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Abstract
We study graded response attractor neural networks with asymmetrically
extremely dilute interactions and Langevin dynamics. We solve our model
in the thermodynamic limit using generating functional analysis, and find (in
contrast to the binary neurons case) that even in statics, for T > 0 or large
α, one cannot eliminate the non-persistent order parameters, atypically for
recurrent neural network models. The macroscopic dynamics is driven by
the (non-trivial) joint distribution of neurons and fields, rather than just the
(Gaussian) field distribution. We calculate phase transition lines and find, as
may be expected for this asymmetric model, that there is no spin-glass phase,
only recall and paramagnetic phases. We present simulation results in support
of our theory.

PACS numbers: 75.10.Nr, 05.20.−y, 64.60.Cn

1. Introduction

Hopfield-type models [1] are recurrent networks of binary neurons (or Ising spins) with specific
types of pair interactions, designed to store and retrieve information in a distributed way. The
main interest in their properties relates to the regime of operation close to saturation, where
the number of patterns stored p scales with the number of bonds per neuron c (i.e. α = p/c

remains finite as N → ∞). Over the years they have been studied intensively using statistical
mechanical tools, in various connectivity versions. Rigorous analysis, based on techniques
borrowed from spin-glass theory, has been carried out for Ising spin neural networks with full
connectivity [3–6] (c,N → ∞, c/N = 1), and for asymmetric [7, 8] and symmetric extreme
dilution [9] (c,N → ∞, c/N → 0). The approach of [7, 8] also proved effective for solving
models with continuous neurons and discrete time dynamics [10]. More recently, attention
has turned to finite connectivity attractor neural networks [11] (c = O(1), N → ∞).
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In this paper, we study the dynamics of asymmetrically extremely dilute graded response
attractor neural networks with Langevin dynamics, near saturation. Such systems violate
detailed balance in two ways, firstly due to the interaction asymmetry and secondly by the
presence of a non-linear gain function (required for firing rates to saturate). Equilibrium
statistical mechanics no longer applies; the system will never be in equilibrium. Yet, one still
expects evolution to a stationary state, albeit one with microscopic probability currents. The
stationary state of fully connected networks of graded response neurons with continuous time
dynamics [2] close to saturation has been studied at T = 0 [12–14] together with dynamics at
arbitrary T but away from saturation [15]. In the present case of asymmetric extreme dilution
one might expect the ideas of [7, 8] to apply, and anticipate the familiar simplification resulting
from Gaussian distributed fields. This turns out to be wrong. In [7, 8] and [10] the spins were
(stochastically) aligned to local fields in parallel, at discrete intervals. Spins at time t + 1 did
not depend on spins at time t other than via the fields. Due to the asymmetric dilution, the field
distribution was Gaussian on finite time scales (characterized by two scalars), leading directly
to simple iterative laws for one or two scalar order parameters. In contrast, although here the
fields still have a Gaussian distribution, the Langevin dynamics makes our model qualitatively
different: spin updates now depend strongly on present values, in addition to the fields, and
we will therefore need the (non-Gaussian) joint spin-field distribution.

In this paper we use the generating functional analysis method of [16], which has a strong
record in the area of asymmetric disordered spin systems (e.g. [17–20]), following closely the
exposition in [15] which allows us to be compact. As always, in the infinite size limit one finds
an effective single spin equation, which in the special case of complete asymmetry will have no
retarded self-interaction. This induces simplifications, resulting here in explicit self-consistent
laws for order parameter functions. The further ansatz of time translation invariance leads
to a tractable stationary state problem, from which, however, non-persistent order parameters
cannot be fully removed. In addition to solving the full (exact) order parameter equations
numerically, we also investigate an interpolative approximation that does depend on only a
few scalar quantities and compare the predictions of both the full and the approximate theory
with numerical simulation data. The interpolative theory is exact for zero α and also at zero
T for small α (where small depends on the choice of gain function). We investigate the phase
diagram of our model in the (α, T ) plane, and examine the transition from non-recall to recall
(we show that there is no spin-glass phase). Numerical simulations support our theoretical
findings and predictions.

2. Model definitions

Our model describes a network of N continuous neurons ui ∈ R which evolve in time according
the following Langevin equation,

d

dt
ui(t) =

∑
j �=i

Jij g[uj (t)] − ui(t) + ηi(t) (1)

where g[u] is an odd sigmoidal function, which saturates for u → ±∞ to ±1 (respectively),
and with the standard Gaussian white noise terms ηi(t) with moments

〈ηi(t)〉 = 0 〈ηi(t)ηj (t
′)〉 = 2T δij δ(t − t ′). (2)

The non-negative parameter T controls the level of noise, with T = 0 and T = ∞
corresponding to deterministic and fully random dynamics, respectively. The process (1) does
not obey detailed balance (not even for symmetric Jij ), and thus will never reach equilibrium.
This rules out the techniques of equilibrium statistical mechanics, and we are forced to solve
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the dynamics. In the fashion of attractor neural networks we store p (randomly drawn)
patterns ξµ = (

ξ
µ

1 , . . . , ξ
µ

N

) ∈ {−1, 1}N in this system, with µ = 1, . . . , p, by choosing
diluted Hebbian-type interactions {Jij } as in [7]:

Jij = cij

c

p∑
µ=1

ξ
µ

i ξ
µ

j cij ∈ {0, 1}. (3)

The (fixed) {cij } define the connectivity, and are drawn at random according to

i < j : P(cij ) = c

N
δcij ,1 +

(
1 − c

N

)
δcij ,0 (4)

i > j : P(cij ) = rδcij ,cji
+ (1 − r)

[ c

N
δcij ,1 +

(
1 − c

N

)
δcij ,0

]
. (5)

The parameter c is seen to specify the average number of connections per spin, and r controls
the symmetry of our architecture. We will choose extreme dilution, i.e. limN→∞ c/N =
limN→∞ c−1 = 0, such as c = log(N). The number of patterns p to be stored is expected to
scale with c, so we define p = αc with α > 0 finite.

For simplicity, and in line with previous analyses, we will make the so-called ‘condensed
ansatz’ in solving the dynamics: we assume that the system state has an O(N0) overlap only
with a single pattern, say µ = 1. This situation is induced by initial conditions: we take a
randomly drawn u(0), generated by

p(u(0)) =
∏

i

{
1

2
[1 + m0]δ

(
ui(0) − ξ 1

i

)
+

1

2
[1 − m0]δ

(
ui(0) + ξ 1

i

)}
(6)

with m0 measuring the overlap between the initial state and the first pattern, m0 =
N−1∑

i

〈
ξ 1
i ui(0)

〉
. The patterns µ > 1 and the architecture variables {cij }, are viewed

as disorder. We assume that for N → ∞ the macroscopic behaviour of the system is
‘self-averaging’, i.e. only depends on the statistical properties of the disorder rather than its
microscopic realization. Averages over the disorder will be written as · · ·.

3. Generating functional analysis

To analyse the dynamics following [16] we discretize time (in units of �), write the
probability density of observing a microscopic ‘path’ {u(0), . . . , u(tm)} through phase space
as P [u(0), . . . , u(tm)], and introduce the familiar generating function Z�[ψ]:

Z�[ψ] =
〈

exp

{
− i
∑
i�N

∑
t�tm

�ψi(t)g[ui(t)]

}〉

=
∫

du(0) . . . du(tm)P [u(0), . . . , u(tm)] exp

{
−i
∑

i

∑
t

�ψi(t)g[ui(t)]

}
. (7)

Later we will put � → 0.1 Note that (7) differs from the standard definition in the appearance
of the non-linear function g[u] in the exponent. For full details on the procedure for deriving
from (7), in the limit N → ∞, an effective single spin equation we refer to, e.g., [15]. The
discretized version of (1) describes a Markov process, so the path probability density is a
product of individual transition probability densities. In the Itô convention we do not pick up

1 The non-trivial technicalities related to the assumed commutation of the limits N → ∞ and � → 0 are familiar
issues in applying saddle-point arguments to path integrals, which we will not discuss here.
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a Jacobian term from the discretization. We add time-dependent external fields θi(t)ξ
1
i to the

deterministic forces in order to define response functions later, and proceed in the standard
manner to a saddle-point problem. Solution of the latter leads us to a closed macroscopic theory
in terms of the familiar dynamic order parameters m(t) = limN→∞ N−1∑

i ξ
1
i 〈g[ui(t)]〉 (the

recall overlap), C(t, t ′) = limN→∞ N−1∑
i 〈g[ui(t)]g[uj (t ′)]〉 (the single-site correlation

function) and G(t, t ′) = limN→∞ 1
N

∑
i ∂g[ui(t)]/∂ξ 1

i θi(t) (the single-site response function).
The order parameters are to be solved from the saddle-point equations

m(t) = 〈g[u(t)]〉	 (8)

C(t, t ′) = 〈g[u(t)]g[u(t ′)]〉	 (9)

G(t, t ′) = ∂〈g[u(t)]〉	/∂θ(t ′). (10)

Here the measure 〈. . .〉	 is defined by the statistics of the following effective single spin process
(having set ψ = 0 and taken the limit � → 0),

d

dt
u(t) = −u(t) + m(t) + θ(t) + αr

∫ t

−∞
dt ′G(t, t ′)g[u(t ′)] + φ(t) (11)

where φ(t) is a zero mean Gaussian process with covariance

〈φ(t)φ(t ′)〉 = 2T δ(t − t ′) + αC(t, t ′). (12)

In the remainder of this paper we will consider r = 0 only (i.e. fully asymmetric dilution, with
cij independent of cji), so that the retarded self-interaction in (11) vanishes. This also implies
that there is no longer a need to solve for the response function, as the macroscopic laws (8),
(9) now close already for the order parameters {m(t), C(t, t ′)}.

4. Solving the single spin equation for asymmetric dilution

As our main interest will be in stationary state properties, we choose initial conditions at
t0 = −∞. For r = 0 we can readily integrate the stochastic equation (11), giving

u(t) = k(t) + Z(t) (13)

k(t) =
∫ t

−∞
dt ′ e−(t−t ′)[m(t ′) + θ(t ′)] Z(t) =

∫ t

−∞
dt ′ e−(t−t ′)φ(t ′). (14)

So Z(t) is also a zero mean Gaussian noise, now with covariance 〈Z(t)Z(t ′)〉 = �(t, t ′),

�(t, t ′) = T e−|t−t ′ | + α

∫ t

−∞
ds e−(t−s)

∫ t ′

−∞
ds ′ e−(t ′−s ′)C(s, s ′). (15)

We may use (13), (14) and the standard abbreviation Dz = (2π)−1/2 e− 1
2 z2

dz for Gaussian
measures to write the closed equations (8), (9) in the following explicit form,

m(t) =
∫

Dx g[k(t) + x
√

�(t, t)] (16)

C(t, t ′) =
∫

Dx Dy g[k(t) + a1(t, t
′)(a2(t, t

′)x + a3(t, t
′)y)]

× g[k(t) + a1(t, t
′)(a2(t, t

′)x + a4(t, t
′)y)] (17)
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in which (using the symmetry of �)

a1(t, t
′) = 1/

√
�(t, t) + �(t ′, t ′) − 2�(t, t ′)

a2(t, t
′) =

√
�(t, t)�(t ′, t ′) − �(t, t ′)2

a3(t, t
′) = �(t, t) − �(t, t ′)

a4(t, t
′) = �(t ′, t) − �(t ′, t ′).

Let us turn to time translation invariant (TTI) solutions, where m(t) = m, θ(t) = θ

and C(t, t ′) = C(t − t ′), and consequently �(t, t ′) = �(t − t ′). This will simplify our
analysis, and experience with asymmetric systems suggests that most, if not all, solutions will
asymptotically obey TTI. We now find that equations (16), (17) simplify to

m =
∫

Dx g[m + θ + x
√

�(0)] (18)

C(τ) =
∫

Dx Dy g

[
m + θ + x

√
1

2
[�(0) + �(τ)] + y

√
1

2
[�(0) − �(τ)]

]

× g

[
m + θ + x

√
1

2
[�(0) + �(τ)] − y

√
1

2
[�(0) − �(τ)]

]
(19)

�(τ) = T e−|τ | +
1

2
α

∫ ∞

−∞
du e−|u+τ |C(u). (20)

We note that, upon repeated differentiation with respect to τ , one can also derive from this
latter equation the following identity:

�′′(τ ) = �(τ) − αC(τ). (21)

In detailed balance models at this stage one would be able to transform away the non-persistent
order parameters, and derive closed equations for the persistent objects m, q0 ≡ C(0) and
q ≡ C(∞). Here such a reduction is not possible. To appreciate this we first rewrite (19) (by
suitably transformations of integration variables) as

C(τ) =
∫

Dx

{∫
Dy g[m + θ + x

√
�(τ) + y

√
�(0) − �(τ)]

}2

. (22)

Using the relation �(∞) = αq and the short-hand �(0) = κ , our expressions for the persistent
quantities {m, q0, q} then take the form

m =
∫

Dx g[m + θ + x
√

κ] q0 =
∫

Dx g2[m + θ + x
√

κ] (23)

q =
∫

Dx

{∫
Dy g[m + θ + x

√
αq + y

√
κ − αq]

}2

(24)

with

κ = T + α

∫ ∞

0
dτ e−τC(τ). (25)

Unless T = 0 (where one has solutions with q = q0 and C(τ) = q for all τ , to which we will
return later), the term κ cannot be expressed in terms of {m, q0, q}, but requires knowledge
of non-persistent correlations C(τ). From this stage onwards we will take θ = 0, in order to
study different solution types and transitions between them.
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5. Special solutions

5.1. Non-recall TTI solutions

Non-recall solutions are those where m = 0 (to be expected for large T ), and where in the TTI
regime we are left only with a closed set of equations for C(τ):

C(τ) =
∫

Dx Dy g

[
x

√
1

2
[�(0) + �(τ)] + y

√
1

2
[�(0) − �(τ)]

]

× g

[
x

√
1

2
[�(0) + �(τ)] − y

√
1

2
[�(0) − �(τ)]

]
(26)

�(τ) = T e−|τ | +
1

2
α

∫ ∞

−∞
du e−|u+τ |C(u). (27)

The simplest case is T → ∞. Since C(τ) is bounded, we may expand our equations and find
that the second term in (27) is negligible relative to the first. This results in

lim
T →∞

C(τ) = 2

π
arcsin(e−|τ |) (28)

Clearly limT →∞ C(0) = 1 and limT →∞ C(∞) = 0. It is a trivial matter to show that this is
the only possible solution for T → ∞.

In the case where g[u] = sgn[u] we can push the analysis of (26), (27) further for arbitrary
T, as we may do the integrations in (26) explicitly (in the recall phase this would not have been
possible). For g[u] = sgn[u] we may write

C(τ) =
∫

Dx Dy sgn[x + tan(ψ)y] sgn[x − tan(ψ)y] (29)

tan2(ψ) = [�(0) − �(τ)]/[�(0) + �(τ)]. (30)

Upon writing (x, y) in polar coordinates, the integrations can be done, and we find

sin

(
1

2
πC(τ)

)
= T e−|τ | + α

2

∫∞
−∞ du e−|u+τ |C(u)

T + α
2

∫∞
−∞ du e−|u|C(u)

. (31)

For T → ∞ we recover (28). Putting τ → ∞ in (31) gives

sin

(
1

2
πC(∞)

)
= αC(∞)

T + α
∫∞

0 du e−uC(u)
. (32)

The paramagnetic (P) state C(∞) = 0 always solves (31), as expected. It also follows
from (31) that a continuous transition from a paramagnetic to a spin-glass (SG) state
{m = 0, C(∞) > 0} would occur (unless preceded by a recall transition) at κc = 2α/π .

5.2. Detailed balance type solutions at zero temperature

Let us inspect whether and where we have detailed balance type macroscopic laws, where
after elimination of transient parts one finds ‘effective’ equations with C(τ > 0) = q. Here
the ansatz C(τ > 0) = q implies that �(τ) = T e−|τ | + αq and κ = T + αq. One now finds
that it gives proper solutions of our order parameter equations if and only if T = 0, in which
case we obtain (for θ = 0) q0 = q and the familiar looking

m =
∫

Dx g[m + x
√

αq] q =
∫

Dx g2[m + x
√

αq]. (33)
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For g[u] = tanh[βu] these equations (33) are identical to those of the symmetrically extremely
diluted attractor network with binary neurons [9]. For g[u] = sgn[u] we immediately find the
three possible solutions P {m = 0, q = 0}, SG {m = 0, q = 1} (both P and SG exist for any
α) and R {m = m	, q = 1}, where m	 is the solution of

m = Erf[m/
√

2α]. (34)

The retrieval solution bifurcates from the SG one at αc = 2/π ≈ 0.637.
The constant correlation function implies that the spins are microscopically frozen, thus

there are no probability currents at all in the system so detailed balance is trivially restored. It
is clear that such solutions always exist and are stable at α = 0.

We next inspect the local stability of the above special T = 0 solutions against
perturbations away from C(τ > 0) = q for α > 0. We thus put m → m + δm and
�(τ) → q + δ�(τ) (with δm and δ�(τ) small) and find the eigenvalue problem

δ�(τ) = K1

∫ ∞

−∞
du δ�(u)

[
K2

1 − K2
e−|u| + e−|τ−u|

]
(35)

where, with y(x) = m + x
√

αq

K1 = 1

2
α

∫
Dx{g′[y]}2 (36)

K2 = α

∫
Dx g[y]g′′[y] +

√
α
q

∫
Dx g′[y] · ∫ Dx g[y]g′′[y]

1 − ∫ Dx g′[y]
. (37)

The only eigenfunction of (35) which is not trivial and bounded for τ → ∞ is given by

δ�(τ) = cos(
√

2K1 − 1τ) − K2

1 − K2 − 2K1
(38)

with K1 � 1
2 . Since limα→0 K1 = 0, the bifurcation condition becomes K1 = 1

2 , or

1 = α

∫
Dx{g′[m + x

√
αq]}2. (39)

The size of the region along the T = 0 axis where the solution (33) is stable is dependent on
our choice of the gain function g. For g[u] = sgn[u] we find that there is never a continuous
transition while for g[u] = tanh[γ u] there can be, and the solution (33) may be stable in a
large part of the recall region. To see more clearly why there are no continuous transitions for
g[u] = sgn[u] we note that in that case the special solution is q = q0 = 1, and our eigenvalue
problem becomes

α + δ�(τ) = α

2

∫ ∞

−∞
du e−|u+τ |

∫
Dx Erf2

(
m + x

√
α + δ�(u)

y
√

δ�(0) − δ�(u)

)
. (40)

For small perturbations the argument of the error function will be large and we can use the
expansion [23]

Erf(x) = 1 − 1√
πx

e−x2
∞∑

n=0

(
1 − 1

2x2
+

1 · 3

(2x2)2
− 1 · 3 · 5

(2x2)3
+ · · ·

)
(41)

to see that on the right-hand side of (40) there is no polynomial term in the perturbation, and
hence no continuous bifurcation.
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6. Non-equilibrium phase transitions

6.1. Continuous transitions without anomalous response

Continuous transitions from P or SG states to recall states (R, where m > 0) or from P states
to SG states, are found upon expanding either (23) or (24) (both with θ = 0) for small m or
small q, respectively. This is found to give the simple bifurcation conditions

P → R, SG → R :
∫

Dx g′[x
√

κ] = 1 (42)

P → SG :
∫

Dx g′[x
√

κ] = 1/
√

α. (43)

For g[u] = sgn[u] these conditions reduce to κc = 2/π and κc = 2α/π , respectively. Here,
since κ ∈ [T , T + αq0], we are sure that continuous transitions P → R or SG → R can occur
at most for T ∈ [2/π −α, 2/π ], and that continuous transitions P → SG can occur only when
T < 2α/π . To determine which instability away from the paramagnetic state occurs first we
need to inspect the dependence of κ , as defined in (25) on (α, T ).

6.2. Transitions to states with anomalous response

We next inspect the solution of our full TTI equations for large times, upon separating non-
persistent from persistent terms in the functions �(τ) from C(τ):

C(τ) = q + C̃(τ ) �(τ) = αq + �̃(τ ). (44)

Insertion into our equations for �(τ) and C(τ) gives

�̃(τ ) = T e−|τ | +
1

2
α

∫ ∞

−∞
du e−|u+τ |C̃(u) (45)

C̃(τ ) =
∫

Dx

{∫
Dy g[m + x

√
αq + �̃(τ ) + y

√
κ − αq − �̃(τ )]

}2

− q. (46)

For large times the non-persistent terms will be small, so we may expand the right-hand side
of (46) in powers of �̃(τ ). First we work out the non-linearity g[. . .],

g[. . .] = g[m + x
√

αq + y
√

κ − αq]

+
1

2
�̃(τ )

[
x√
αq

− y√
κ − αq

]
g′[m + x

√
αq + y

√
κ − αq] + O(�̃2) (47)

which gives, after partial integration over the Gaussian disorder variables,

C̃(τ ) = ��̃(τ) + O(�̃2(τ )) (48)

� =
∫

Dx

{∫
Dy g[m + x

√
αq + y

√
κ − αq]

}

×
{∫

Dy

[
x√
αq

− y√
κ − αq

]
g′[m + x

√
αq + y

√
κ − αq]

}

=
∫

Dx

{∫
Dy g′[m + x

√
αq + y

√
κ − αq]

}2

. (49)
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For sufficiently large times we may therefore replace the duo (45), (46) by the leading order

C̃(τ ) = �

{
T e−|τ | +

1

2
α

∫ ∞

−∞
du e−|u+τ |C̃(u)

}
+ · · · . (50)

This equation is solved asymptotically by C̃(τ ) ∼ e−γ τ , with exponent γ = √
1 − α�. We

must conclude that a transition to a regime with anomalous response (which in equilibrium
disordered systems would correspond to the AT line [21]) occurs when α� = 1, i.e. when

α

∫
Dx

{∫
Dy g′[m + x

√
αq + y

√
κ − αq]

}2

= 1. (51)

We see that in the paramagnetic state m = q = 0 the condition (51) coincides with that of the
P → SG transition (43), and that for T = 0 it coincides with the instability condition (39).
Again, for the special choice g[u] = sgn[u] all integrals can be done analytically, and we find
(51) taking the more explicit form

α exp(−m2/(κ + αq)) = 1
2π
√

κ2 − α2q2. (52)

7. Bounds and approximations for the stationary state

7.1. Arbitrary non-linearities

We established that it is not possible to obtain closed equations for persistent order parameters
only, due to the dependence of (25) on the short-time part of C(τ). However, we know that
C(τ) decays from C(0) = q0 to C(∞) = q, so that (25) can be written as

κ = T + αq + α�(q0 − q) � ∈ [0, 1] (53)

with � ≈ 1 when the decay of C(τ) is much slower than exp[−τ ], and � smaller when the
decay is fast. Thus we know that our phase diagram must interpolate between those obtained
for the extreme cases � ∈ {0, 1}, with these cases becoming identical both for T → 0 at small
α (where q0 − q → 0 before the transition to non-flat C(τ)) and α → 0:

‘slow’ limit,� = 1 : m =
∫

Dx g[m + x
√

T + αq0] (54)

q0 =
∫

Dx g2[m + x
√

T + αq0] (55)

q =
∫

Dx

{∫
Dy g[m + x

√
αq + y

√
T + α(q0 − q)]

}2

(56)

‘fast’ limit,� = 0 : m =
∫

Dx g[m + x
√

T + αq] (57)

q0 =
∫

Dx g2[m + x
√

T + αq] (58)

q =
∫

Dx

{∫
Dy g[m + x

√
αq + y

√
T ]

}2

. (59)

Rather than analysing the extreme bounding cases � ∈ {0, 1}, one could construct a
rational interpolation between � = 0 and � = 1 by using our knowledge of the long-
time behaviour of the non-persistent correlations as established in the derivation of (51),
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namely C̃(τ ) ∼ exp(−τ
√

1 − α�) with � as given in (49), to define the simplest function
which satisfies both the long-time profile and the initial conditions C̃(0) = q0 − q:
C̃(τ ) = (q0 − q) exp(−τ

√
1 − α�). This implies the following approximate expression

for �:

� =
∫ ∞

0
dτ exp(−τ [1 +

√
1 − α�]) = 1

1 +
√

1 − α�
. (60)

Equivalently,

κ = T + αq +
α(q0 − q)

1 +
√

1 − α�
. (61)

This then leads us to the following theory:

interpolation : m =
∫

Dx g

[
m + x

√
T + αq +

α(q0 − q)

1 +
√

1 − α�

]
(62)

q0 =
∫

Dx g2

[
m + x

√
T + αq +

α(q0 − q)

1 +
√

1 − α�

]
(63)

q =
∫

Dx

{∫
Dy g

[
m + x

√
αq + y

√
T +

α(q0 − q)

1 +
√

1 − α�

]}2

(64)

� =
∫

Dx

{∫
Dy g′

[
m + x

√
αq + y

√
T +

α(q0 − q)

1 +
√

1 − α�

]}2

. (65)

Again we note that these equations are exact in either of the limits T → 0 and α → 0.

7.2. Predictions for g[u] = sgn[u]

For the choice g[u] = sgn[u], where Gaussian integrals can be done, we have q0 = 1. Thus
the slow limit gives the P → R transition line κ = α + T = 2/π . In the paramagnetic state
q = 0 thus the fast limit gives a P → F transition for α < 1 at T = 2/π and a P → SG
transition for α > 1 at T = 2α/π . Compared to solving our equations numerically or to
the interpolating solution below, we find that the slow limit gives a relatively poor prediction
whilst the fast limit gives a very poor prediction of the transition lines.

The above set of interpolating equations can be simplified to

m = Erf[m/
√

2κ] q =
∫

Dx Erf2

[
m + x

√
αq√

2(κ − αq)

]
(66)

κ = T + α


 (κ2 − α2q2)

1
4 + q

(√
κ2 − α2q2 − 2α

π
exp(−m2/(κ + αq))

) 1
2

(κ2 − α2q2)
1
4 +
(√

κ2 − α2q2 − 2α
π

exp(−m2/(κ + αq))
) 1

2


 (67)

with the phase transition points:

P → R, SG → R : κc = 2

π
(68)

P → SG : κc = 2α

π
(69)
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anomalous response :
√

κ2 − α2q2 = 2α

π
exp(−m2/(κ + αq)). (70)

In the paramagnetic state m = q = 0, where the conditions (69), (70) become identical,
equation (67) is seen to simplify significantly, and can in fact be solved for κ:

κ =
T
(
1 − 2

π

)
+ 1

2α +
√

T 2 + αT
(
1 − 2

π

)
+ 1

4α2

2
(
1 − 1

π

) . (71)

Given this expression we may in turn derive explicit expressions for the our phase transition
lines. One finds that the transition P → SG cannot occur, and that the P → R transition line
reduces to

P → R : Tc(α) = √
1 − α − 1 +

2

π
. (72)

This critical temperature decreases with increasing α from its maximum value Tc(0) = 2/π ≈
0.637 down to Tc(αc) = 0, with αc = 4

π

(
1 − 1

π

) ≈ 0.868. Since our interpolation equations
are exact for α = 0, we can be sure that the value Tc(0) = 2/π is exact.

Thus, given that one always enters a recall phase directly (without a spin-glass phase,
unlike symmetrically connected models), the only remaining transition to be investigated is
that marking the possible onset of anomalous response inside the retrieval phase. Combining
(67) with (70) shows that at this transition κ = T + α, so that we have to solve the transition
line from the following trio of coupled equations:

anomalous response : m = Erf

[
m√

2(T + α)

]
(73)

q =
∫

Dx Erf2

[
m + x

√
αq√

2[T + α(1 − q)]

]
(74)

[T + α(1 − q)][T + α(1 + q)] = 4α2

π2
exp

(
− 2m2

T + α(1 + q)

)
. (75)

Examining (25) we see that for an anomalous response we require q = 1 which via (74), (75)
implies that T = α = 0 is the only possibility. However, there one trivially has C(τ) = 1,∀τ

and there is no transient term in the correlation function.
We plot the phase diagram (figure 1), both using the approximation (72) and by solving

for the whole correlation function numerically. We see that the results are similar although
not identical, the interpolation method seems to predict a slightly smaller recall region.

8. Comparison with simulations

In figures 2 and 3 we examine both the distribution of spins at a single time and the correlation
function. In simulations the spins evolved for O(105) discretized time steps (with �t = 0.02)
in order that they reached their static distribution. It is clear from (13) that the static distribution
of spins must be Gaussian with mean m and variance κ . Our two theories (exact versus
interpolation) give different values for m and κ , yet both are seen to agree very well with
the simulations as far as the spin distribution is concerned. For the correlation function,
however, it appears that solving the full order parameter equations numerically gives excellent
agreement with simulations and is a significantly better guide to both the persistent correlation
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Figure 1. Phase diagram for the asymmetrically dilute graded response model. The dashed line is
the transition predicted by the interpolation approximation while the dotted line is that predicted
by numerically solving for the correlation function. The interpolative method gives reasonable
agreement but systematically underestimates the size of the recall region with the error increasing
as a function of α.
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Figure 2. The left graph depicts the static distribution of spins at α = T = 0.25. The solid line is
from a simulation of N = 64 000 spins, the dotted line is from solving for the correlation function
and the dashed line is from the interpolation theory. Both theories give excellent agreement with
the simulation. The right graph depicts the corresponding TTI correlation function as a function of
the number of discretized time steps t/�t (with here �t = 0.02), with the meaning of the different
lines as in the left picture. It is clear that the solving for the correlation function numerically gives
a significantly better calculation of the correlation function.

and the short-time shape than interpolation. The differences between the two theories appear
to increase with α within the recall regime.

In figure 4 we plot magnetizations m and persistent correlations q for a variety of values
for T and α on both sides of the predicted phase boundary, for both simulations and theory.
In the left picture, we see that for moderate α (= 0.2) both theories give good agreement
with each other and with simulations. However, in the right picture, i.e. at higher α near the
phase transition, again the numerical solution of the full order parameter equations gives better
agreement.
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Figure 3. The left graph depicts the static distribution of spins at α = 0.5 and T = 0.125.
The solid line is from a simulation of N = 64 000 spins, the dotted line is from solving for
the correlation function and the dashed line is from the interpolation theory. Both theories give
excellent agreement with the simulation. The right graph depicts the corresponding TTI correlation
function as a function of the number of discretized time steps t/�t (with here �t = 0.02), with
the meaning of the different lines as in the left picture. It is clear that the solving for the correlation
function numerically gives a significantly better calculation of the correlation function.
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Figure 4. The left graph shows the magnetization versus temperature for α = 0.2. The solid line
with ◦ markers is averaged over five simulations of N = 64 000 spins (error bars are all <0.01),
the dotted line with � markers is obtained via solving the correlation function numerically, and
the dashed line with × markers is calculated from the interpolation theory. The vertical lines
mark the predicted phase transitions, the left line being from the interpolation. Both theories give
excellent agreement with the simulation. The right graph shows the persistent correlation versus α

at T = 0.25. The different lines are as above. Solving the correlation function numerically gives
better agreement with the simulations at higher α.

9. Discussion

In this paper, we have used the formalism of generating functional theory to solve the dynamics
of an extremely dilute asymmetrically structured Hopfield-type attractor neural network model
with Langevin dynamics near saturation. This is a non-detailed-balance problem. In contrast
to extremely diluted models with synchronous dynamics, we here cannot benefit from the
Gaussian fields since we need more than just the marginal field distribution. We have looked
for time translationally invariant solutions as an aid to finding stationary solutions to this
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problem. In general we find that we need a full functional order parameter C(τ) to describe
this stationary solution exactly. We have also looked at an interpolative theory that, while only
exact at α = 0, depends on only a few scalar parameters rather than an entire order parameter
function. This reduced theory gives good agreement at low α but shows discrepancies at
higher values of α.

As expected for this type of architecture the phase diagrams exhibit just two phases, a
recall phase and a non-recall phase. There are no spin-glass phases, which is due to the lack
of a retarded self-interaction in the effective single spin equation. We have calculated, for
specific choices of the gain function g, the system’s (α, T ) phase diagram, and have found
the second-order transitions in this diagram via a bifurcation analysis. The methods used in
this paper to solve the effective single spin equation could be valid for other problems with a
similar architecture and similar dynamics. The network’s connection asymmetry is obviously
an assumption whose justification is model dependent, here it is reasonable and leads to exactly
solvable statics.

It would also be of interest to study the initial dynamics of this problem, as that will
be of more relevance to biological experiments. Other generalizations could include moving
to a finitely connected architecture which may be closer to that seen in nature. Here the
order parameters would become single spin path probabilities, and the effect on these path
probabilities of a change in the external field at each point on the path [24]. It may also be
of interest to see if an approximate theory could be constructed when arbitrary degrees of
symmetry are introduced into the problem, such that the method presently used in this paper
is no longer accessible.
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