Dynamics of Supervised Learning with
Restricted Training Sets

A.C.C. Coolen ' and D. Saad*

1 Department of Mathematics, King’s College, University of London
Strand, London WC2R 2LS, U.K.

1 Department of Computer Science and Applied Mathematics, Aston University
Aston Triangle, Birmingham B4 7TET, U.K.

Abstract
We study the dynamics of supervised learning in layered neural net-
works, in the regime where the size p of the training set is proportional
to the number N of inputs. Here the local fields are no longer described
by Gaussian distributions. We show how dynamical replica theory can
be used to predict the evolution of macroscopic observables, including
the relevant performance measures, incorporating the theory of com-
plete training sets in the limit p/N — oo as a special case. For simplicity
we restrict ourselves here to single-layer networks and realizable tasks.
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1 Introduction

In the last few years much progress has been made in the analysis of the dy-

namics of supervised learning in layered neural networks, using the strategy of

statistical mechanics: by deriving from the microscopic dynamical equations

a set of closed laws describing the evolution of suitably chosen macroscopic

observables (dynamic order parameters) in the limit of an infinite system size

[eg. Kinzel and Rujan (1990), Kinouchi and Caticha (1992), Biehl and Schwarze
(1992,1995), Saad and Solla (1995)]. A recent review and more extensive guide

to the relevant references can be found in Mace and Coolen (1998a). The main

successful procedure developed so far is built on the following cornerstones:

e The task to be learned is defined by a (possibly noisy) ‘teacher’, which is
itself a layered neural network. This induces a canonical set of dynamical
order parameters, typically the (rescaled) overlaps between the various
student weight vectors and the corresponding teacher weight vectors.

e The number of network inputs is (eventually) taken to be infinitely large.
This ensures that fluctuations in mean-field observables will vanish and
creates the possibility of using the central limit theorem.

e The number of ‘hidden’ neurons is finite. This prevents the number of
order parameters from being infinite, and ensures that the cumulative
impact of their fluctuations is insignificant.

e The size of the training set is much larger than the number of updates
made. Each example presented is now different from those that have al-
ready been seen, such that the local fields will have Gaussian probability
distributions, which leads to closure of the dynamic equations.

These are not ingredients to simplify the calculations, but vital conditions,
without which the standard method fails. Although the assumption of an
infinite system size has been shown not to be too critical (Barber et al, 1996),
the other assumptions do place serious restrictions on the degree of realism
of the scenarios that can be analyzed, and have thereby, to some extent,
prevented the theoretical results from being used by practitioners.

In this paper we study the dynamics of learning in layered neural networks
with restricted training sets, where the number p of examples (‘questions’
with corresponding ‘answers’) scales linearly with the number N of inputs, i.e.
p = aN. Here individual questions will re-appear during the learning process
as soon as the number of weight updates made is of the order of the size of
the training set. In the traditional models, where the duration of an update is
defined as N~', this happens as soon as t = O(«). At that point correlations
develop between the weights and the questions in the training set, and the
dynamics is of a spin-glass type, with the composition of the training set
playing the role of ‘quenched disorder’. The main consequence of this is that
the central limit theorem no longer applies to the student’s local fields, which
are now described by non-Gaussian distributions. To demonstrate this we
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trained (on-line) a perceptron with weights J; on noiseless examples generated
by a teacher perceptron with weights B;, using the Hebb and AdaTron rules.
We plotted in Fig. 1 the student and teacher fields, x = J-€ and y = B-§
respectively, where £ is the input vector, for p = N/2 examples and at time
t = 50. The marginal distribution P(z) for p = N/4, at times ¢ = 10 for
the Hebb rule and ¢ = 20 for the Adatron rule, is shown in Fig. 2. The
non-Gaussian student field distributions observed in Figs. 1 and 2 induce a
deviation between the training- and generalization errors, which measure the
network performance on training and test examples, respectively. The former
involves averages over the non-Gaussian field distribution, whereas the latter
(which is calculated over all possible examples) still involves Gaussian fields.

The appearance of non-Gaussian fields leads to a breakdown of the stan-
dard formalism, based on deriving closed equations for a finite number of
observables: the field distributions can no longer be characterized by a few
moments, and the macroscopic laws must now be averaged over realizations
of the training set. One could still try to use Gaussian distributions as large
« approximations, see e.g. Sollich and Barber (1998), but it will be clear from
Figs. 1 and 2 that a systematic theory will have to give up Gaussian distri-
butions entirely. The first rigorous study of the dynamics of learning with
restricted training sets in non-linear networks, via the calculation of generat-
ing functionals, was carried out by Horner (1992) for perceptrons with binary
weights. In this paper we show how the formalism of dynamical replica theory
(see e.g. Coolen et al, 1996) can be used successfully to predict the evolution
of macroscopic observables for finite «, incorporating the infinite training
set formalism as a special case, for @ — oc0. Central to our approach is the
derivation of a diffusion equation for the joint distribution of the student
and teacher fields, which will be found to have Gaussian solutions only for
a — oo. For simplicity and transparency we restrict ourselves to single-layer
systems and noise-free teachers. Application and generalization of our meth-
ods to multi-layer systems (Saad and Coolen, 1998) and learning scenarios
involving ‘noisy’ teachers (Mace and Coolen, 1998b) are presently under way.

This presentation of preliminary results is organized as follows. In section 2
we derive a general Fokker-Planck equation describing the evolution of mean-
field observables for N — oo. This allows us to identify the conditions for the
latter to be described by closed deterministic laws. In section 3 we choose as
our observables the field distribution P[z,y], in addition to (the traditional)
@ and R, and show that this set obeys deterministic laws. In order to close
these laws we use the tools of dynamical replica theory. Details of the replica
calculation are given in section 4, to be skipped by those primarily interested
in results. In section 5 we show how in the limit @ — oo (infinite training sets)
the equations of the conventional theory are recovered. We finally work out
our equations explicitly for the example of Hebbian learning with restricted
training sets, and compare our predictions with exact results (derived from
the microscopic equations by Rae et al, 1998) and with numerical simulations.
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Fig. 1: Student and teacher fields (z,y) as observed during nu-
merical simulations of on-line learning (learning rate n = 1) in a
perceptron of size N = 10,000 at ¢ = 50, using ‘questions’ from
a restricted training set of size p = %N . Left: Hebbian learning.
Right: AdaTron learning. Note: in the case of Gaussian field dis-
tributions one would have found spherically shaped plots.
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Fig. 2: Distribution P(z) of student fields as observed during nu-
merical simulations of on-line learning (learning rate n = 1) in a
perceptron of size N = 10, 000, using ‘questions’ from a restricted
training set of size p = iN . Left: Hebbian learning, measured at
t = 10. Right: AdaTron learning, measured at ¢ = 20. Note: not
only are these distributions distinctively non-Gaussian, they also
appear to vary widely in their basic characteristics, depending on
the learning rule used.
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2 From Microscopic to Macroscopic Laws

2.1 Definitions

A student perceptron operates the following rule, which is parametrised by
the weight vector J € RV:

S {=1,1}" = {-1,1} S(§) = sgn[J-¢]

It tries to emulate the operation of a teacher perceptron, via an iterative
procedure for updating its parameters J. The teacher perceptron operates a
similar rule, characterized by a given (fixed) weight vector B € R":

T:{-1,1}V = {-1,1} T(&) = sgn[B-¢]

In order to do so, the student perceptron modifies its weight vector J accord-

SE

o Student

. S
S S5(€) = sgn[J -£] ©
. Teacher

-4 T
i T() = senlB-¢) ©

Fig. 3: Supervised learning in perceptrons.

ing to an iterative procedure, using examples of input vectors (or ‘questions’)
¢, drawn at random from a fixed training set D C D = {—1,1}*, and the
corresponding values of the teacher outputs 7'(€), see Fig. 3.

_ We consider the case where the training set is a randomly composed subset
D C D, of size |D| = p = aN with a > 0:

D={¢',... ¢} p=aN

We will denote averages over the training set D and averages over the full
question set D in the following way:

1
@@= = Y 06 and  (@E) =7 Y ).
|D| Eeb D] 1332)
We will analyze the following two classes of learning rules:
on—line: J(m+1)=J(m)+ & &(m) G[J(m)-&(m), B-€(m)]

(2.1)
batch:  J(m+1)=J(m)+ & (£ G[J(m)-& B-£))»
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In on-line learning one draws at each iteration step m a question &(m) € D
at random, the dynamics is thus a stochastic process; in batch learning one
iterates a deterministic map. The function G|z, y| is assumed to be bounded
and not to depend on N, other than via its two arguments.

Our most important observables during learning are the training error
Ei(J) and the generalization error E4(J), defined as follows:

Ey(J) = (0[-(J-&)(B-&)])5 , (2.2)
Ey(J) = (0= (J-&)(B-&)])» - (2.3)

Only if the training set D is sufficiently large, and if there are no correlations
between J and the questions £ € D, will these two errors will be identical.

2.2 From Discrete to Continuous Time

We next convert the dynamical laws (2.1) into the language of stochastic
processes. We introduce the probability p,,(J) to find weight vector J at
discrete iteration step m. In terms of this microscopic probability distribution
the processes (2.1) can be written in the general Markovian form

Prr(9) = [dT WIT: ] ()
with the transition probabilities
on—line: W[J;J'| = (5 [J-J'—% € G[J-¢ B-£]])»
batch:  W[J;J] =0 [J—J - 1(€ G € B-€))s)|
We now make the transition to a description involving real-valued time labels
by choosing the duration of each iteration step to be a real-valued random

number, such that the probability that at time ¢ precisely m steps have been
made is given by the Poisson expression

Ton(t) = %(Nt)mem | (2.5)

(2.4)

For times ¢ > N~ we find ¢ = m/N + O(N~z), the usual time unit. Due to
the random durations of the iteration steps we have to switch to the following
microscopic probability distribution:
pi(d) = Y To(t) D (J) -
m>0

This distribution obeys a simple differential equation, which immediately fol-
lows from the pleasant properties of (2.5) under temporal differentiation:

d

it Pt
So far no approximations have been made, equation (2.6) is exact for any
N. Tt is the equivalent of the master equation often introduced to define the
dynamics of spin systems.

() =N [dJ (W(T;0) = 8lT—-J} p(JT'). (2.6)
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2.3 Derivation of Macroscopic Fokker-Planck Equation

We now wish to investigate the dynamics of a number of as yet arbitrary
macroscopic observables Q[J]| = (U [J],...,%[J]). To do so we introduce a
macroscopic probability distribution

Q) = [dJ p(J) 5[0 - QL] .

Its time derivative immediately follows from that in (2.6):

d ! e !

ZR(Q) = [a W) P() (2.7)
where
Wi ] = [dJ" p(J') 6 [Q—Q[JT']] [dJ § [ Q—Q[I|N{W[J; J'|-6[J—J']}

JdJ" p(J') 6 [ —-Q[J']|

If we insert the relevant expressions (2.4) for W/[J; J'] we can perform the J-
integrations, and obtain expressions in terms of so-called sub-shell averages,

defined as
_Jdd p(J) §[Q-Q[J]] f(J)
Ve = () s -]

For the two types of learning rules at hand we obtain:

Wi @)= N (s]e-r+ L £ 9l7-¢ B€)]) —sia-al])

st

Wl ) = N (6 |20l + 7€ G176, B-€l)al | -

s12-0lJ))

Q'st
We now insert integral representations for the d-distributions. This gives for
our two learning scenario’s:

W[5, ] = /%ﬂﬂ N (ORI G EBE)) _ a0y
24

WhR[02; QI]:/(;lgk Elexy) N< ~QQJ12EG[T € BE)s]_ Q2 Q[J]>

Still no approximations have been made. The above two expressions dlff@l‘
only in the stage where the averaging over the training set is carried out.

’t

In expanding equations (2.8,2.9) for large N and finite ¢ we have to be
careful, since the system size N enters both as a small parameter to control
the magnitude of the modification of individual components of the weight
vector, but also determines the dimensions and lengths of various vectors that
occur. If we assess how derivatives with respect to individual components J;
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scale for observables such as Q[J] = J* and R[J] = B-J, we find the following
scaling property which we will choose as our definition of simple mean-field
observables:

O F[J] 1

F[J] = O(N° — = —tNztd N 2.1
1= 00N) g pg = OIIINE)  (Nooo), (210)
in which d is the number of different elements in the set {iy,...,4,}. However,

we will find that for restricted training sets not all relevant observables will
have the properties (2.10). In particular, the joint distribution of student and
teacher fields will, at least for on-line learning, have a contribution for which
higher order derivatives do not decrease in importance!. The latter type of
more general mean-field observables will have to be defined via the identities

2 14

FlJ+k— FlJ] = A z kngFa[j] ;o(“"j"e)
(2.11)
F[J] = O(NY), A[J; k] = O(k*/J?) (2.12)

(in the assessment of the order of the remainder terms of (2.11) we have used
Y ki=O(v/N|k|)). Simple mean-field observables correspond to A[J; k] =

We apply (2.11) to our macroscopic equations (2.8,2.9), restricting our-
selves from now on to mean-field observables in the sense of (2.11,2.12). One

of our observables we choose to be J2. In the present problem the shifts k,
1

being either £& G[J-&; B-£] or (& G[J-&; B-£]) 5, scale as |k| = O(N"2).
Consequently:

o QT +k] _ Q0[] {1—Q.A[J; k] —i Zk a(?] Q- Q)
_% ;kﬂw%{%(fl . Q[J])—% [; k,é%(fz . Q[J])] } n O(N_%) -

This, in turn, gives

/ dﬂ ZQQ N le —ZQ Q[J-I—k] —ZQQ[J]]
(2m)*
:_N{Zaaﬁ AT k] + Z’f Zk’faaa%[z]

'We are grateful to Dr. Yuan-sheng Xiong for alerting us to this important point.
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It is now evident, in view of (2.8,2.9), that both types of dynamics are de-
scribed by macroscopic laws with transition probability densities of the gen-
eral form

WHQ; Q) = { ZF[Q’ + ZGW[Q’ t]agfaszu}‘s[ﬂ_ﬂl]

+ O(N™2)

which, due to (2.7) and for N — oo and finite times, leads to a Fokker-Planck
equation:

d koo 1 & 0?
&7 =~ X 5o RIS IR@) + 5 3 5550 {GuE IR} -

(2.13)
The differences between the two types of dynamics are in the explicit expres-
sions for the flow- and diffusion terms:

FR S t] = 1\}1_1)20 <N(AN[J; %sg[']'ﬁ’B'ﬂ])é"‘??Z(&g[J{,B-{])ﬁa%’j][f”
n 2 aZQu[J]
ORI
Fba[Q t] = hm < [ <§g[J ¢ B- g _H?Z §z J £, B £]> aJ[J]
L 00, (J]
oy 206 66 Bo€)oles G €. B €y >n
Gl t] = ]}igr})o%? <Z<£ig[J-£,B-§]>ﬁ<§j J-£, B-€))s G%Ij][J] 35;}” >m

Equation (2.13) allows us to define the goal of our exercise in more explicit
form. If we wish to arrive at closed deterministic macroscopic equations, we
have to choose our observables such that

lmy 00 Gu[2;] =0 (this ensures determinism)
limy 0 2 F, [t =0 (this ensures closure)

In the case of time-dependent global parameters, such as learning rates or
decay rates, the latter condition relaxes to the requirement that any explicit
time-dependence of F),[€2;¢] is restricted to these global parameters.
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3 Application to Canonical Observables

3.1 Choice of Canonical Observables

We now apply the general results obtained so far to a specific set of observ-
ables, Q@ — {Q, R, P}, which are taylored to the problem at hand:

QJ]=J?, RJ|=J-B, Pla,yJ=(0z—J-€ sz—B-£)s (3.1)

with z,y € R. This choice is motivated by the following considerations: (i) in
order to incorporate the standard theory in the limit @« — co we need at least
Q[J] and R[J], (ii) we need to be able to calculate the training error, which
involves field statistics calculated over the training set D, as described by
Plz,y; J], and (iii) for finite & one cannot expect closed macroscopic equations
for just a finite number of order parameters, the present choice (involving the
order parameter function P[z,y; J]) represents effectively an infinite number?.
In subsequent calculations we will, however, assume the number of arguments
(z,y) for which Plz,y;J] is to be evaluated (and thus our number of order
parameters) to go to infinity only after the limit N — oo has been taken.
This will eliminate many technical subtleties and will allow us to use the
Fokker-Planck equation (2.13).

The observables (3.1) are indeed of the general mean-field type in the
sense of (2.11,2.12). Insertion into the stronger condition (2.10) immediately
shows this to be true for the scalar observables Q[J] and R[J]. Verification
of (2.11,2.12) for the function P[z,y; J| is less trivial. We denote with Z the
set of all different indices in the list (i1,...,1%), with n; giving the number of
times a number k occurs, and with Z* C 7 defined as the set of all indices
k € T for which ny is even (+), or odd (—). Note that with these definitions
L= pert Mk + Dker- Mk > 2|21 + |Z7|. We then have:

O'Plz,y; J]

Oy ... 0Ty,
O [dEdY  paaus i1 [3 T +0 i€ 2540

1) = /_ etlza+yd] < [H §Zk616k[ka+yBk]] [H ezik[ka+yBk}]>
Ot (27]')2 ke k¢T D

Upon writing averaging over all training sets of size p = aV as (...)g, this
allows us to conclude

< O'Plz,y; J]

— -3l
8J,~1 e aJie >E O(N )

2A simple rule of thumb is the following: if a process requires replica theory for its
stationary state analysis, as does learning with restricted training sets, its dynamics is of
a spin-glass type and cannot be described by a finite set of closed dynamic equations.
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Since 30—|T|+5|Z~| = 3[(—|Z~|-2|Z"|] > 0, the average over all training sets
of the function P[z,y; J] is thus found to be a simple mean-field observable.

The scaling properties of expansions or derivatives of P[z,y; J| for a given
training set D, however, cannot be assumed identical to those of its average
over all training sets, due to the statistical dependence of the shifts k in
Plz,y; J+k| on the composition of D (such subtleties are absent in the case
a = 0o of complete training sets). This dependence turns out to be harmless
in the case of batch learning, but will have a considerable impact in the case
of on-line learning, where k°* = nN~"1€G[J - £, B -£| is proportional to an
individual member of the set D. The field distribution P[z, y;J] turns out to
obey (2.11,2.12) for both on-line and batch learning (full details can be found
in Coolen and Saad, 1998), with

Agy[J; k™| = ;1) {5[96—J-§—779[J-€,B-&]]5[y—B-£] — Olz—J-€]0[y—B-§]

(Gl ol 15Ty~ B£]) - %n(% [g%,y]a[x—J-ﬂé[y—Bfﬂ}

(3.2)
For on-line learning the field distribution is apparently not a simple mean-
field observable. In contrast A, [J;k™] = 0, thus for batch learning the
distribution Pz, y; J] is a simple mean field observable in the sense of (2.10).
Note that Ay [J;k*] = O(n®) as n — 0, so that for small learning rates
these differences between batch and on-line learning disappear, as they should.
Having chosen our order parameters to be @), R and {P[z,y]}, we will from
this stage onwards use the notation (...)gp: for sub-shell averages defined
with respect to this choice.

3.2 Deterministic Dynamical Laws

Here we will first show that for the observables (3.1) the diffusion matrix
elements Gy in the Fokker-Planck equation (2.13) vanish for N — co. Our
observables will consequently obey deterministic dynamical laws, which we
will calculate in explicit form. We can save ink and trees by introducing the
complementary Kronecker delta 0,5 = 1 — 0, and the following key functions
which we will repeatedly encounter:

Alz,y; 2y = lim

N—oo

((Beg (€-€)0la—T-Ely—B-Ebla'~T-€1oly'~B-€Ms) (33

QRP;t
SN
Bla,y; 2yl = lim

<% g«ggg' (&&;6€)0[x— T -€)d[y— B-€)o[z' — T -€'16[y' — B-€])» >QRP;t
(3.4)
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Cla,ys 2yt ) = Jim - (( TggrBgrgr(€-€")(€ €)0la— €loly—B-¢]
Sla’—J-€)0ly' = B-€ Pl ~J-€oly" ~B-€") o) (35)

QRP;t

Dz, y; 2,y u, v;uf 0] = lim %<(((( Oggndgrgm(€-€")(€€")

dlz—J-€loly—B-€o[z'~J €6y — B-¢']
x 5[u—J-§"](5[v—B-5"]5[u’—J~§"']6[v'—B-E"'])}))[,> (3.6)

We show in a subsequent section that, within the present formalism, all three
functions (3.4,3.5,3.6) are zero. The function (3.3), on the other hand, will be
found not to vanish and to contain all the interesting and non-trivial physics
of the process. It plays the role of a Green’s function, and its calculation will
turn out to be our central problem.

First we turn to the diffusion matrix elements of the macroscopic Fokker-
Planck equation (2.13). Calculating the diffusion terms associated with Q[J]
and R[J] only is trivial. We write (f[z,y]) = [dzdy P|x,y]f[z,y] and find

QHQ[' - 9 4<$292[$a yl)
Fal- ] | = lim 1| 22yl y)) | =0
rl- -] (y*G*[z,y])
Gl -] ) 4zGz, y])*
Gl ] | = lim | 2(eGle,y)(yGlz,y)) | =0
Gl -] (yGlz, y])®

In calculating diffusion terms which involve the function P[z;y;J] we will
need two simple scaling consequences of the random composition of D:

EeD 55

For the diffusion terms with just one occurrence of P[x,y] we now find:
G [...] ] '] 0
Q,P[z,y] _ d./L' dy g? T yl l ] {
lG%P[z,y][' -] 7 / 7'y or
Jim 5 (€ €)0la—T-60ly—B-ghle' - €160/~ B-€ )|
—00 Qreit

= /dxdy G’ y’]l I] 3‘1{0(]\7—5)}:0
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[gQH{H = [ D] oy e 2|

lim _<<<(€ &0z _J.g](j[y_B.g](S[x'—J-é']5[y'—B'5']»ﬁ>QRp;t}

<2£Ug X y] ] ! l; 1

— [astay gccy]— (NHl=0
[ (yGlz,y]) o }

The non-trivial terms are those where two derivatives of the function P[z, y; J|

come into play. Here we must separate four distinct contributions, defined ac-

cording to which of the vectors from the trio {£, &', £"} are identical:

2

ool 1= [ a0 tim (€€ (&)

5[x—J-s]a[y—B-s]a[x'—J-s'la[y'—B-s'Ja[m"—J-s"]a[y"—B-s"1>>>ﬁ>

0xox’
+ |8l aloly"~y] + ole"~'13ly"~v]] Jim O(N"H)

QRP;t

— 772 /dl'”dy” g?[mll’ yll] {C[I,y,ﬂf yl’ mII yll

+ ol —aloly"~yldl~aloly'=y] Jim O(N)}

2

— 772 /dxlldyll g2[mll Il]a a IC[.’L‘,y;.TI, yI’ xlI’ yll]

Similarly:
2

0xox'

Gl Pyl -1 =1 /dudvdu'dv Glu, v]G[u', ']

tim - (&€l -6l ~ B-€JoTu—T €510~ B-€)
X ((€'-€")3[o'~T-€16ly/~ B-€ 0~ T €5l B-€"])s )

QRP;t
2

=n /dudvdu dv' g[u U]g[ul Ul]a ox'

Anticipating the two functions CJ...] and D|...] of (3.5,3.6) to be zero (to be
demonstrated in a subsequent section) we conclude that all diffusion terms
vanish. The macroscopic Fokker-Planck equation (2.13) thereby reduces to
a Liouville equation, describing deterministic evolution for our macroscopic
observables: %Q = F[€2;t]. These deterministic equations we will now work
out explicitly.

R A oyl oy
[.@,y,,’IJ,y,U,U,U,U]
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On-Line Learning

First we deal with the scalar observables () and R, whose equations are worked
out easily to give

90 =on [drdy Pla,y] aGle,9) + 07 [dady Play) Ples]  (37)
d
i n/dfcdy Plz,y] yGlz, y] (3:8)

These equations are identical to those of the familiar o — oo formalism. The
difference is in the function to be substituted for P[z,y], which would have
been a simple Gaussian one for @ — oo, but which here is the solution of

%P[x,y] = é [/dm'P[ac’, ylo[z—2'—nG[, y]]—P[x,y]]

a 131 1o AN
—n5— [ da'dy Gla 1A, iy

1 0? 1. 02
+§772/dac'dy'g2[ac', y'|Plx, y']@P[ac, y]+§n2@ /dx'dy'Q’Q[ac', v'|Blz, y; x' ]

Anticipating the term B]. ..] as defined in (3.4) to be zero (to be demonstrated
in a subsequent section) we thus arrive at the following compact result:

%P[x,y] = é [/dm'P[ac’, ylo[z—2'—nG[z, y]]—P[x,y]]

2

0 A S _//12//2////8_
_n%/dazdy Glz' yAle, ys 2y + on /d:c dy' Gla,y|Pla’y] 5 5 Pl y]

(3.9)
Batch Learning
For () and R we again find simple and transparent equations:
d
5@ =2 /dxdy Plz,y] zG[z, y] (3.10)
d
i n/dxdy Plz,y] yGlz, y] (3.11)

Finally we calculate for batch learning the temporal derivative of the joint
field distribution:

0 _n 0 0 130 A 1o

1 2
+_n2% /dx’dy’d.%”dy”c’[x, y; xl’ yl; .Z'”, yll]g[xI, yl]g[xll’ yl]
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Anticipating the term C|. . .| as defined in (3.5) to be zero (to be demonstrated
in a subsequent section) we thus arrive at the following compact result:
%P[way] = —g% [g[x,y]P[x,y]] - 77% /dﬂﬁ'dy’ Alz, y; 2 y/1G[2' o]

(3.12)
Comparing (3.7-3.9) with (3.10-3.12) shows that, as for complete training
sets (Mace and Coolen, 1998), the difference between the macroscopic laws
for batch and on-line learning is merely the presence (on-line) or absence
(batch) of terms which are not linear in the learning rate n (i.e. of order n? or
higher). This is consistent with the picture that for sufficiently small learning
rates the differences between batch and on-line learning must vanish.

3.3 Closure of Macroscopic Dynamical Laws

We close our macroscopic laws (for on-line and batch learning) by making,
for N — oo, the two key assumptions underlying dynamical replica theories:

1. The observables {Q, R, P} obey closed macroscopic dynamic equations.

2. These macroscopic dynamic equations are self-averaging with respect to
the disorder, i.e. the microscopic realization of the training set D.

Assumption 1 implies that all microscopic probability variations within the
{Q, R, P} subshells of the J-ensemble are either absent or irrelevant to the
evolution of {@, R, P}. We may consequently make the simplest self-consistent
choice for p;(J) in evaluating the macroscopic laws, i.e. in (3.3): microscopic
probability equipartitioning in the {Q, R, P}-subshells of the ensemble, or

p(J) = w(J) ~8[Q-QJI]] S[R—R[J| ][ [Pz, y]—Plz,y; JI| (3.13)

The new distribution w(J) depends on time only via {Q, R, P}. Note that
(3.13) leads to exact macroscopic laws if for NV — oo our observables {Q, R, P}
indeed obey closed equations, and is true in equilibrium for detailed balance
models in which the Hamiltonian can be written in terms of {Q, R, P}. It is an
approximation if our observables do not obey closed equations. Assumption
2 allows us to average the macroscopic laws over the disorder; for mean-field
models it is usually convincingly supported by numerical simulations, and
can be proven within the path integral formalism (see e.g. Horner, 1992). We
write averages over all training sets D C {—1,1}" of size p as (...)z. Our
assumptions result in the closure of both (3.7-3.9) and (3.10-3.12), since now
the function A[z,y;2',y'] of (3.3) is expressed fully in terms of {Q, R, P}:
Alz,y;2',y'] = lim

N—oo

[dF w(J) (Sla—J-£loly—B-£)(€-€)Dgedla’~J-€)5ly'~ B-€1)
< a7 w0 -
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The final ingredient of dynamical replica theory is the realization that aver-
ages of fractions can be calculated with the replica identity
fdJ W[J, z|G|J, =]
JdJ W[J, z]

>z = lim dJ' - dJ" (GIT 2] [[ W[I*, 2])2

a=1

giving

Alz,y; 7', y'] = lim hm/HwJ“ ) dJ*

N—)oo n—0

((Ola—T"-€loly— B-€)(€-€)Fgg dle'—T €16y~ B-€ 1o )

Since each weight component scales as J* = O(N _%) we transform variables
in such a way that our calculations will involve O(1) objects:

—
=)
f=1

(V) (Vo) : J* = (Q/N)?0®, B;=N ir

This ensures o = O(1), 7; = O(1), and reduces various constraints to ordi-
nary spherical ones: (6*)? = 72 = N for all a. Overall prefactors generated
by these transformations always vanish due to n — 0. We find a new effective
measure: [[2_; w(J®) dJ* — [[_, w(o®) do*, with

(@) ~ 5 [N=0?| § [NRQ }—r-o] TT3 [Pla.)—Plo.ys (/W) o]

(3.14)
In the same fashion one can also express P|z,y] in replica form (which will
prove useful for normalization purposes and for self-consistency tests). We
thus arrive at

Alz,y;2',y'] = lim lim /Oﬁlw(aa) do® < <<(§'.§)3££,

n—0 N—oo

L DT LV

and
rite =t g, I oty (o [z 255 o= 7)) )
(3.16)

Similarly we find replica expressions for the three functions BJ...], C[...] and
D|...] (3.4-3.6), which will be used subsequently to demonstrate that, within
the present formalism, they are self-consistently found to be zero.

m

We have now converted our problem from a conceptual one into a purely
technical one: the evaluation of the integrals and averages in (3.15,3.16), and
in similar expressions found for BJ...], C[...] and DJ...], and the subsequent
solution of the resulting closed macroscopic dynamical laws (3.7-3.9) (on-line)
and (3.10-3.12) (batch) for the order parameters {Q, R, P}.
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4 Replica Calculation of the Green’s Function

4.1 Disorder Averaging

In order to perform the disorder average we insert integral representations
for the -functions which define the fields (z,y,z',y') and for the J-functions
in the measure (3.14) which involve P[z,y|, generating n conjugate order
parameter functions Pa(x,y). Upon also writing averages over the training
set in terms of the p constituent vectors {£"} we obtain for (3.15) and (3.16):

!
we [z2+2'2"+y9+99'] 1im lim /H H dP ",y")

(27T) n—0 N—oo a=1g!'y"

/H {dda 6 lN__ . ] ZNfd;c”dy” P ( " II) Pt(CL‘” y”)}
\/—

2 P (7N£T£> ik '[@\/@UIWT]jﬁﬁ”-[fc’\/@alwr]>

Alz,y; 2",y = /

—
=

<p > (€4 )e

uFV =
(4.1)
dz dy 4

Pz, ] :/(27T)2 do2+y9] lim lim /H II 4~

n—0 N—oo a=1 gy

/H {da.a5 [N—(O’a) ]5 l%_T o ] szdz”dy” Ba(z" y") Pyz”, y”)}

0_ A T A )
mn(E5ETE)

< Z e (4.2)
In calculating the averages over the training sets (. ..) g that occur in (4.1) and
(4.2) one can use permutation symmetries with respect to sites and pattern
labels, leading to the following compact results:

-[a‘c\/@61+z2‘l']>

=
=

fo' EA T'g)\ i g“ - 1,5 [ S 1, 01
20 2z o o |- € aveot+iT- € 1 Vo +y7']>

_—
=)

<p > (€%")e

uFv B
1 Eilz, 91€;12', 7' 1
— PlogD[0,0] Nz j D2[0] o +O(N %) (4.3)
i bl
and N
< Ze__z EAPa(\/_UNE %) -[;z\/éa'1+g7']>
= E
— eplogv[o,OJM +0 (Nf%) (4.4)

D[0, 0]
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in which

Dluo] = <e-a—'zaﬁa(ﬁf;-ﬁ%)ws-[mal+vn>

3
iy (100 *—é)—;ﬁs.malﬂ

Ejlu,v] = <\/N§j€ ¢

and with the abbreviation (f[¢])¢ = 2N Sger 11y fI€]. These quantities

(which are both O(1) for N — o0) are, in turn, evaluated by using the
central limit theorem, which ensures that for N — oo the n rescaled inner
products o® - £/ V/N and the rescaled inner product 7 - £ / V/N will become
(correlated) zero-average Gaussian variables. After some algebra one finds

Llu,v;u' v = ZE[UU]EUU]

= QY aup{oh) [ Folu, 0]+ u danDlu ol [ A1, 0] + ! S D, ]
ap
R [+ w Pl ] [ FE ) 0 00
—RZ[ Fu! o' +u' D[, v]] E}}ﬂ[u,v]—kv 851 D[u, U]]

+ O(N"2)

(4.5)
in which D[u, v] and the F{[u, v] are given by n+1 dimensional integrals:

dx dy det%A 7% ( ;yc )A ( § > 7% Ea Po(VQay)—i[uy/Qz1+vy]
Dlu,v] = /W e

1
- %[5l o]+ v uDluol]| [F v+ v 5D
af

(4.6)
Flu,v] =

[ T L i 5 .
/da: dy det A P P \/735 2 ( >A< y ) -3 Pa(VQza,y)—iluy/Qz1+vy]
(2 ) (nt1)/2  “A aly

(4.7)
with A € {1,2}. The matrix A in (4.6,4.7) is defined by
g - qn R/VQ
A= 5 5 Gos({0}) = wﬁ (4.8)

RIVG - RIVG 1
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Note that the quantities (4.6,4.7) depend on the microscopic variables o
only through the spin-glass order parameters g,z({o}).

It is a straightforward exercise to carry out a similar calculation for the
functions Bl[...] (3.4), C[...] (3.4) and DJ...]. This gives a zero result in all
three cases, basically due to the three functions involving too many unpaired
pattern components (each of which will effectively generate a factor N ’%),
confirming our previous assertions about the vanishing of all diffusion matrix
elements in the macroscopic Fokker-Planck equation (2.13). For details we
refer to (Coolen and Saad, 1998).

4.2 Derivation of Saddle-Point Equations

We combine the results (4.3,4.4,4.5) with (4.1,4.2). We use integral represen-
tations for the remaining d-functions, and isolate the g3, by inserting

1= / dq dq dQ dR iN(S™ (QutaR/NDI+Y,, dustos]
(QW/N)TL2+2H

% ¢ il (Qa(0f) +Ramiof) =i 3 s dupoftol]

We hereby achieve a full factorization over sites, and both (4.1) and (4.2) can
be written in the form of an integral dominated by saddle-points:

dz di'dy dif'
. I , —_—
A[x,y,x,y]—/ (271')4

o P 5 o NUqa.Q R #yLlE G2 T
Jimy Jim, | da dg dQ dR 1 dFa(a",y") e 20,0

ilzd+z' 3 +yg+yd']

azllyll
di dj
Pl = [ s

) ) WA A D (oM NW[Q,Q,Q,R,{P}]M
rlbll)r(l”\}l_rgo/dqudeRHdPa(xay)e ’D[O’O]

etlzd+yd]

O{I” yll

with

UL ] =0> (Qa+ RaR/\/é) +9 Gap Gop +i2/d:r dy Po(z,y)P[z,y]
a af @

1 ; 5 o B . .
. —1 [Qaoi+RaTioa]—1t 03000
+alog D[0, 0] + Jim i EZ log/do- B ODR > g Gapoacs

The above expressions for Az, y; 2', y'] and P|z,y| will be given by the inten-
sive parts of the integrands, evaluated in the dominating saddle-point of W.
We can use the equation for P[z,y| to verify that all expressions are properly
normalized. After a simple transformation of some integration variables,

qAaﬁ — (jaﬂ - Qaéaﬂ Ra — \/éRa
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we arrive at the simple result

dz di' dy dy' . Llz, 57", 7]
ol o = [ 2 I T pilmata’ 4y tyd] |y S0 I oy
Alz,y; 2,y / o) e’ A = D0, 0] (4.9)
dz dy D[z, 7]
P :/ etz +ydl 15 ? 4.1
[z,y] @2 N D0, 0 (4.10)

in which all functions are to be evaluated upon choosing for the order param-
eters the appropriate saddle-point of ¥, which itself takes the form:

Ul ] =iy Qall~aa) +iR Y Ra+i Y Gap Gas+i / dzdy Pa(z,y)Plz,y]
o o af o

: 1 _iTi\/QE ﬁaaa_iz ‘iaﬂaao'ﬂ
+alog D[0, 0] + A}l_lgo N glog/da' e 8 (4.11)

With D[u, v] given by (4.6) and with the function L[u, v;u’,v'] given by (4.5).
The auxiliary order parameters g,g have the usual interpretation in terms of
the average probability density for finding a mutual overlap ¢ of two indepen-

dently evolving weight vectors with the same realization of the training set
(see e.g. Mézard et al, 1987):

<P((])>E=<<<(5 lq—%l >>>:= }HOM 0 3 0lg—qag]  (4.12)

) oz

We now make the replica symmetric (RS) Ansatz in the extremization
problem, which according to (4.12) is equivalent to assuming ergodicity. With
a modest amount of foresight we put

. ?
Gapg = qodaﬁ + q[l_éaﬁ] dapg = 5[71 - Toéaﬁ]
R, =ip Qo = id f’a(u, v) = ix|u, v]
This allows us to expand the quantity ¥ of (4.11) for small n:

1

, 11 1 1 \
lim ~¥...] = —¢(1-qo) = pR+ Sar - d0(r=ro) = 5 logro + Q—TO(H‘P Q)

- /d:vdy x|z, y] Plz,y] + li_I)I(l) a log D0, 0] + constants
n—=0n

At this stage it is useful to work out those saddle-point equations that follow
upon variation of {@,r, p,7o}:
1 R qQ—R?
Q=1 To=T—— =

1—g¢ P~ Q-9 "7 Q=g
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These allow us to eliminate most variational parameters, leaving a saddle-
point problem involving only the function x[z,y] and the scalar ¢:

ﬂ + l ]Og(l—q) — /dmdy X[.I, y] P[af, y]

lim %‘I’[q, {x}]= =g |2

n—0

+ ling) e log D|0, 0; ¢, { x }] + constants (4.13)
n— mn

Finally we have to work out the RS version of D[0, 0; g, {x}], as defined more
generally in (4.6). The inverse of the matrix in (4.8), in RS Ansatz, is found
to be:

Cu -+ Cwm v ) VZ_RI/:/I?jL@(n)
A= : Cop = 2L 4 b=1+0(n
Cnl Cnn v o 1—(] quQ ’Cg )
f}/ PR r)/ b = (l_q)z +O(n)
(4.14)

With this expression we obtain

[dx dy e 3L CT—3by Y, zatd 3, X(VQraw)

D[0, 0; =
[Oa 07 q, {X}] fd:c dy e_%m-Cw—ébyLwZa Zor

$2 n
IDzDy |[dx emﬂz\/avﬁ]ﬁéx(\@w,%)]

[DzDy [fd:v eﬁwzﬂzﬂvﬁ]w]"

Jdzx e’%ﬂ[zﬂwy]/\/@%x(w,y)

(0]
lim < log D[0, 0: ¢, =a/DzD lo
n—0 n & [ q {X}] ylos fdx e—WZ_q)—I—x[z\/E—’Yy]/\/Q

with the usual short-hand Dy = (QW)’%G’%?P. We can simplify this result by
defining

A=R/Q(1—-q) B =/¢Q—-R?/Q(1—q) (4.15)

which gives

2
fdl' e—ZQfl—_q)-i-m[Ay‘FBz]‘FéX(may)

«
lim 2 10g D[0, 0; ¢, :a/DzD o
e gD| ¢, {x}] y log [dz 67%+w[Ay+Bz]

Upon carrying out the z-integration in the denominator of this expression we
can write (4.13) in a surprisingly simple form (with the short-hands (4.15)):

lim 20, ()] = "yt 1) log(1 ) ~ [ dady xlo.s] Ple.

+ oz/Dsz log /dx ¢~ (=g TolAyT B+ ax(e] (4.16)



22 A.C.C. Coolen and D. Saad

Note that (4.16) is to be minimized, both with respect to ¢ (which originated
as an n(n—1)-fold entry in a matrix, leading to curvature sign change for
n < 1) and with respect to x[z,y| (obtained from the n-fold occurrence of the
function P[z,y], multiplied by i, which also leads to a curvature sign change).

The remaining saddle point equations are obtained by (functional) varia-
tion with respect to x:

2
e —m-kw[fly—i—Bz]—e—éx[w,y]

—Lly2
Dz
V2T / Id

(&

for all z,y : Plz,y| = y
4 [2,9] —%%’[AyﬂLBZ]ﬂLéx[w’,y}

(4.17)

Tz’ e
and ¢ (using equation (4.17) wherever possible):

/d:vdy Plz,y](z— Ry)* + (RQ—(]Q)(é_l) =

[2\/qQ—R2 + %1 /DyDz z

2
fdfl: T e—wszq)-F-’U[Ay"‘Bz]"'éX[w,y}

2
[dz o~ 7oty tel Ay B+ ox(z]

(4.18)
Apart from the physically irrelevant degree of freedom x[z, y]| = x|z, y]+p(y),
for arbitrary p(y), the solution of the functional saddle-point problem (4.17),
if it exists, will be unique for any given value of ¢ in the physical range R?/Q <
g < 1. This follows immediately from the convexity of ¥[...] (4.16), which can,
in turn, be deduced from the the fact that the second functional derivative
of U[...] with respect to the function x|...] is a non-negative operator. In
addition one can prove that ¥[...] (4.16) has a lower bound, which is given
in terms of the differential entropy of the distribution P[z,y|. Furthermore,
the functional saddle-point equation (4.17) can be rewritten in the form of
a fixed-point equation associated with an iterative mapping for the function
X[z, y], such that this mapping has (4.16) as a Lyapunov functional. Should
an analytical solution of (4.17) turn out to be impossible, in combination
the above properties convert finding the solution of (4.17) from a potentially
insurmountable obstacle into a straightforward numerical exercise. Details
will be published in (Coolen and Saad, 1998).

4.3 Explicit Expression for the Green’s Function

In order to work out the Green’s function (4.9) we need L[u, v; u’,v'| as defined
in (4.5) which, in turn, is given in terms of the integrals (4.6,4.7). First we
calculate in RS ansatz the n — 0 limit of D[u,v;q,{x}] (4.6), using (4.14),
and simplify the result with the saddle-point equation (4.17):

2 .
Jdx e_w(ml——rz)+w[f4y+32]+§x[w,y]—ww

lim Dlu, v; g, :/DzD e vy
hm [ g, {x}] Yy Jdx e_ﬁz_w+m[/ly+321+éx[w,y]
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= /dxdy Plz,y] e~y (4.19)

Next we work out Fi¥[u,v] (4.7) in RS Ansatz, using (4.14), with A € {1,2},
which results in

lim Fy[u,v] =i lim
n—0 n—0

»2
P |:—% £+[zﬂ—7y]w,@+§x[v Qmﬁ,y]] —iur1vVQ
a,\X[\/ Q

/DyDz e vy /d.’l: e Za, Y]

Replica permutation symmetries allow us to simplify this expression:

}Lig(l) F2u,v] = 6q1 Fy [u,v] + (1—641) F5[u, v] (4.20)
with o

Fy[u,v] = i/dw dy Plz,y] e”™™" o\x[z, y] (4.21)
and

Filu,v] = i/DyDz e~y

2 2 .
|:fd.’1) e—m-&-m[z‘ly-f—BZ]-f-éX[m,y ] [fdﬂ? e—m+x[Ay+Bz]+$x[m,y]—zux

] a)\X[-’E, y]

2 2
fd.’E e—m—Fw[Ay‘FBz]‘F%X[w,y}]

(4.22)
We can now proceed with the calculation of (4.5), whose building blocks are

o~ F2u, v] + uba1 Dlu, v] = 601G [u, v] + (1—08a1)G1 2[u, v]
a_lfg[u, U] + Uaalp[ua U] = (SalGQ[U, U] + (1—5a1)C~¥2[u, ’U]
with
Gilu,v] = oz_l}"ll’Q[u, v] + uD|u, v] Gilu,v] = o L F2[u, v]

Galu,v] = o™t F, [u, v] + vDlu, v] G’g[u, v] = o Felu, v]

and their Fourier transforms:

~ ~ A du dU jutiivd ~ A A du d/U UB+1v0
Gt 7] :/We TG u, 0] G1la, 9] :/(%)26 TG [, 0]
N ra n du dv a4 S e A AU AV apive
Goli, 1] = [ B Gl Goli, i) = [ ol

With these short-hands we obtain a relatively compact expression for (4.5).
In this expression we can subsequently take the limit n — 0, insert the result
into our equation (4.9) for the Green’s function Az, y; ', y'], and find:
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Alz,y; o ,y'] = —Q(1—q) [Gilz, y)Grlo’,y'] — Gh [z, y)Grla’, /]

~Qq [Gilz,y] - Gz, y]] [Gile, '] - Gula', o]
—R [Gile, y] — Gi[x, y]] [Gola', '] = Gol’, /]
~R[Gil2',y] - Gila',y)] [Galz, y] - Galz, ]
— |Gal, y] — G,y [Gale' y/] — Gale, o] (4.23)

Finally, working out the four relevant Fourier transforms, using (4.19,4.21,4.22),
gives:

Gilz,y] =i B Plz,y] %X[%y] - %P[%y]]

Gl =i | Plovs] gt - 5Pl

e 22
Gilz,y] = /Dz

1 / w2 1
[fdx’ e—m—i—z [Ay+Bz]+ x[z',y] alX[ﬂ?l, y]] e—m-kz[Ay—i—Bz]-l-;X[z,y]

2 2
[ [da’ e%ﬂ’[AszHéx[w’,y]]

3y
Golz,y] = re /Dz

1t 22 1
[fdx’ e—m—l—w [Ay+Bz]+ - x[z',y] (92)([.%', y]] e—m+z[Ay+Bz]+gx[$,y]

2 2
[dz' e m +a![Ay+ B2+ S x[#' ,y]]

4.4 Simplification and Summary of the Theory

In this section we simplify and summarize the results obtained so far. Since the
distribution P[z,y] obeys P[z,y] = P[z|y]P[y] with P[y] = (27)~2e~2¥", our
equations can be simplified by choosing as our order parameter function the
conditional distribution P[z|y]. We also replace the conjugate order parameter
function x|z, y] by the effective measure M|z, y|, and we introduce a compact
notation for the relevant averages in our problem:

Jdz M(z,yleP** f[z, y, 2]
Jdz M|z, y|eB>

mz 1
Mz, y] = e~ @G- HAmvHaxlw] (flz,y, 2w =
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Instead of the original Green’s function A[z,y;2',3'] we turn to the trans-
formed Green’s function A[z, y;2',y'], defined as

Ale,y;2',y') = Pla,ylAle, y; 2,y 1Pl y/]
With these notational conventions one finds that (4.23) translates into
Az, y; 2 y/] = QU —q) [Llw, vl L[z o] = Nilz, yl I [2,¥]] + e, yl el ]
R [Dfe,yl—=Jilz, )] ey + R [y =l ] Jolz,y]

+Qq [J1[$,y]—j1[$,y]] [Jl[xla yl]_jl[wla yl]] (424)
with
_ 0 Mlz,y] =—Ry
ke vl = 5518 Play T Q-0

T, = PLXI [ D (5 1og Mol + G

)5 {0[X —])s

9. M[X,y] RX
e T R
Rx

_P[X|y]_1/DZ <§y10gM[$7y] - Q(l—q)

It turns out that significant simplification of the result (4.24) is possible, upon
using the following two identities:

)5 (0[X —x])s

0
- .=—B
(= log Mlz,y])., = Bz
0 0
(5 oMl = 5 log [do ™Ml y]

To achieve the desired simplification of A[z,y; 2',y'] we define

3%,y = {QU-aPIXy)} [Dz (X-aGIX sl (425)

We can now, after additional integration by parts with respect to z, simplify
the above expressions for Ji[...], Ji[...] and J3[...] to

_:U—Ry_qQ—R2 z Iz, y] = Jilz,y] — ®lx
Jilz,y] = 0= Q(l—q)q)[ Y Ji[z,y] = Sz, y] — @[z, y]

Jolz,y] =y — RP[z, y|

and consequently

Alz,y; 2 y') = yy' + (a—Ry) @[z y'] + ('~ Ry ) @[, y] — (Q—R*)®[z, y]®[z', ]

(4.26)
The kernel A[z,y;2’,y] is now written in an explicitly separable form, as a
result of which our theory can be summarized in just a single page:
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e Philosophy and Notation

Our observables Q=J?, R=B-J and P|z,y|=(5[zr—J-£]6[y— B-£])5 obey
deterministic and self-averaging laws for N — co, with P[y] = (27) ze 3¥".
We abbreviate (f[z,y]) = [dxDy P|z|y|f[z,y] and (with ® defined below):

U=(®[z,ylG[z,y]) V=(2Gz,y]) W=(uG[z,y]) Z=(G[x,y])

The training- and generalization errors are given by

E; = (0[—zy]) E,=7"" arccos[R/\/Z)] (4.27)

e Macroscopic Dynamic Equations

On-line learning:

%Q =2V +n°Z %R =nW (4.28)

@ Plaly) =~ [da' Pl ly) {sla—s'—nGlat yl) 5z —1} + 2027 2 Plaly]
- { Plely] W= Ry) + Wyl = [V=RW— (@~ F)U] o { Plalyjole, ]}
(4.29)

Batch learning:
%Q =2V %R =W (4.30)
& Plaly] = 2 0 PlalylGle. o1} — no- { Plely] Uz~ Ry) +773] )
[V BW-(@-F)U] £ { Plalyor, ]} (4.31)

e Saddle-Point Equations and the Function ¢

The key function ®[z,y| occurring in the above equations is given by

31X,y = {QU-PXy)} [Dr (X2l GIX - @8)
with
(layy, o)), = L Mz yle™ Sy, 2] g VaQ=I2 )

Jdz Mz, ylePr? Q(1—q)

The spin-glass order parameter g € [R?/Q, 1] and the function M|[z,y] are
calculated at each time-step by solving the saddle-point equations

((:v—Ry)Q)—i—(qQ—Rz)(l—é) _ [2(qQ—R2)%+%] [DyDz o). (430

PX[y] = [ Dz ([X~z]), (4.35)
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5 Tests and Applications of the Theory

5.1 Locally Gaussian Solutions

There are two advantages of rewriting our equations in Fourier representation.
Firstly, the functional saddle-point equation (4.35) will acquire a simpler form.
Secondly, in those cases where we expect P[z|y] to be of a Gaussian form in
x this will simplify solution of the diffusion equations (4.29,4.31). Clearly,
Pz, y] being Gaussian in (z,y) is not equivalent to P[z|y] being Gaussian in
x only. The former will only turn out to occur for « —oco. A Gaussian P[z|y]
with moments which depend in a non-trivial way on y, on the other hand, can
also occur for aw< oo, provided we consider simple learning rules and small 7.
To avoid ambiguity we will call solutions of the latter type ‘locally Gaussian’.

We normalize the measure M|z, y] such that [dz M[z,y] =1 for all y € R,
emphasizing the result in our notation by writing M|z, y] — M[z|y], and we
introduce the Fourier transforms

Plkly] = [dv ¢ **Plaly] Mkly) = [do e Mlzly]

The transformed functional saddle-point equation thereby becomes

~

M[k+iBz|y]

M[iBz|y] (5:1)

Plkly] = /Dz

Transformation of the on-line equation (4.29) for P[z|y] (from the which the
batch equation (4.31) can be obtained by expansion in 7) gives:

d A _ 1 ' P[kl|y] dz’ iz (k' —k)—inkG |z’ ,y] :
~log Plkly] = a{ [k Bty ] 20 — 1 g —ink(W-UR)y

1 . — RW—(Q—R? M[k+iB
—§n2kzz+nkUa%1ogP[k|y]—mk [V RIV— (@ R)U] /DzzM

VaQ—R2P[k|y] y

M][iBz]
(5.2)
If P[z]y] is Gaussian in & we can solve the functional saddle-point equation
(4.35) (whose solution is unique), and find

p e 3[z=T(Y)]* /A% (y) u o Hz-TW)]? /() .
)= A(y)V2r loly] = o(y)v2r (5-3)
A*(y) = o*(y) + B*0*(y) (5.4)

with Plk|y] = exp [<ikT (y) — §k2A%(y)] and M(k|y] = exp [-ikT(y) — 3k%0%(y)].
Insertion of these expression as an Ansatz into (5.2), using the identity

Mlk+iBzly] _ ., o 5 2
/Dz z W = ikBo*(y) P[k|y]

(which holds only for locally Gaussian solutions) and performing some simple
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manipulations, gives the simplified equation

d 1 d 1 du 1 . 92 —
—ik—T(y) — k2 A2 - = 7 e slumtk AP —iknG[z(y) +ui(y)y] _ 1
kW) = 3k AW a{ Vo
—ink {Wy + Ulz(y) - Ryl}
V—RW— (Q—RQ)U] }
Q(1—q)

It follows that locally Gaussian solutions can occur in two situations only:

[z o)+ 20| 5.5

3
O° [ du s kAP -iknglEw) tunw)al _

k3 ) \for

The first case corresponds to complete training sets (see next section). The
second case occurs for sufficiently simple learning rules G|z, y], in combination
either with batch execution (so that we retain only the term linear in 7) or
with on-line execution for small 7 (retaining only 1 and n? terms).

5.2 Link with the Complete Training Sets Formalism

The least we should require of our theory is that it reduces to the simple
formalism of complete training sets in the limit & — oo. In the previous section
we have seen that for a — oo our driven diffusion equations for the conditional
distribution P[z|y] have locally Gaussian solutions, with [dx zP[z|y] == (y)
and [dz[z—z(y)]*Plz|y] = A?(y). Note that for such solutions we can calculate
objects such as (z), and the function ®[xz,y] of (4.32) directly, giving

T —7Z(y)
Q(1—q)[1+B?0%(y)]

with A2(y) = o?(y)+B?0*(y) and B = v/qQ—R?/Q(1—q). The remaining
equations to be solved are those for () and R, in combination with dynamical
equations for the y-dependent cumulants Z(y) and A?(y). These reduce to:

(), = T(y) + 2Bo*(y) ®lz,y] =

d | 20(aGle.y]) +n¥(G%z,]) (on—ling '
@i { 2n(zGl, ) (batch) T
(5.6)
%% [f(y)—Ry] = [z(y) - Ryl(®[2", y'1G[2", y/]) (5.7)
ot (8- ] = (& gt [ 72 ]
ro o 2 _ Q_R2
0l |- g L] 69
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with one remaining saddle-point equation to determine ¢, obtained upon
working out (4.34) for locally Gaussian solutions:

226(21_—}2)“] / Dy o2(y) (5.9)

We now make the Ansatz that Z(y) = Ry and A?(y) = Q—R?, i.e.

. e~ 3lz—Ry*/(Q—R?)
= 1
) = = (5.10)

[ Dy {0~ B + A%(5)} + 0@~ B = [2

Insertion into the dynamical equations shows that (5.7) is now immediately
satisfied, that (5.8) reduces to 0?(y) =Q(1—q), and that the saddle-point equa-
tion (5.9) is automatically satisfied. Since (5.10) is parametrized by @ and
R only, the equations (5.6) are closed. From our general theory for restricted
training sets we thus indeed recover in the limit o — oo the standard formal-
ism (5.6,5.10) describing learning with complete training sets, as claimed.

5.3 Benchmark Tests: Hebbian Learning

In the special case of the Hebb rule, G|z, y] = sgn[y|, where weight changes AJ
never depend on J, one can write down an explicit expression for the weight
vector J at any time, and thus for the expectation values of our observables.
We choose as our initial field distribution a simple Gaussian one, resulting
from an initialization process which did not involve the training set:

Pyaly] ¢ 3(z—Roy)’/(Qo—Rj) (5.11)

oY = .
2m(Qo— 1§)

Careful averaging of the exact expressions for our observables over all ‘paths’
{€(0),&(1),...} taken by the question vector through the training set D (for
on-line learning), followed by averaging over all realizations of the training set
D of size p = aN, and taking the N — oo limit, then leads to the following
exact result (Rae et al, 1998). For on-line Hebbian learning one ends up with:

[2 1 2 [2
Q = Qo + 2ntRor [ = + n’t + 0t [—+—] R=Ry+nty/= (5.12)
™ o T ™

dA ~2 2 ;A —in& sgn
P[$|y] — % e*%w [@—R ]+Zw[wfRy}+ﬁ[e né sgnly] 1) (513)
For batch learning a similar calculation 3 gives:
2 1 2 2
Q = Qo + 2ntRoy| = + 1t {—+—] R = Ry +nty| = (5.14)
m a T m

3Note that in Rae et al (1998) only the on-line calculation was carried out; the batch
calculation can be done along the same lines.
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¢ 5[z~ Ry—(nt/a) sgnly]]*/(Q—R?)
Plzly] = (5.15)
2m(Q—R?)
Neither of the two field distributions is of a fully Gaussian form (although
the batch distribution is at least locally Gaussian). Note that for both on-line
and batch Hebbian learning we have

/da: zPlz|ly] = Ry + %t sgn[y] (5.16)

The generalization- and training errors are, as before, given in terms of the
above observables as E; =7 'arccos|R/\/Q)] and E; = [DydzPlz|y|0[—zy].
We thus have exact expressions for both the generalization error and the
training error at any time and for any «. Their asymptotic values are, for
both batch and on-line Hebbian learning, given by

1
—_— (5.17)
V1+7/2a
1 1 o 1
Jim By = 5735 /Dy erf [\yw;%—\/T_a] (5.18)

As far as E; and F} are concerned, the differences between batch and on-line
Hebbian learning are confined to transients. Clearly, the above exact results
(which can only be obtained for Hebbian-type learning rules) provide excellent
and welcome benchmarks with which to test general theories such as ours.

5.4 Batch Hebbian Learning

We now compare the exact solutions for Hebbian learning to the predictions
of our general theory, turning first to batch Hebbian learning. We insert into
the equations of our general formalism the Hebbian recipe G[z,y| = sgnly].
This simplifies our dynamic equations enormously. In particular we obtain:

U =0, V = (x sgn(y)), W =4/2/7

For batch learning we consequently find:

d

%Q—QnV —R m/2/m
d o 0 20
@P[l‘\y] =- Sgn(y)%P[x\y] - ny\g%P[ﬂfly]

-y 2) 2 pijole, )

Given the initial field distribution (5.11), we immediate derive Vo= Ry4/2/7.
From the general property [dx P[z|y]®[z,y] = 0 and the above diffusion
equation for P[z|y] we derive an equation for the quantity V = (z sgn(y)),
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resulting in %V = n/a+ 2n/m, which subsequently allows us to solve

2

Furthermore, it turns out that the above diffusion equation for P[z|y] obeys
the conditions for having locally Gaussian solutions, i.e.

e~ 3[E—TW)*/A%(y) Mialy] e~ 3l2—TW)]*/o*(y)
) Ty =
A(y)v2m o(y)v2m

provided the y-dependent average T(y) and the y-dependent variances A(y)
and o(y) obey the following three equations:

N nt d
T(y) = Ry+ . sgn(y) th (y)

2 1 2
Q=CQo+ 2ntRo\/i + n°t? [—+—
™ o T

Plzly] =

_ 2to*(y)
~ aQ(l-q)
A*(y) = o®(y)+B%*(y)
The spin-glass order parameter ¢ is to be solved from the remaining saddle-

point equation. With help of identities like (z), = Z(y) +2Bo?(y), which only
hold for locally Gaussian solutions, one can simplify the latter to

g?l_—l(%;) +1] /Dy o*(y)

n2t2

«

+ a/Dy A%(y) + (¢Q-R*)(a—1) =« [2

We now immediately find the solution

A*(y) = Q—R?, o’(y) = Q(1—q), q = [aR*+n’t")/aQ
o~ Llo—Ry—(nt/a) sgn(v)?/(Q—F2)
Plz|y] = Q) (5.20)
7T —_

(this solution is unique). If we calculate the generalization error and the train-
ing error from (5.19) and (5.20), respectively, we recover the exact expressions

1 Ro+nt %
E, = — arccos - [ (5.21)

" \/Q0+27)tR0\/g+n2t2 [i+%]

yl[Rotnty/2]+%
V2Qu—R3+ZE]
Comparison of (5.19,5.20) with (5.14,5.15) shows that for batch Hebbian
learning our theory is fully exact. This is not a big feat as far as () and
R (and thus Ej) are concerned, whose determination did not require knowing
the function ®[z,y]. The fact that our theory also gives the exact values for
P[z|y] and E;, however, is less trivial, since here the disordered nature of the
learning dynamics, leading to non-Gaussian distributions, is truly relevant.

(5.22)

1 1
Et:§—§/Dyerf
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5.5 On-Line Hebbian Learning

We next insert the Hebbian recipe Gz, y]= sgn|[y] into the on-line equations
(4.28,4.29). Direct analytical solution of these equations, or a demonstration
that they are solved by the exact result (5.12,5.13), although not ruled out, has
not yet been achieved. The reason is that here one has locally Gaussian field
distributions only in special limits. Numerical solution is straightforward, but
has not yet been carried out. For small learning rates the on-line equations
reduce to the batch ones, so we know that in first order in 7 our on-line
equations are exact (for any «, t). We now show that the predictions of our
theory are fully exact (i) for @, R and Ej, (ii) for the first moment (5.16)
of the conditional field distribution, and (iii) for all order parameters in the
stationary state. At intermediate times we construct an approximate solution
of our equations in order to obtain predictions for P[z|y] and Ej.

As before we choose a Gaussian initial field distribution. Many (but not
all) of our previous simplifications still hold, e.g.

U =0, V = (x sgn(y)), W =4/2/x, Z=1
(Z did not occur in the batch equations). Thus for on-line learning we find:
d d
—Q =2nV + 1 —R =1n4/2
@ =2V +1 R =ny2/m

The previous derivation of the identities £V =n/a+2n/m and Vo = Ro\/2/7
still applies (just replace the batch diffusion equation by the on-line one), but
the resultant expression for () is different. Here we obtain:

[2 1 2 [2
Q@ = Qo + 20tRo\ [ = + 0t + n*t? [—+—] R=Ry+nty/= (5.23)
™ o T ™

Comparing (5.23) with (5.12) reveals that also for on-line Hebbian learning
our theory is exact with regard to () and R, and thus also with regard to E,.

Upon using V =nt/a+ Ry/2/7, the on-line diffusion equation simplifies to

2

2 plaf)= L {plen sent)ls) P} - 2 2 Plell + 1t 2 Pl

2

S0 Plelele, o))
Multiplication of this equation by x followed by integration over x, together
with the general properties [dx {P[x|y|®[z,y]} = 0 and [dx xPy[x|y] = Roy,
gives us the average of the conditional distribution P[z|y] at any time:

Z(y) = /da: zP[z|y] = Ry + %t sgn[y]

Comparison with (5.16) shows also this prediction to be correct.
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We now turn to observables which involve more detailed knowledge of the
function ®[z, y]. Our result for Z(y) and the identity (z), = B~'Z log M[iBz|y]
allow us to rewrite all remaining equations in Fourier representation, i.e. in
terms of Plkly]= [dz e~ ™**P[z|y] and M[k|y]=[dz e~**M][z|y]:

d 1 —ink sgn(y) ; 2 1 21.2
tlogP[kIy] [ ik sen(y) 1] —mky\g—gn k

d
zkﬂzt [P[k| W@ — 32] /D MlE+iBzlyl 5 9y

MIiBz|y]|
with log Pylk|y] = —ik Roy—3k*(Qo—R3), and with the saddle-point equations
) Mk+iB
Plkly) = [ D= Mlk+iBzly] (5.25)
M[iBzly]

% + /Dy /dx Plzlyllz—7(y)]* + (1—5)(qQ—R2)

_ [2@(1—q)+§] /DyDz ;2 log M[iBzy] (5.26)

Due to the fields = growing linearly with time (see our expression for Z(y))
the equations (5.24,5.26,5.25) cannot have proper ¢ — oo limits. To extract
asymptotic properties we have to turn to the rescaled distribution Q[k|y] =

P[k/t|y]. We define v(y) = (n/a) sgn(y Hnyy/2/7. Careful integration of (5.24),
followed by inserting k— k/t and by taking the limit ¢t — oo, produces:

A in’k M{uk /t+iBz|y]
log Quolk|y] = —ikv(y)——— du lim ———— / = —
[ ‘ ] ( ) a t—>oo,/qQ R2 Qoo[ukw]M[sz‘y]
(5.27)
with the functional saddle-point equation
n MI[k/t+iBz
Qlkly] = [ Dz MELHBEY (529
M[iBzly]

The rescaled asymptotic system (5.27,5.28) admits the solution

with the asymptotic values of B, A, & and ¢ determined by solving

- - 2 —_ D2
A = B&* A= g 1 B = Jim YOI
o t—oo \/qQ—R t—o0 Q(l q)

n/® + A+ (1—a™") lim (¢Q— R?)/t* = 2B%5” lim Q(1—q)/¢
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Inspection shows that these four asymptotic equations are solved by

lim A =n/va, limg=1

t—o0 t—o00

so that

~ —t a1 sgn 7| —1in2k2/a
tli)m Blk/t] = e kn[ gn(y)+yy/2/ ] 3 k*/ (5.29)
Comparison with (5.12,5.13) shows that this prediction (5.29) is again exact.

Thus the same is true for the asymptotic training error.

Finally, in order to arrive at predictions with respect to P[z|y] and E;
for intermediate times (without rigorous analytical solution of the functional
saddle-point equation), and in view of the locally Gaussian form of the field
distribution both at ¢ =0 and at ¢ = oo, we can approximate P[z|y| and
Mz |y] by simple locally Gaussian distributions at any time:

b ¢~ Hle-T@)/A? Y e~ zle-TWI/o? 5 30
Y = ——F, Yl = ——7m= )
ol = 575 [aly) = — (5.30)

with the (exact) first moments T(y) = Ryt+nta ! sgn(y), and with the variance
A? self-consistently given by the solution of:

VqQ—R? d 2n*to?
A? = o2+ B% B = V@R —A? = + It
Q1—q) dt " aQ(1—q)

242

aA? + % + (¢Q—R?)(a—1) = ao® l2

qQ—R?
Q(l—Q)H]

The solution of the above coupled equations behaves as
A?=Q—-R*+n*t/a+0O(*) (t—0)
A/ (Q-R*) =0 (t — oo)

for short and long times, respectively (note Q@ — R? ~ t* as t —o00). Thus we
obtain a simple approximate solution of our equations, which extrapolates
between exact results at the temporal boundaries t=0 and =00, by putting

= Q-R*+n’t/a

with @) and R given by our previous exact result (5.23), which results in
1 R
E; = —arccos [—
™

\/6_2] - /D ["QJ'RJ“";/O‘] (5.31)

We can also calculate the student field distribution P(z) = [Dy P[z|y], giving

et [ Riatt/al
—er
2,/27(A2+ R2) Ay/2(A2+R?)

P Rlz—nt/o] )

2,/27(A?2+ R?) tert (A,/Q(A2+R2)

P(z) =

n (5.32)
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Fig. 4: On-line Hebbian learning, simulations versus theoretical
predictions, for o € {0.25,0.5,1.0,2.0,4.0} (N = 10,000). Upper
curves: generalization errors as functions of time. Lower curves:
training errors as functions of time. Circles: simulation results for
Eg; diamonds: simulation results for E;. Solid lines: corresponding
predictions of dynamical replica theory.

5.6 Comparison with Simulations

In Fig. 4 we compare the predictions for the generalization and training errors
(5.31) of the approximate solution of our equations with the results obtained
from numerical simulations of on-line Hebbian learning for N = 10,000 (ini-
tial state: Qo = 1, Ry = 0; learning rate: n = 1). All curves show excellent
agreement between theory and experiment. For E this is guaranteed by the
exactness of our theory for () and R; the agreement found for F} is more sur-
prising, in that these predictions are obtained from a simple approximation
of the solution of our equations. We also compare the theoretical predictions
made for the distribution P[x|y] with the results of numerical simulations.
This is done in Fig. 5, where we show the fields as observed at time ¢ = 50 in
simulations (N = 10,000, 7n = 1, Ry = 0, Qo = 1) of on-line Hebbian learning,
for three different values of «. In the same figure we draw (as dashed lines) the
theoretical prediction (5.16) for the y-dependent average of the conditional
z-distribution P[z|y]. Finally we compare the student field distribution P(z),
as observed in simulations of on-line Hebbian learning (N = 10,000, n = 1,
Ry =0, Qo = 1) with our prediction (5.32). The result is shown in Fig. 6, for
a € {4,1,0.25}. In all cases the agreement between theory and experiment,
even for the approximate solution of our equations, is quite satisfactory.
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Fig. 5: Comparison between simulation results for on-line Hebbian
learning (system size N = 10,000) and dynamical replica theory,
for a € {0.5,1.0,2.0}. Dots: local fields (z,y) = (J-&, B-£) (cal-
culated for questions in the training set), at time ¢t = 50. Dashed
lines: conditional average of student field x as a function of y, as
predicted by the theory, Z(y) = Ry + (nt/a) sgn(y).
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Fig. 6: Simulations of Hebbian on-line learning with N = 10, 000.
Histograms: student field distributions measured at ¢t = 10 and ¢ =
20. Lines: theoretical predictions for student field distributions.
a =4 (upper), a = 1 (middle), a = 0.25 (lower).
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6 Discussion

In this paper we have shown how the formalism of dynamical replica theory
(e.g. Coolen et al, 1996) can be used successfully to build a general theory with
which to predict the evolution of the relevant macroscopic performance mea-
sures for supervised (on-line and batch) learning in layered neural networks
with randomly composed but restricted training sets (i.e. for finite « = p/N),
where the student fields are no longer described by Gaussian distributions,
and where the more traditional and familiar statistical mechanical formalism
consequently breaks down. For simplicity and transparency we have restricted
ourselves to single-layer systems and realizable tasks. In our approach the joint
field distribution P[z,y] for student and teacher fields is itself taken to be a
dynamical order parameter, in addition to the more conventional observables
@ and R; from this order parameter set {Q, R, P}, in turn, immediately fol-
low the generalization error E, and the training error E;. This then results,
following the prescriptions of dynamical replica theory*, in a diffusion equa-
tion for P[z,y|, which we have evaluated by making the replica-symmetric
ansatz in the saddle-point equations. This diffusion equation is found to have
Gaussian solutions only for o — oo; in the latter case we indeed recover cor-
rectly from our theory the more familiar formalism of infinite training sets,
with (in the N — oo limit) closed equations for () and R only. For finite o our
theory is by construction exact if for N — oo the dynamical order parameters
{Q, R, P} obey closed, deterministic equations, which are self-averaging (i.e.
independent of the microscopic realization of the training set). If this is not
the case, our theory is an approximation.

We have worked out our equations explicitly for the special case of Hebbian
learning, where the availability of exact results, derived directly from the
microscopic equations, allows us to perform a critical test of our theory °. For
batch Hebbian learning we can demonstrate explicitly that our theory is fully
exact. For on-line Hebbian learning, on the other hand, proving or disproving
full exactness requires solving a non-trivial functional saddle-point equation
analytically, which we have not yet been able to do. Nevertheless we can
prove that our theory is exact (i) with respect to its predictions for @), R and
E,, (ii) with respect to the first moment of the conditional field distribution
Plz|y], and (iii) in the stationary state. In order to also generate predictions
for intermediate times we have constructed an approximate solution of our
equations, which is found to describe the results of performing numerical
simulations of on-line Hebbian learning quite satisfactorily.

4The reason why replicas are inevitable (unless we are willing to pay the price of having
observables with two time arguments, and turn to path integrals) is the necessity, for finite
a, to average the macroscopic equations over all possible realizations of the training set.

5Such exact results can only be obtained for Hebbian-type rules, where the dependence
of the updates AJ(¢t) on the weights J(t) is trivial or even absent (a decay term at most),
whereas our present theory generates macroscopic equations for arbitrary learning rules.
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The present study represents only a first step; many extensions, applica-
tions and generalizations can be carried out (most of which are already under
way). Firstly, our theory would greatly simplify if we could find an explicit
solution of the functional saddle-point equation, enabling us to express the
function ®[z,y| directly in terms of our order parameters. The benefits of
such a solution will become even greater when we apply our theory to more
sophisticated learning rules, such as to perceptron or AdaTron learning, or
to learning in multi-layer networks (which run the risk of requiring a serious
amount of CPU time). Yet another direction is the inclusion of unlearnable
tasks, such as those generated by noisy teachers. At a more fundamental level
one could explore the potential of (dynamic) replica symmetry breaking (by
calculating the AT-surface, signaling instability of the replica symmetric so-
lution with respect to replicon fluctuations), or one could improve the built-in
accuracy of our theory by adding new observables to the present set (such
as the Green’s function Alz,y;x',y'] itself). Finally it would be interesting
to see the connection between the present formalism and a suitable adapta-
tion of the work by Horner (1992), based on generating functionals and path
integrals, to the processes studied in this paper (with non-binary weights).
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