accelerometers measure a
contribution of gravity related to the orientation of the
accelerometer and a contribution related to linear accel-
eration of the accelerometer. These components cannot
be distinguished from each other. However, when there
is movement, both components will change; thus, any
change in the accelerometer signal will reflect movement
of the accelerometer. For this reason, the derivative of
the accelerometer signal was used as a measure of the
amount of movement made by the subject. At each of the

FIG. 1. Schematic overview of the position of accelerometers on the
body. The directions for measurement of acceleration by each set of
accelerometers are indicated by arrows.
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six body segments, we attached three accelerometers
orthogonal to each other. To calculate the frequency and
amplitude of body segment movements, we took the
square root of the sum of squares of the derivatives of the
three accelerometer signals from that body segment. The
result will be referred to as “segment velocity.”

For each of the body segments, the segment velocity
was used to compute various variables for each 1-minute
interval. The variables and their descriptions are shown
in Table 1 and were calculated by a dedicated computer
program. The first nine variables were calculated for
each of the six different body segments. The variables V�

segment, SD(V) segment, %V� segment, and V� � segment
represent the mean velocity of a segment, the standard
deviation relative to the mean velocity, the percentage of
time a segment is moving, and the mean velocity when a
segment moves, respectively. The variables V� �3Hz seg-
ment, V� �3Hz segment, V� �3Hz /V� �3Hz segment represent
the mean segment velocity for frequencies below and
above 3 Hz, and their ratio, respectively. These variables
were used because it has been shown before that dyski-
nesia becomes manifest in the higher frequency do-
main.13,15 Because the signal power for frequencies in the
range between 1 and 3 Hz (P1–3Hz segment) and above 3
Hz (P�3Hz segment) gave a good performance in classi-
fying the severity of LID in the study of Manson and
colleauges,15 these accelerometer characteristics were
also calculated. The cross-correlation between acceler-
ometer signals from different body segments gives an
indication of the coordination of movements of these
segments. A high correlation (near one) indicates that
movements of the two limb segments always covary,

whereas a value near zero indicates that movements of
the two limbs are uncorrelated. For this study, we calcu-
lated the mean cross-correlation between the velocity of
two segments (��segment–segment) and the maximum of the
cross-correlation (max�segment–segment). The percentage of
the time a patient was sitting (%sitting) and/or when the
patient’s body was upright (%upright) were also used as
variables. These variables were calculated using the ac-
celerometer signals of the trunk and the leg in a similar
way as in Veltink and coworkers.17 The first nine vari-
ables were calculated for each of the six segments, which
gave 54 different variables. Other variables were the
mean value of the auto- and cross-correlation (n � 21)
and the maximum value of the cross-correlation between
movements of the six body segments gave another 36
variables. These variables, together with the percentage
of time while the patient is sitting or while the patient’s
body was upright added another two variables, which
brings the total number of variables to 92. All these
variables were presented as input variables for the neural
network.

Neural Network.

The neural network used in this study was a multilayer
perceptron (MLP) with an input layer, one hidden layer,
and an output layer. Each layer has several units and each
unit is connected to all units in the next layer. As input
variables, we used the variables derived from the accel-
erometer signals (see Table 1). The number of units in
the hidden layer is crucial for the ability of the network
to generalize, which is the ability to give a proper clas-
sification for a new input pattern, which the network has

TABLE 1. Variables and their descriptions

Symbol Description

V� segment Mean segment velocity
V� �3Hz segment The mean segment velocity for frequencies below 3 Hz
V� �3Hz segment The mean segment velocity for frequencies above 3 Hz
V� �3Hz

V� �3Hz
segment The ratio between V� �3Hz segment and V� �3Hz segment

SD(V) segment The standard deviation of the segment velocity
% V� segment Percentage of time that a segment was moving. A segment was considered as moving when the low-pass

filtered segment velocity was above a threshold of about 0.05 m/sec
V� � segment The mean segment velocity when the segment was considered to be moving, ie, when V segment � V�

segment
P1–3Hz segment Power for frequencies in the range between 1 and 3 Hz
P�3Hz segment Power for frequencies above 3 Hz
��segment–segment The mean value of the normalized cross-correlation between the segment velocities of different segments
max(�segment–segment) The maximum value of the normalized cross-correlation between the segment velocities of different

segments
% sitting The percentage of time that a patient was sitting
% upright The percentage of time that a patient’s body was upright

Definition of the input variables to the neural network. The variables were calculated for each one-minute interval. The segment could be the most
dyskinetic leg (mleg), the less dyskinetic leg (lleg), the most dyskinetic arm (marm), the less dyskinetic arm (larm) and the trunk (trunk). (For detailed
explanation of the variables, see text.)
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not encountered before. There was one output unit for
each body segment, the value of which reflects the se-
verity of LID of that body segment. This segment could
be the most dyskinetic arm, the trunk, or the most dys-
kinetic leg. The output of the units in the hidden layer
was given by a hyperbolic tangent sigmoid transfer func-
tion that gives a value between �1 and �1. The output
of the unit in the output layer was given by a linear
transfer function and had a value in the range between 0
and 4, reflecting the AIMS score. Neural networks need
a set of data, which provide examples of how sets of
input values are related to the output (training set). The
neural network uses these examples to adjust the weights
between units in subsequent layers to minimize the error
between the desired network output and the neural net-
work output for each example. This is called a training
process. After training, the network was tested using
data, which were not used during the training process
(test set). The neural network was trained using back-
propagation. (For a review of neural networks, see Herz
et al.18)

Evaluating the Neural Network.

The performance of the network was evaluated using
the mean square error (MSE) between the neural network
output and the score given by the physicians. Because
physicians could disagree in their rating, the mean value
of the scores of the 2 physicians was used for training
and testing the neural network. The physicians never had
a difference in score larger than 1. In addition, the
percentage of correctly classified signals by the neural
network was used as a second criterion to evaluate the
performance of the network. Because physicians rate
dyskinesia by integers in the range between zero and
four, the neural network classification was seen as cor-
rect when the difference between the neural network
output and the score given by the physicians was smaller
than 0.5. In other words, a classification was seen as
correct when the rounded neural network output was
exactly the same as that by the physicians.

The complexity of a network depends upon the num-
ber of units in the hidden layer and the number of
variables used as input. A complex network will result in
a good performance on a training set but can give a poor
performance on a test set as a result of overfitting of the
data set, i.e., the network has a poor generalization per-
formance. For this reason, neural networks with various
numbers of hidden units were trained to assess the se-
verity of the most dyskinetic leg, the most dyskinetic
arm, and the trunk. For each number of hidden units, the
procedure of forward selection19 was used to find the
most valuable input variables to the neural network to

assess the severity of LID. Forward selection means that
we started with an empty variable set, and add, one after
another, the variable that causes the largest reduction of
the MSE between the neural network output and the
score given by the physicians. After each step, we look
for the next most important variable, and so forth. This
procedure provides insight into the variables that are
used by the neural network and that characterize its
performance.

The generalization performance of the network was
tested by training the network with 80% of the data set
and testing the network with the remaining 20% of the
data. This procedure was done 50 times for different
randomly selected sets of training and test sets. The
optimal architecture of the network was seen as the
network, which gave on average the smallest MSE on the
test set for the 50 randomly selected sets.

The first goal of the study was to test the possibility of
detecting and assessing the severity of LID for patients
with Parkinson’s disease by studying a large variety of
daily life activities, i.e., the network’s ability to general-
ize over various tasks. However, the network should also
be able to classify the severity of LID for new patients,
which the network has never seen before, i.e., the net-
work should also be able to generalize over patients. The
network architectures with the best performance in de-
tecting and assessing the severity of LID in a large
variety of daily life activities were used to test the
performance for new patients. For this testing, the neural
network was trained with all data except for the data of
one patient (“leave one patient out”). The data of the
remaining patient was predicted using the trained neural
network. This “leave-one-out” method was applied for
each patient and gave a good impression of the ability of
the network to classify the severity of LID for patients,
which the network has not seen before. The performance
of the network was evaluated using two measures: the
MSE between the neural network output and the score
given by the physicians, and the percentage of correctly
classified data.

RESULTS

Figure 2 shows the MSE for the training set (open
symbols and dashed lines) and test set (filled symbols
and solid lines) for neural network architectures with
various numbers of units in the hidden layer. The MSE is
plotted as a function of the number of input variables for
the most dyskinetic leg ordered according to their rele-
vance for the detection and assessment of LID. As shown
in Figure 2, the MSE starts to decrease when the number
of input variables increases for each number of hidden
units. When the number of input variables becomes
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larger than four, the MSE for the training set decreases
only slightly. The MSE on the test set shows initially a
decrease for each added variable, followed by an in-
crease in MSE when the number of input variables be-
comes larger. The increase in MSE on the test set for
large numbers of input variables is the result of overfit-
ting of the data.

The network with three hidden units and seven input
variables as input gave the best performance on the test
set (smallest MSE) for the most dyskinetic leg (see Fig.
2). For the arm, a network with two hidden units and six
variables as input gave the smallest MSE on the test set.
For the trunk, the best performance was obtained for a
network with only one hidden unit. The optimal number
of input variables appeared to be relatively large (n �
12). Table 2 shows a list of the relevant input variables,
which result from the neural network and the forward
selection procedure, in order of importance for each of
the three segments. A variety of variables are important
and the important variables differ for different body
segments. For the arm and especially for the trunk,
variables related to movements of other body segments
appeared to be relevant. For the leg, variables of both
legs and the trunk and the cross-correlation between
these segments appeared to be relevant.

The MSE and the percentage of correctly classified
data on the training and test sets for the best performing
networks on the test set for 1-minute intervals are shown
in Table 3. The results in Table 3 indicate that, in
general, the error between the score by the physicians
and by the neural network (0.19 or less) is small relative

to the AIMS scale, which ranges between 0 and 4 with
integer increments. The percentage of correctly classified
1-minute intervals on the test set has the largest value for
the trunk (83.0 � 4.0%) and was slightly smaller for the
arm (77.0 � 3.1%) and the leg (76.9 � 3.9%). The
correlation coefficients between the neural network out-
put on the test set and the physicians rating were 0.71,
0.87, and 0.80 for the arm, trunk, and leg, respectively.

Figure 3 shows an example of the scores given by the
physician and the scores given by the neural network on
a test set for 81 one-minute intervals. These 81 one-
minute intervals were taken out of the 2.5-hour session of
a patient in which periods of rest were not shown to
present the performance for a representative set of activ-
ities. The scores predicted by the neural network do
agree well with the scores given by the physicians. Both
scores change almost simultaneously in time over the
time interval of 81 minutes. For scores for which the
physicians disagree (in these cases, the average of the
physician’s score was 0.5, 1.5, or 2.5), the network gave
a value between the scores given by the physicians. In
general, the difference in rating given by the physicians
and the network is 0.5 or lower. Because the patient
showed only mild symptoms of dyskinesia, Figure 3
shows that the neural network was sensitive and accurate
in detecting LID.

The neural network classification was considered to be
correct when the difference between the neural network
output and the score given by the physicians was lower

FIG. 2. The mean square error on the training set (open symbols and
dashed lines) and test set (filled symbols and solid lines) for neural
networks with 1, 2, 3, and 4 units in the hidden layer. Each network was
trained with data for the most affected leg using the input parameters
(see Patients and Methods and Table 1) and the rating by the physician.

TABLE 2. Relevant input variables

Stage Arm Trunk Leg

1 V� �3Hz

V� �3Hz
mleg % V� trunk SD(V) lleg

2 ��wrist–trunk SD(V) lleg % V� mleg
3 % V� mleg V� �3Hz

Trunk
% sitting

4 % V� wrist % V� lleg �� lleg–trunk

5 ��wrist–larm P�3Hz marm P1–3Hz trunk
6 % sitting P1–3Hz mleg V� � mleg
7 — ��mleg—trunk max(�mleg–trunk)
8 — P�3Hz mleg —
9 — P1–3Hz lleg —

10 — V� �3Hz marm —
11 — V� �3Hz

V�3Hz
larm

—

12 — SD(V) wrist —

Input variables, relevant for the detection and classification of LID
for the arm, trunk and leg, in order of importance. The order of
importance was determined using forward selection for the network
with the smallest mean square error (MSE) between neural network
output and the score given by the physicians on the test set for the arm
(2 hidden units), the trunk (1 hidden unit) and the leg (3 hidden units).
Subscripts refer to marm (most dyskinetic arm); larm (less dyskinetic
arm); mleg (most dyskinetic leg) and lleg (less dyskinetic leg).
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than 0.5. It would be interesting to see what the percent-
age of correctly classified data would be for other error
margins between the neural network output and the phy-
sician’s score. Figure 4 shows the percentage of correctly
classified 1-minute intervals on the test set as a function
of the error margin for the arm, leg, and trunk for the
whole population of data. More than 95% of the
1-minute intervals had a difference less than 0.85 be-
tween neural network output and the score given by the
physicians. When differences up to 1.0 were allowed,
more than 98.0% of the 1-minute intervals were classi-
fied correctly. This finding suggests that, if the rating by
the neural network were different from the rating given
by the physician, it was in the grade next to the score
given by the physicians.

From a clinical point of view, physicians are mainly
interested in whether patients suffer from dyskinesia for
at least a few minutes. Therefore, we determined the

performance of the network under the constraint that it
should correctly predict dyskinesia or the absence of
dyskinesia for longer periods. For periods of 15 minutes,
the neural network correctly classified dyskinesia or ab-
sence of dyskinesia in 93.7, 99.7, and 97.0% for the arm,
trunk, and leg, respectively (see Table 3). The correlation
coefficient between the neural network and the physi-
cians rating averaged over 15 minutes were 0.88, 0.96,
and 0.92 for the arm, trunk, and leg, respectively.

Recently, Manson et al.15 reported a good Spearman
rank correlation between acceleration signals in the 1 to
3 Hz frequency band and the rating on the modified
AIMS scale. For the data in our study, the Spearman rank
correlation between the acceleration in the 1 to 3 Hz
frequency (P1–3Hz segment) and the m-AIMS score for
the arm, trunk, and leg was 0.18, 0.30, and 0.21, respec-
tively. As shown in Table 2, the neural network indicated
other variables with more predictive power in addition to

TABLE 3. Data from the best performing networks

Segment

MSE (1-min interval) % good (1-min interval)

% good (15 min)Training set Test set Training set Test set

Arm 0.17 � 0.01 0.19 � 0.02 78.3 � 0.9 77.0 � 3.1 93.7
Trunk 0.14 � 0.01 0.14 � 0.02 83.4 � 0.9 83.0 � 3.4 99.7
Leg 0.15 � 0.01 0.18 � 0.03 80.5 � 1.4 76.9 � 3.9 97.0

Performance of the neural network averaged over all one-minute time intervals of the 2.5 hours session (columns 2, 3, 4, and 5) and the percentage
of correctly classified data in 15-minute time interval (column 6). Performance of the neural network is expressed by the mean and standard deviation
of the mean square error (MSE) between the neural network output and the score given by the physicians (columns 2 and 3) and by the percentage
of correctly classified activities (% good) (columns 4, 5 and 6) for the arm, trunk and leg.

MSE, mean square error.

FIG. 3. Example of the AIMS rating
given by the physicians (circles) and pre-
dicted by the neural network (dots with
error bars) for the trunk for 81 one-
minute intervals of various activities.
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the acceleration in the 1 to 3 Hz frequency band. The
most valuable variables, the ratio between low and high
frequencies of the most affected leg, the percentage of
the time that the trunk was moving, and the standard
deviation of the leg (see Table 2), gave a Spearman rank
correlation of 0.38, 0.44, and 0.37 for the arm, trunk, and
leg, respectively. This finding means that these most
valuable variables contribute approximately 2 to 4 times
more in explaining the AIMS score than the acceleration
in the 1 to 3 Hz frequency range for the data in our study.

To demonstrate the neural network’s ability to distin-
guish LID from voluntary movements, the performance
of the network was evaluated for three different groups
of activities. The first group included the activities sitting
and standing with or without a mental task. During these
activities, patients were ordered to abstain from any
voluntary movement and not to suppress any involuntary
movements. The second group consisted of activities for
which patients now and then made voluntary move-
ments. This second group included activities such as

drinking coffee, reading a newspaper, making a phone
call, and writing. The third group consisted of activities
for which patients made voluntary movements for almost
the entire period such as making coffee, walking, setting
the table, dressing, etc. The performance of the neural
network output was considered to be correct when the
neural network gave a value smaller than 0.5 for the
1-minute intervals, which were rated by the physicians
with the score 0 (no dyskinesia group), and when the
network gave a score larger than 0.5 for the 1-minute
intervals, which were rated by the physicians with a
rating 1 or higher (dyskinesia group). The percentage of
correctly classified minutes for the different groups is
shown in Table 4. The correct performance of the neural
network is between 75% and 100%, depending on the
type of movements. The best performance is obtained in
the absence of voluntary movements and in the absence
of dyskinesia. The network displayed some tendency to
erroneously detect absence of dyskinesia in patients with
mild dyskinesia who were trying to abstain from any
voluntary movements. This is primarily because normal
subjects, when sitting in a relaxed position, make small
movements with the legs and arms that are hard to
distinguish from mild dyskinesia. In general, the neural
network was able to correctly distinguish the large ma-
jority of LID movements from voluntary movements.

A more detailed overview of the rating performance
by the neural network for various types of behavior with
voluntary movements is shown in Figure 5, which shows
the percentage of correctly classified behavior for a se-
lection of activities. In general, approximately 80% of
the 1-minute intervals of each activity was correctly
classified. Classification algorithms in previous studies
showed discrepancies with the rating by physicians for
activities with voluntary movements and especially for
walking.13–15 The neural network gave an extremely
well-fit classification for 1-minute intervals of walking
for the trunk (100%) and the leg (96%), but less so for
the arm (61%).

FIG. 4. Percentage of correctly classified data in the test set as a
function of the error margin for the arm (solid line), trunk (dashed
lines), and leg (dashed-dotted line).

TABLE 4. Correctly classified minutes

Segment
No voluntary
movements

Now-and-then voluntary
movements

Many voluntary
movements

Absence of dyskinesia (AIMS � 0) Arm 100.0 79.6 78.5
Trunk 100.0 98.5 88.3
Leg 92.6 80.2 77.2

Dyskinesia (AIMS � 1) Arm 75.0 90.0 79.4
Trunk 94.6 84.7 90.4
Leg 76.9 87.3 82.6

Percentage of correctly classified one-minute intervals with dyskinesia and absence of dyskinesia for time intervals without voluntary movement,
intervals with activities requiring voluntary movements some now and then, and for intervals with activities which require frequent voluntary
movements.
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To test the ability of the network to classify the se-
verity of LID for patients that the network has not seen
before, neural networks were trained with all data except
for the data of 1 patient. Thereafter, the trained network
was used to predict the severity of LID for the remaining
patient. The mean and standard deviation of the MSE and
the percentage of correctly classified 1-minute intervals
for the various subjects for the arm, trunk, and leg are
shown in Table 5. The performance of the network for
data in a 15-minute interval is also shown in Table 5 (see
column 6). The performance of the networks is approx-
imately the same as that shown in Table 3, indicating that
the neural network could equally well generalize over
activities and subjects.

DISCUSSION

Recent studies have indicated the validity of ambula-
tory accelerometry in assessing the severity of LID.12–15

However, previous studies have not been adequately
sensitive, nor can they distinguish between voluntary

movements and LID. Another important limitation of
studies to date has been the small number of tasks
involved, and the fact that they have been performed in
a laboratory setting. In the present study, patients per-
formed a large variety of daily life activities in a natural
environment for a long duration. The neural network was
able to detect and assess the severity of LID correctly for
a large fraction of tasks. When the rating by the neural
network differed from the rating given by the physicians,
the difference in rating was small, and in the worst cases
the rating was in the grade next to that indicated by the
physicians.

Previous studies12,13,15 have used linear classification
techniques to detect and to assess LID. In our previous
study,14 the best performing neural network did have one
hidden unit, which is equivalent to a linear classification.
With the larger and richer data set in this study, we found
that the optimal number of hidden units for the neural
network for rating LID is three for the leg and two for the

FIG. 5. Percentage of correctly classi-
fied data for various activities. For each
grouping, the first bar is for the arm,
second bar is for the trunk, and the third
bar is for the leg.

TABLE 5. Data from the network for ‘leave one patient out’

Segment

MSE (1-min interval) % good (1-min interval)

% good (15 min)Training set Test set Training set Test set

Arm 0.17 � 0.01 0.22 � 0.10 78.4 � 1.1 74.0 � 11.8 93.6 � 15.1
Trunk 0.14 � 0.01 0.15 � 0.11 83.3 � 0.9 82.4 � 16.5 99.5 � 1.7
Leg 0.15 � 0.00 0.20 � 0.08 81.2 � 0.8 70.3 � 14.7 92.7 � 11.1

Performance of the neural network over different patients using the leave-one-output method. Performance of the neural network (mean square error
(MSE) and the percentage correctly classified activities by the neural network (% good) for one-minute intervals (columns 2, 3, 4, and 5). The
percentage of correctly classified data for 15-minute time interval data (column 6).

MSE, mean square error.
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arm. This finding indicates that nonlinear interactions
between various movement variables (which may not
have been obvious in our previous study due to the
limited number [n � 7] of tasks) are important for the
proper rating of LID. For the trunk, the best performing
neural network had only one unit in the hidden layer,
indicating that a linear technique may be sufficient. How-
ever, in this case, the number of input variables, which
contribute information to the detection and classification
of LID, appeared to be relatively large (n � 12).

In our comparison of rating by physicians and by the
neural network, we have used the averaged rating by the
physicians. Assuming that experienced physicians rate
LID in the same class or in neighboring classes, we
considered the rating by the neural network incorrect
when the rating by the neural network differed by more
than 0.5 from the average of the rating by the physicians.
With that criterion, approximately 80% of the 1-minute
intervals were classified correctly (see Tables 3 and 5).
However, the criterion of 0.5 may be somewhat arbitrary.
The physician’s rating is semiquantitative and is not
sensitive to small changes. Moreover, the rating by the
physicians will presumably be affected by ratings in
previous minutes. In many cases, we observed that the
changes in the rating by the neural network anticipated
those by the physicians. These influences on the physi-
cian’s rating triggered us to consider the score for other
error margins. When the error margin was extended to
1.0, the correct score went up to more than 98.0%.
Irrespective of the question of which error margin to use,
our results demonstrate that any differences between the
rating by the physicians and the neural network do not
differ by more than one grade on the AIMS scale.

Another aspect of the rating by the neural network was
that any difference with the rating by the physicians
usually lasted for 1 minute only. When periods with a
longer duration where evaluated, the error rate decreased
and the correct performance increased to 93.7, 99.7, and
97.0 % for the arm, trunk, and leg, respectively. These
results indicate that the procedure described in this study
to detect and assess LID seems a valid method for
practical use.

A major advantage of using neural networks for the
detection and rating of LID with the forward selection
procedure to find the most relevant variables is that this
procedure searches for the most valuable variables with-
out any prior information and restriction. In general, the
percentage of time that a segment was moving (%V�

segment), the cross-correlation between segments
(��segment–segment), and variables evaluating the signals in
the frequency domain appeared to be the most important

variables. These variables are in line with the most
important variables found in a previous studies.13–15

One of the most important variables appeared to be the
percentage of time that the arm, trunk, or leg was mov-
ing. The importance of this variable is obvious, because
a small percentage indicates few movements and proba-
bly no dyskinesia, whereas a large percentage indicates
many movements and, thus, a possibility that the subject
might suffer from dyskinesia.

One of the main difficulties in assessing LID is the
ability to distinguish LID from voluntary movements.
Hoff and colleagues13 and Manson and associates15 re-
ported that acceleration signals in the 1 to 3 Hz frequency
band correlated well with the modified AIMS scale and
stated that dyskinesias occur in a higher frequency do-
main than voluntary movements. In our analysis, the
acceleration signals in the range between 1 and 3 Hz also
appeared to be a variable, which contributes to the de-
tection and rating of LID. However, the power of the
acceleration signals in the 1 to 3 Hz frequency domain
explained only a small fraction of the severity of LID.
This finding indicates that the frequency range of accel-
erometer signals of voluntary movements is not disjunct
from that of the accelerometer signals for dyskinesias,
which is in agreement with previous reports.13,20

Moreover, the neural network analysis revealed several
other variables which can contribute to distinguish LID
from voluntary movements, such as the cross-correlation
between acceleration signals from two different limb seg-
ments and by comparing the movements of various limb
segments. This can be understood from the fact that dyski-
nesia is frequently observed in multiple body segments.21 In
our study, this resulted in a small value of the correlation
between movements of these body segments combined
with high values for the percentage of time of moving for
these body segments. We also observed that patients suf-
fering from mild dyskinesias showed dyskinesia only in a
single limb or in the trunk. In such cases the correlation
coefficient was zero if one of the body segments did not
move. In case of dyskinesia superimposed on voluntary
movements, such as in walking, the correlation between
movements of the arm and leg does not provide much
information. In that case, the power in the frequency range
below and above 3 Hz was used to detect dyskinesia, in
agreement with the results of previous studies. A detailed
description of the contribution of various parameters re-
quires more sophisticated analyses, which is outside the
scope of this study.

Our results showed that the neural network was able to
distinguish LID from voluntary movements (see Table
4). The performance of the neural network was slightly
less for the group of patients with dyskinesia, who ab-
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stain from voluntary movements, and for the group of
patients without dyskinesia, who made many voluntary
movements. For the group of patients with dyskinesia who
abstained from voluntary movements, the neural network
had some difficulty to distinguish mild dyskinesia from
normal small movements of the arm and the leg, which
occur now and then when subjects sit relaxed for some
time. In normal daily life, patients hardly ever abstain
completely from any voluntary movements. Therefore, the
second group of tasks, wherein patients occasionally made
voluntary movements, may be more illustrative for daily
life situations with few voluntary movements. For this sec-
ond group of tasks, the neural network showed a good
performance in detecting dyskinesia.

The network rated some voluntary movements as dys-
kinesia for patients with absence of dyskinesia who made
many voluntary movements. This misclassification is
most frequently observed in activities such as washing
the dishes or sweeping the floor. These typical activities
show voluntary movements that contain movement char-
acteristics similar to that of dyskinesia.

The obvious question to ask is: what explains the
better performance of rating in this study relative to that
in previous studies? A possible explanation is that pre-
vious studies used a limited set of tasks, which had to be
performed in a highly controlled laboratory setting.12–15

This strategy may have resulted in a limited data set with
possibly some unnatural behavior of the patients. The
present study tested patients with varying degrees of
severity of LID in a large variety of daily activities. This
larger number of activities and varying degree of severity
of LID provides more information for the adaptive neural
networks to find the proper variables to distinguish be-
tween voluntary movements and LID. These variables
and their mutual linear and nonlinear connections are
probably not disclosed with the methods used by other
investigators. The next step will be to investigate how the
neural network combined the various variables for rating.
This will provide more information about the character-
istics of LID in comparison to that of voluntary
movements.

In conclusion, our method accurately assessed the sever-
ity of LID and distinguished LID from voluntary move-
ments in a daily life situation. The difference between the
neural network output and the score by the physicians was
small and, worst case, the rating by neural networks was in
the class next to that indicated by the physician. Therefore,
the method used in this study could be operating success-
fully in unsupervised ambulatory conditions.
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