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Abstract
We present an alternative procedure for solving the eigenvalue problem of
replicated transfer matrices describing disordered spin systems with (random)
1D nearest neighbour bonds and/or random fields, possibly in combination with
(random) long range bonds. Our method is based on transforming the original
eigenvalue problem for a 2n × 2n matrix (where n → 0) into an eigenvalue
problem for integral operators. We first develop our formalism for the Ising
chain with random bonds and fields, where we recover known results. We then
apply our methods to models of spins which interact simultaneously via a one-
dimensional ring and via more complex long-range connectivity structures, e.g.,
(1 + ∞)-dimensional neural networks and ‘small-world’ magnets. Numerical
simulations confirm our predictions satisfactorily.

PACS numbers: 75.10.Nr, 05.20.−y, 64.60.Cn

1. Introduction

The replica formalism, see e.g., [1], has proved to be a very powerful tool in the study of both
statics and dynamics of disordered systems. In statics the presence of frozen disorder in the
Hamiltonian makes a direct equilibrium statistical mechanical analysis very difficult. Instead,
one starts from the key assumption (supported by numerical, experimental and sometimes
analytical evidence) that in the thermodynamic limit the free energy per degree of freedom in
such systems is self averaging, i.e., identical to its disorder average for any given realization
of the disorder, with probability 1. This property allows one to focus on the evaluation of the
disorder-averaged free energy per degree of freedom. To carry out this calculation the so-called
replica trick, which introduces n replicas or copies of the original system, is invoked. The
disorder average then converts the original problem of n independent but disordered systems
into a new problem for n coupled but disorder-free ones. In the thermodynamic limit this new
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non-disordered problem can often be solved with conventional methods, e.g., saddle-point
integration. The limit n → 0 has to be taken in the final result. This procedure has over the
years been applied with great success to many families of mostly range-free or mean-field
models.

Application of the replica formalism to finite-dimensional spin models with disordered
bonds and/or fields leads to the notion of replicated transfer matrices [2, 3]. For disordered
one-dimensional Ising spin chains, for instance, the replica method effectively replaces an
expression for the free energy in terms of products of 2×2 random transfer matrices (see, e.g.,
[4] for transfer matrix methods) by an expression for an n-replicated chain without disorder
but with a more complicated 2n × 2n transfer matrix which couples the n replicas at each
site of the chain. In the thermodynamic limit one first has to find the largest eigenvalue of
this replicated transfer matrix, and subsequently find its analytic continuation for n → 0. It
was shown in [2] that for the one-dimensional Ising model with random bonds and fields this
procedure yields the results obtained earlier by other techniques, see e.g., [5–7]. Moreover, it
was found that the smaller eigenvalues of the replicated transfer matrix contain information
about disorder-averaged two-spin connected correlation functions.

In this paper, we show how the replicated transfer matrix of disordered Ising models can
be diagonalized by using a particular form for the eigenvectors which transforms the original
eigenvalue problem into an eigenvalue problem for integral operators. We believe our method
to have a number of possible advantages. It appears more direct and explicit than existing
approaches, it can be generalized in a straightforward manner to situations with RSB (which
could for instance be induced by super-imposed long-range bonds), and it does not rely on the
limit n → 0 being taken (so that it can also be used for finite n replica calculations describing
models where the disorder is not truly frozen but evolving on very large time scales, in the
sense of [10–13]).

We first apply our ideas to Ising chains with random bonds and fields, where we can
compare the results obtained with our method to those obtained earlier by others. Furthermore,
mathematically one may express replicated transfer matrices of models which are not purely
one-dimensional (due to super-imposed long-range bonds) in terms of those corresponding to
random field chains, with the statistics of the random fields mediating the mean-field effect
of the long-range bonds on a given site. We apply our equations to two examples of such
models with one-dimensional and long-range bonds: the (1 + ∞) attractor neural networks of
[15, 16] and the ‘small-world’ ferromagnet of [17], and show how one can use our methods
to calculate various thermodynamic quantities.

2. Definitions

In this paper, we will deal with disordered Ising spin systems in thermal equilibrium at inverse
temperature β = 1/T , of size N and with microscopic states written as σ = (σ1, . . . , σN) ∈
{−1, 1}N . More specifically, we will analyse the following three models, by diagonalizing the
replicated transfer matrices which they generate: the disordered Ising chain (DIC) as in [5, 6],
the (1 + ∞)-dimensional attractor neural network (ANN) as in [15, 16] and the ‘small-world’
ferromagnet (SWM) of [17], which are defined by the Hamiltonians

HDIC(σ) = −
∑

i

Jiσiσi+1 −
∑

i

θiσi (1)

HANN(σ) = −Js

∑
i

σiσi+1(ξi · ξi+1) − J�

N

∑
i<j

σiσj (ξi · ξj ) (2)
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HSWM(σ) = −J0

∑
i

σiσi+1 − J

c

∑
i<j

cij σiσj . (3)

In (1) we have a 1D spin chain with independently identically distributed random bonds and
fields {Ji, θi} at each site, drawn from some joint distribution p(J, θ). We will abbreviate∫

dJ dθ p(J, θ)f (θ, J ) = 〈f (J, θ)〉J,θ . In (2) we have both 1D and long-range random
bonds, but their values are not independent. The short- and long-range bonds take the values
Js(ξi · ξi+1) and J�N

−1(ξi · ξj ), respectively, where the binary vectors ξi = (
ξ 1
i , . . . , ξ

p

i

)
represent stored data and are drawn randomly and independently from {−1, 1}p (with uniform
probabilities). Finally, in (3) we have uniform 1D ferromagnetic bonds of strength J0, and
the randomness is solely in the realization of the long-range bonds. The latter are also
ferromagnetic, of strength J/c if present, but constitute a finitely connected Poissonian graph
defined by dilution variables cij which for each pair (i, j) are drawn independently from
p(cij ) = c

N
δcij ,1 +

(
1 − c

N

)
δcij ,0. Here c is the average number of long-range connections at

each site ki = ∑N
i=1 cij in the limit N → ∞. This number is taken to be finite, therefore on

average the number of long-range connections at each site remains O(1) in the thermodynamic
limit. In all three cases (1)–(3) the 1D short-range interactions are defined periodically.

At this stage, let us briefly recall from [2, 3] how a replicated transfer matrix emerges for the
disordered Ising chain (1) in the context of the replica formalism. One starts from the disorder-
averaged free energy per spin f̄ = − limN→∞ 1

βN
〈log Z〉J,θ , where Z = ∑

σ e−βHDIC(σ) is the
partition function and the bar denotes averaging over the disorder variables (here the random
bonds and fields). The average of the logarithm is calculated using the identity 〈log Z〉J,θ =
limn→0

1
n

log〈Zn〉J,θ . One then assumes that the order of the two limits (N → ∞, n → 0)

can be reversed resulting in the following expression:

f̄ = − lim
n→0

1

n
lim

N→∞
1

βN
log〈Zn〉J,θ . (4)

Then the disorder average of the nth power of the partition function is evaluated for integer n
and at the end the result is analyticaly continued to n → 0. Here one finds, with α = 1, . . . , n

and with the short hand σi = (
σ 1

i , . . . , σ n
i

) ∈ {−1, 1}n,

〈Zn〉J,θ =
∑

σ1...σN

∏
i

〈
exp

(
βJ

∑
α

σα
i+1σ

α
i + βθ

∑
α

σα
i

)〉
J,θ

= tr
(
T N

n

)
(5)

with a 2n × 2n matrix T n whose entries are given by

Tn(σ, σ′) =
〈

exp

(
βJ

∑
α

σασ ′
α + βθ

∑
α

σα

)〉
J,θ

. (6)

One can thus find the disorder-averaged free energy per spin in the usual manner, via (4),
by determining the largest eigenvalue of the replicated transfer matrix T n for integer n. The
difficulty lies in the requirement to find an analytic expression for this eigenvalue for arbitrary
integer n (in contrast to non-disordered chains, where the dimension is fixed from the start and
usually small, and where direct methods can therefore be employed such as calculating the
characteristic polynomial of the matrix and finding its zeros).

We will first develop our diagonalization method for the simplest case, viz the chain (1)
and subsequently show that it can also serve to generate the solution of the other two models
(2), (3), which involve both short- and long-range bonds, by writing the transfer matrices of
the latter two models again in the form (6), but with suitably defined distributions p(J, θ) of
local bonds and fields.
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3. Construction and properties of eigenvectors

3.1. A detour: the Ising chain without disorder

Let us first turn to the simplest possible case: the 1D Ising chain with bonds J and uniform
fields θ (without disorder), where we just have the familiar transfer matrix

T (σ, σ ′; θ, J ) = exp(βJσσ ′ + βθσ). (7)

Diagonalizing (7) is of course trivial [4]. Here, however, we seek a method which does not
require knowledge of the characteristic polynomial of the matrix, so that it can be generalized
to replicated transfer matrices with arbitrary n. To this end we introduce the two vectors
u0[x],u1[x, µ] ∈ R

2, parametrized by x, µ ∈ R, and with components

u0(σ ; x) = eβxσ u1(σ ; x, µ) = eβxσ (σ − µ). (8)

Inserting the candidates (8) into the eigenvalue equation
∑

σ ′ T (σ, σ ′; θ, J )u(σ ′) = λu(σ),
and using the general identity f (σ) = eβ[B+Aσ ], where A = 1

2β
log[f (1)/f (−1)] and

B = 1
2β

log[f (1)f (−1)], for σ ∈ {−1, 1}, leads to the following eigenvalue equations:

exp(βB(J, x) + β[θ + A(J, x)]σ) = λ0 exp(βxσ) (9)

exp(βB(J, x) + β[θ + A(J, x)]σ)A′(J, x)

(
σ − µ − B ′(J, x)

A′(J, x)

)
= λ1 exp(βxσ)(σ − µ)

(10)

where

A(J, x) = 1

β
arctanh[tanh(βJ ) tanh(βx)] (11)

B(J, x) = 1

2β
log[4 cosh(β(J + x)) cosh(β(J − x))] (12)

with partial derivatives A′(J, x) = ∂xA(J, x) = 1
2 [tanh(βJ + βx) + tanh(βJ − βx)] and

B ′(J, x) = ∂xB(J, x) = 1
2 [tanh(βJ + βx) − tanh(βJ − βx)], respectively. We conclude

from (9) that if x∗ is the solution of the algebraic equation x = θ + A(J, x), then u0[x∗] is an
eigenvector with eigenvalue λ0 = eβB(J,x∗). This (unique) solution, which can be viewed as
the stable fixed point of the iterative map xi+1 = θ + A(J, xi), is given by

x∗ = 1

2
(J + θ) +

1

2β
log

[
eβJ sinh(βθ) +

√
e2βJ sinh2(βθ) + e−2βJ

]
. (13)

Inserting (13) into our expression for λ0 then reproduces the familiar result for the largest
eigenvalue of the transfer matrix of the Ising chain with uniform fields and bonds

λ0 = eβB(J,x∗) = eβJ cosh(βθ) +
√

e2βJ sinh2(βθ) + e−2βJ . (14)

Similarly we see that if µ∗ = B ′(J,x∗)
1−A′(J,x∗) , with x∗ as defined before, then also u1[x∗, µ∗] is an

eigenvector with eigenvalue λ1 = eβB(J,x∗)A′(J, x∗). Insertion of (13) leads to the familiar
expression for the second eigenvalue of (7):

λ1 = eβJ cosh(βθ) −
√

e2βJ sinh2(βθ) + e−2βJ . (15)

It turns out that µ∗ gives the average magnetization at each site:

µ∗ = tanh(βx∗)[1 + tanh(βJ )]

1 + tanh(βJ ) tanh2(βx∗)
= sinh(βθ)√

sinh2(βθ) + e−4βJ
= 〈σi〉. (16)
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Note that our expression for (7) is not symmetric (although one could easily write the partition
sum in terms of a symmetric transfer matrix), hence we have to distinguish between left and
right eigenvectors; so far only right eigenvectors have been calculated. We can find the left
eigenvectors v via similar ansatz to (8):

v0(σ ; y) = eβyσ v1(σ ; y, ν) = eβyσ (σ − ν). (17)

Insertion into the left eigenvalue equation
∑

σ ′ v(σ ′)T (σ ′, σ ; θ, J ) = λv(σ ) then reveals
that the two vectors v0[y∗] and v1[y∗, ν∗] are left eigenvectors, where y∗ is the solution of
y∗ = A(J, y∗ + θ) and ν∗ = B ′(J,y∗+θ)

1−A′(J,y∗+θ)
. The associated eigenvalues are λ0 = eβB(J,y∗+θ) and

λ1 = eβB(J,y∗+θ)A′(J, y∗ + θ). The fixed point y∗ of the map yi+1 = A(J, yi + θ) is again
unique, and is given by

y∗ = 1

2
(J − θ) +

1

2β
log

[
eβJ sinh(βθ) +

√
e2βJ sinh2(βθ) + e−2βJ

]
. (18)

Obviously x∗ = y∗ + θ , so left and right eigenvalues are identical and ν∗ = µ∗ = 〈σi〉.
Furthermore, upon using the simple relation tanh(βx∗ + βy∗) = 〈σi〉 = µ∗ = ν∗ it is clear
that left and right eigenvectors corresponding to different eigenvalues are orthogonal:∑

σ

v0(σ ; y∗)u1(σ ; x∗, µ∗) = 2 cosh(βx∗ + βy∗)[tanh(βx∗ + βy∗) − µ∗] = 0

∑
σ

v1(σ ; y∗, µ∗)u0(σ ; x∗) = 2 cosh(βx∗ + βy∗)[tanh(βx∗ + βy∗) − ν∗] = 0.

Finally, to normalize our eigenvectors we require the constants

D0(x
∗, y∗) =

∑
σ

v0(σ ; y∗)u0(σ ; x∗) = 2 cosh(βx∗ + βy∗) (19)

D1(x
∗, y∗) =

∑
σ

v1(σ ; y∗, µ∗)u1(σ ; x∗, µ∗) = 2 cosh(βx∗ + βy∗)[1 − (µ∗)2]. (20)

3.2. Uncoupled replicated chains

For the ordinary Ising chain the above method would obviously not be the most efficient
route towards a solution. However, in contrast to the conventional approach based on explicit
diagonalization via a calculation of the zeros of the characteristic polynomial, we will show
that it can be applied also to the diagonalization of replicated transfer matrices, where the
dimension of the problem is no longer fixed and calculation of the characteristic polynomial
is therefore not a realistic option.

As an intermediate step from the diagonalization of (7) for the simple Ising chain to
diagonalization of (6) for disordered chains, let us now inspect replicated transfer matrices
with uncoupled replicas, viz (6) but with δ-distributed bonds and fields:

Tn(σ, σ′; θ, J ) = exp

(
βJ

∑
α

σασ ′
α + βθ

∑
α

σα

)
(21)

without an average over {θ, J }. This matrix is just the n-fold Kronecker product of (7), so
its left and right eigenvectors are simply (Kronecker) products of (17) and (8), respectively.
Each eigenvector is characterized by an index set {ρ} ⊆ {1, . . . , n} of size ρ ∈ {0, . . . , n},
indicating those indices α for which we select u1[x∗] as opposed to u0[x∗] (and similarly
for left eigenvectors), and with {0} = ∅. The left and right eigenvectors of (21) can thus be
written as

v{ρ}(σ; y∗, µ∗) =
∏

α∈{ρ}
v1(σα; y∗, µ∗)

∏
α/∈{ρ}

v0(σα; y∗) (22)
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u{ρ}(σ; x∗, µ∗) =
∏

α∈{ρ}
u1(σα; x∗, µ∗)

∏
α/∈{ρ}

u0(σα; x∗). (23)

For each ρ ∈ {0, . . . , n} there are
(
n

ρ

)
different index subsets giving us the required total

number of 2n eigenvectors. The associated eigenvalues follow easily, since here all spin
summations factorize over replicas:∑
σ′

Tn(σ, σ′; θ, J )u{ρ}(σ′; x∗, µ∗)

=
∏

α∈{ρ}

∑
σ ′

α

T (σα, σ ′
α; θ, J )u1(σ

′
α; x∗, µ∗)

∏
α/∈{ρ}

∑
σ ′

α

T (σα, σ ′
α; θ, J )u0(σ

′
α; x∗)

= λ
ρ

1λ
n−ρ

0

∏
a∈{ρ}

u1(σ
′
a; x∗, µ∗)

∏
α/∈{ρ}

u0(σ
′
α; x∗) = λ

ρ

1λ
n−ρ

0 u{ρ}(σ; x∗, µ∗).

Hence (21) has (n + 1) different eigenvalues λρ(n) = λ
ρ

1λ
n−ρ

0 , each with multiplicity
(
n

ρ

)
.

Since λ0 > λ1, we also have the ordering relation λ0(n) > λ1(n) > · · · > λn(n). We can
furthermore see that right and left eigenvectors satisfy the orthogonality relations

v{ρ ′}[y∗, µ∗] ·u{ρ}[x∗, µ∗] = Dρ(x
∗, y∗)δρρ ′

ρ∏
k=1

δαkα
′
k

(24)

Dρ(x
∗, y∗) = 2 coshn(βx∗ + βy∗)[1 − (µ∗)2]ρ (25)

where {ρ} = {α1, . . . , αρ} and {ρ ′} = {α′
1, . . . , α

′
ρ ′ }, and where the factor

∏ρ

k=1 δαkα
′
k

in (24)
is defined as unity for ρ = 0.

Although the above case of uncoupled replicas is still trivial, it reveals explicit suggestions
for the general structure of the eigenvectors for the general class of 2n × 2n replicated transfer
matrices. This structure will serve as an efficient ansatz and will lead us below to exact
solutions also for the non-trivial case of coupled replicas.

3.3. Diagonalization for the disordered Ising chain

We now turn the real problem: the diagonalization of (6), which can also be written as
T n = 〈T n[θ, J ]〉θ,J . Clearly T n shares many properties with the transfer matrix T n[θ, J ] of
the chain with uncoupled replicas, e.g., invariance under all permutations π of the permutation
group Sn acting on the indices {1, . . . , n}:

Tn(π(σ), π(σ′)) = Tn(σ, σ′) for every π ∈ Sn. (26)

If we denote by Dπ a 2n × 2n matrix representation of π , i.e., Dπ(σ, σ′) = δπ(σ),σ′ , it then
follows that T n and Dπ commute: T nDπ = DπT n. This in turn implies that if u is an
eigenvector of T n with eigenvalue λ, then so is Dπu for any π ∈ Sn. Furthermore in the
uncoupled case (21), one observes that due to the Kronecker product form of the eigenvectors
Dπu{a1,...,aρ } = u{π(a1),...,π(aρ)} for every π ∈ Sn. We will make the ansatz that the latter
property also holds for the eigenvectors of (6). In order to arrive at explicit expressions for
‘candidate’ eigenvectors of (6) with the aforementioned properties, we retain the same spin
dependence as in the eigenvectors of the uncoupled replicated transfer matrix and introduce
appropriate functions Pρ,Qρ which take into account the coupling between the replicas in the
disordered case. We are thus being led to the following general ansatz for the right and left
eigenvectors of T n:

u{ρ}(σ;Pρ) =
∫

dx dµPρ(x, µ|n) exp

(
βx

n∑
α=1

σα

) ∏
α∈{ρ}

(σα − µ) (27)
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v{ρ}(σ;Qρ) =
∫

dy dν Qρ(y, ν|n) exp

(
βy

n∑
α=1

σα

) ∏
α∈{ρ}

(σα − ν). (28)

This structure results in a spectrum of (n+1) different eigenvalues λρ(n) with ρ = 0, 1, . . . , n,
with multiplicity

(
n

ρ

)
each, in agreement with the results in [2], which were derived using the

irreducible representations of the replica permutation group.
The unknown functions Pρ and Qρ are determined by inserting (27) into the right

eigenvalue equation T nu{ρ}[Pρ] = λρ(n)u{ρ}[Pρ] and (28) into the left eigenvalue equation
v{ρ}[Qρ]T n = λρ(n)v{ρ}[Qρ], respectively. Working out the first equation gives, with the
definitions (11), (12):∑
σ′

Tn(σ, σ′)u{ρ}(σ′;Pρ) =
∫

dx ′ dµ′Pρ(x
′, µ′|n)

〈 ∏
α/∈{ρ}

exp(βB(J, x ′) + β[θ + A(J, x ′)]σα)

×
∏

α∈{ρ}
exp(βB(J, x ′) + β[θ + A(J, x ′)]σα)A′(J, x ′)

(
σα − µ′ − B ′(J, x ′)

A′(J, x ′)

)〉
J,θ

.

Upon inserting suitable integrals over δ-functions, viz 1 = ∫
dx δ[x − θ − A(J, x ′)] and

1 = ∫
dµδ

[
µ − µ′−B ′(J,x ′)

A′(J,x ′)

]
, we then find our right eigenvalue equation taking the form∫

dx dµ

[ ∫
dx ′ dµ′Pρ(x

′, µ′|n)

〈
exp(nβB(J, x ′))[A′(J, x ′)]ρδ[x − θ − A(J, x ′)]

× δ

[
µ − µ′− B ′(J, x ′)

A′(J, x ′)

]〉
J,θ

][
exp

(
βx

n∑
a=1

σa

) ∏
a∈{ρ}

(σa − µ)

]

= λρ(n)

∫
dx dµPρ(x, µ|n)

[
exp

(
βx

n∑
a=1

σa

) ∏
a∈{ρ}

(σa − µ)

]
.

We conclude from this that, in order for (27) to be an eigenvector of our replicated transfer
matrix, the function Pρ must satisfy the following eigenvalue equation:∫

dx ′ dµ′
(P)
ρ (x, µ, x ′, µ′|n)Pρ(x

′, µ′|n) = λρ(n)Pρ(x, µ|n) (29)

with the kernel


(P)
ρ (x, µ, x ′, µ′|n) =

〈
enβB(J,x ′)[A′(J, x ′)]ρδ[x − θ − A(J, x ′)]δ

[
µ − µ′− B ′(J, x ′)

A′(J, x ′)

]〉
J,θ

.

(30)

Upon repeating the above procedure also for the left eigenvectors (28) we find a similar
eigenvalue problem for the functions Qρ , but now with a different kernel 
(Q)

ρ :∫
dy ′ dν ′
(Q)

ρ (y, ν, y ′, ν ′|n)Qρ(y
′, ν ′|n) = λρ(n)Qρ(y, ν|n) (31)


(Q)
ρ (y, ν, y ′, ν ′|n) =

〈
exp(nβB(J, y ′+ θ))[A′(J, y ′ + θ)]ρ

× δ[y − A(J, y ′+ θ)]δ

[
ν − ν ′− B ′(J, y ′+ θ)

A′(J, y ′+ θ)

]〉
J,θ

. (32)

We have now transformed the problem of diagonalizing the 2n×2n replicated transfer matrix (6)
into a problem involving integral operators (30), (32), where the limit n → 0 can be taken.
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The variable n no longer controls the dimension of the operator to be diagonalized, but has
become simply a parameter of a continuous kernel.

We note that, at least for the purpose of finding the eigenvalues λρ(n), the two eigenvalue
problems (29), (31) can be integrated over µ and ν, respectively, and replaced by a simpler
eigenvalue problem for the two single-argument functions �ρ(x|n) = ∫

dµPρ(x, µ|n) and
�ρ(y|n) = ∫

dν Qρ(y, ν|n):∫
dx ′ 
(P)

ρ (x, x ′|n)�ρ(x
′|n) = λρ(n)�ρ(x|n) (33)

∫
dy ′ 
(Q)

ρ (y, y ′|n)�ρ(y
′|n) = λρ(n)�ρ(y|n) (34)

with


(P)
ρ (x, x ′|n) = 〈exp(nβB(J, x ′))[A′(J, x ′)]ρδ[x − θ − A(J, x ′)]〉J,θ (35)


(Q)
ρ (y, y ′|n) = 〈exp(nβB(J, y ′+ θ))[A′(J, y ′ + θ)]ρδ[y − A(J, y ′+ θ)]〉J,θ . (36)

Once we know the functions Pρ and Qρ , the form of the kernels (35), (36) enables us to
integrate (29) and (31) over x and y and to obtain relatively expressions for the corresponding
eigenvalues:

λρ(n) =
∫

dx �ρ(x|n)〈exp(nβB(J, x))[A′(J, x)]ρ〉J∫
dx �ρ(x|n)

(37)

λρ(n) =
∫

dy �ρ(y|n)〈exp(nβB(J, y + θ))[A′(J, y + θ)]ρ〉J,θ∫
dy �ρ(y|n)

. (38)

Let us quickly inspect special cases. We see that for δ-distributed fields and bonds the
integral equations (29), (31) admit the expected solutions Pρ(x, µ|n) = δ(x − x∗)δ(µ − µ∗)
and Qρ(y, ν|n) = δ(y − y∗)δ(ν − µ∗), the eigenvectors (27), (28) reduce to the eigenvectors
of (21), and the eigenvalues become λρ(n) = λ

ρ

1λ
n−ρ

0 , as they should. Also the special case
of a chain without external fields, i.e., p(J, θ) = p(J )δ(θ), can easily be solved analytically.
Here A(J, 0) = B ′(J, 0) = 0 and A′(J, 0) = tanh(βJ ) for every J , which enables us to verify
that (29), (31) have the trivial solutions Pρ(x, µ|n) = δ(x)δ(µ) and Qρ(y, ν|n) = δ(y)δ(ν).
Hence, the eigenvectors become

u{ρ}(σ) = v{ρ}(σ) =
∏

α∈{ρ}
σα.

They satisfy vρ[Q] ·uρ ′ [P ] = 2nδρρ ′
∏ρ

k=1 δαkα
′
k
. These eigenvectors are in fact common

to all matrices of the form T (σ, σ′) = T (σ · σ′) [14], and our replicated transfer matrix
falls in this category when the external fields are zero. The eigenvalues are given by
λρ(n) = 〈[2 cosh(βJ )]n tanhρ(βJ )〉J , and it is clear that the largest eigenvalue corresponds
to ρ = 0.

3.4. Properties of the kernel eigenvalue problems for n → 0

Let us consider in more detail the n → 0 limits of the eigenvalue problems (30) and (32). We
first turn to ρ = 0. The eigenvectors corresponding to eigenvalue λ0(0) do not depend on
{ν, µ}, so upon writing simply �0(x|0) = �(x) and �0(y|0) = �(y) we obtain for ρ = 0:∫

dx ′ �(x ′)〈δ[x − θ − A(J, x ′)]〉J,θ = λ0(0)�(x) (39)
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dy ′ �(y ′)〈δ[y − A(J, y ′ + θ)]〉J,θ = λ0(0)�(y). (40)

If we assume that
∫

dx �(x) 
= 0 and
∫

dy �(y) 
= 0, then integration of (39), (40) over x
and y, respectively, gives us in both equations λ0(0) = 1. This, in turn, implies that �(x) and
�(y) are the stationary distributions of the two random maps

xi+1 = θi + A(Ji, xi) yi+1 = A(Ji, yi + θi).

These maps describe the propagation of the fields x and y along the chain. The two distributions
are connected via the following equations:

�(x) =
∫

dy �(y)〈δ[x − θ − y]〉θ �(y) =
∫

dx �(x)〈δ[y − A(J, x)]〉J (41)

which can be verified upon substituting into (39), (40), using λ0(0) = 1.
The case ρ > 0 is more complicated. Here, we find the n → 0 eigenvalue problems∫

dx ′ dµ′
〈
[A′(J, x ′)]ρδ[x − θ − A(J, x ′)]δ

[
µ − µ′− B ′(J, x ′)

A′(J, x ′)

]〉
J,θ

Pρ(x
′, µ′|0)

= λρ(0)Pρ(x, µ|0) (42)∫
dy ′ dν ′

〈
[A′(J, y ′+ θ)]ρδ[y − A(J, y ′+ θ)]δ

[
µ − µ′− B ′(J, y ′+ θ)

A′(J, y ′+ θ)

]〉
J,θ

Qρ(y
′, ν ′|0)

= λρ(0)Qρ(y, ν|0). (43)

As for ρ = 0 we can show that these equations admit solutions Pρ and Qρ which can be
interpreted as probability densities. The difference with ρ = 0, where these distributions
are the stationary measures of the random maps of the propagated fields {x, y}, is that here
the quantities which are propagated are the distributions themselves, via deterministic but
nonlinear functional maps:

Pρ,i+1 = AP,ρ(Pρ,i) Qρ,i+1 = AQ,ρ(Qρ,i)

where

[AP,ρ(P )](x, µ) =
∫

dx ′ dµ′
〈

P(x ′, µ′)[A′(J, x ′)]ρ∫
dx ′′ dµ′′P(x ′′, µ′′)〈[A′(J ′′, x ′′)]ρ〉J ′′

× δ[x − θ − A(J, x ′)]δ
[
µ − µ′− B ′(J, x ′)

A′(J, x ′)

]〉
J,θ

(44)

[AQ,ρ(Q)](y, ν) =
∫

dy ′ dν ′
〈

Q(y ′, ν ′)[A′(J, y ′+ θ)]ρ∫
dy ′′dν ′′Q(y ′′, ν ′′)〈[A′(J ′′, y ′′+ θ ′′)]ρ〉J ′′,θ ′′

× δ[y − A(J, y ′ + θ)]δ

[
ν − ν ′− B ′(J, y ′+ θ)

A′(J, y ′+ θ)

]〉
J,θ

. (45)

We see that the defining properties of a probability density, viz non-negativity and
normalization, are preserved by both functional maps. Hence, we may indeed view the
eigenvalue problems (42), (43) as the fixed point equations of the functional maps (44), (45).
The corresponding eigenvalues are

λρ(0) =
∫

dx �ρ(x|0)〈[A′(J, x)]ρ〉J =
∫

dy �ρ(y|0)〈[A′(J, y + θ)]ρ〉θ,J (46)

where �ρ and �ρ are as before the marginals of Pρ and Qρ , i.e., �ρ(x|0) = ∫
dµPρ(x, µ|0)

and �ρ(y) = ∫
dν Qρ(y, ν|0). Moreover, using the property A′(J, x) < 1 for every J, x we



8442 T Nikoletopoulos and A C C Coolen

obtain the ordering relation λρ(0) < λ0(0) = 1 for every ρ > 1. We may also generalize
equations (41) which give the relation between the solutions of the two ρ = 0 eigenvalue
problems. It is straightforward to check by substitution into (42), (43) that for ρ > 1 we have

Pρ(x, µ|0) =
∫

dy dνQρ(y, ν|0)〈δ(x − θ − y)〉θ δ(µ − ν) (47)

Qρ(y, ν|0) =
∫

dx dµPρ(x, µ|0)
〈
[A′(J, x)]ρδ[y − A(J, x)]δ

[
ν − µ−B ′(J,x)

A′(J,x)

]〉
J∫

dx �ρ(x|0)〈[A′(J, x)]ρ〉J . (48)

3.5. Spectral decompositions

Standard linear algebra guarantees that left and right eigenvectors corresponding to different
eigenvectors are orthogonal. Thus, given that our eigenvalues λρ(n) depend only on the size
ρ of the index sets we know that

ρ 
= ρ ′ :
∑

σ

u{ρ}(σ;Pρ)v{ρ ′}(σ;Qρ ′) = 0. (49)

It follows that we may always use the decomposition

Tn(σ, σ′) =
n∑

ρ=0

λρ(n)U(ρ)
n (σ, σ′) (50)

in which the matrices U (ρ)
n are projection matrices, each formed of linear combinations of

λρ(n) eigenvectors and each acting only in one of the orthogonal eigenspaces. We note that
also T k

n = ∑n
ρ=0 λk

ρ(n)U (ρ)
n for any integer k > 0, and that the trace of a projection operator

reduces to the dimension of the space which it projects, i.e., tr
(
U (ρ)

n

) = (
n

ρ

)
. Since the

dimensions of both the λ0(n) and the λn(n) eigenspaces are 1, the corresponding eigenvectors
are pairwise orthogonal and orthogonal to all other eigenvectors, and therefore

U(0)
n (σ, σ′) = u{0}(σ)v{0}(σ′)

D0(n)
U(n)

n (σ, σ′) = u{n}(σ)v{n}(σ′)
Dn(n)

(51)

with

Dρ(n) =
∑

σ

v{ρ}(σ)u{ρ}(σ)

=
∫

dx dµPρ(x, µ|n)

∫
dy dνQρ(y, ν|n)

× [2 cosh(βx + βy)]n[1 + µν − tanh(βx + βy)[µ + ν]]ρ. (52)

We note that limn→0 D0(n) = 1. Expression (50) will prove useful in calculating observables
such as magnetizations and correlation functions. If also within each eigenspace, characterized
by an index set size 1 � ρ � (n − 1), the eigenvectors would be orthogonal (as in chains
without disorder, or as in the random bond chain without external fields), then we would have
the identity U

(ρ)
n (σ, σ′) = ∑

{ρ} u{ρ}(σ)v{ρ}(σ′)/Dρ(n) for all ρ, and hence

Tn(σ, σ′) =
n∑

ρ=0

λρ(n)
∑
{ρ}

u{ρ}(σ)v{ρ}(σ′)
Dρ(n)

(53)

where the summation
∑

{ρ} is over all different replica indices sets with ρ elements.

4. Applications of the theory: the random field Ising model

As a benchmark test, let us first calculate the free energy and various observables for the
random field Ising chain (1) with nearest neighbour bonds of strength J0.
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4.1. The free energy

We recall that the free energy is given by f̄ = − limn→0
1
n

limN→∞ 1
βN

log tr
(
T N

n

)
, where

T n is the replicated transfer matrix (6). Assuming that the largest eigenvalue is λ0(n), we may
write the trace as

tr
(
T N

n

) =
n∑

ρ=0

[λρ(n)]N tr
(
U (ρ)

n

) = λN
0 (n)

[
1 +

n∑
ρ=1

(
n

ρ

)(
λρ(n)

λ0(n)

)N
]
. (54)

Since limN→∞(λρ<0(n)/λ0(n))N = 0, only the contribution of the largest eigenvalue survives,
so that, upon writing λ0(n) = 1 + λn +O(n2) (for we had already established that λ0(0) = 1):

f̄ = − 1

β
lim
n→0

1

n
log λ0(n) = − 1

β
lim
n→0

1

n
log[1 + nλ + O(n2)] = −λ

β
. (55)

The O(n) contribution λ to λ0(n) can be found upon expanding (37) for small n, and is found
to be λ = β

∫
dx �(x)B(J0, x). Insertion of this result into (55) gives us

f̄ = − 1

2β

∫
dx �(x) log 4 cosh(β(J0 + x)) cosh(β(J0 − x)). (56)

This expression can be converted into a form more familiar from the one-dimensional random
systems literature [2, 5, 6]. If we define a new random variable x̃ and an associated density
�̃(x̃) via �̃(x̃) = ∫

dx �(x)δ[x̃ − e2βx], we find after some straightforward manipulations
that

f̄ = 〈θ〉θ − 1

β

∫
dx̃ �̃(x̃) log[eβJ0 + x̃e−βJ0 ] (57)

where

�̃(x̃) =
∫

dx̃ ′ �̃(x̃ ′)
〈
δ

[
x̃ − e2βθ e−βJ0 + x̃ ′ eβJ0

eβJ0 + x̃ ′ e−βJ0

]〉
θ

. (58)

The resulting (correct) expression (57) for the free energy1 justifies a posteriori our
assumption that λ0(n) is generally the largest eigenvalue, and confirms that our ansatz for
the associated right and left eigenvectors, which are seen themselves to be replica symmetric
(i.e., u0(π(σ)) = u0(σ) and v0(π(σ)) = v0(σ) for every permutation π ∈ Sn), was correct.

4.2. Single-site expectation values and their powers

Let us next show how single-site observables of the form 〈σi〉ρ (integer ρ), with brackets
denoting a thermal average over the Boltzman measure and · · · denoting averaging over the
disorder, can also be calculated. We use the following replica identity which will enable us to
express single-site expectation values in terms of the replicated transfer matrix

〈σi〉ρ = lim
n→0

[∑
σ

σi e−βH(σ)

]ρ[∑
σ

e−βH(σ)

]n−ρ

= lim
n→0

∑
{σ}

σ
α1
i · · · σαρ

i

n∏
α=1

e−βH(σα)

= lim
n→0

∑
{σ}

σ
α1
i · · · σαρ

i

∏
i

Tn(σi , σi+1) (59)

1 In the traditional method to solve one-dimensional random bond or random field spin chains [2, 5, 6], based on
constructing iterative relations for the partition function as the size of the chain is increased by one spin, the variable
x̃ in (57) represents the ratio of conditioned partition functions.
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and define the diagonal 2n × 2n matrix S{ρ} with entries

S{ρ}(σ, σ′) = δσ,σ′
∏

α∈{ρ}
σα. (60)

Upon using the replicated transfer matrix (6) to evaluate (59), and upon dividing (59) by
1 = limn→0 Zn = limn→0 tr(T N), expression (59) can be written in the form

〈σi〉ρ = lim
n→0

tr(S{ρ}T N)

tr(T N)
.

For large N our spectral decomposition (50) now gives us

〈σi〉ρ = lim
n→0

lim
N→∞

tr
(
S{ρ}U (0)

n

)
+

∑n
ρ ′=1[λρ ′(n)/λ0(n)]N tr

(
S{ρ}U (ρ ′)

n

)
1 +

∑n
ρ ′=1[λρ ′(n)/λ0(n)]N

= lim
n→0

tr(S{ρ}U (0)
n )

= lim
n→0

D−1
0 (n)

∑
σ

v{0}(σ)u{0}(σ)
∏

α∈{ρ}
σα

= lim
n→0

∫
dx dy �0(x|n)�0(y|n) [2 cosh(βx + βy)]n tanhρ(βx + βy). (61)

We note that the dependence on the particular realization of the index set {ρ} has disappeared,
as it should, leaving only a dependence on the size ρ of this set. We may now take the limit
n → 0, and find our transparent and appealing final result

〈σi〉ρ =
∫

dx dy �(x)�(y) tanhρ(βx + βy). (62)

Equation (62) also shows that �(x) and �(y) represent distributions of effective fields.

4.3. Multiple-site observables

Finally, we apply our methods to the evaluation of disorder-averaged powers of two-spin
correlations of the form 〈σiσj 〉ρ with integer ρ. As in the previous section, we express
the observables in terms of the replicated transfer matrix and exploit the associated spectral
decomposition to take the limit N → ∞ after which only contributions from the largest
eigenvalue remain. The resulting expressions can then be analytically continued to real values
of n. However, the calculations are obviously more involved than those of single-site quantities,
and will at some point require further ansätze. We choose j > i and start from the identity

〈σiσj 〉ρ = lim
n→0

[∑
σ

σiσj e−βH(σ)

]ρ[ ∑
σ

e−βH(σ)

]n−ρ

= lim
n→0

∑
{σ}

σ
α1
i σ

α1
j · · · σαρ

i σ
αρ

j

n∏
α=1

e−βH(σα)

= lim
n→0

tr(S{ρ}T j−iS{ρ}T N−j+i )

tr(T N)
. (63)

Our spectral decomposition (50), together with λ0(n) = 1, enables us to write for N → ∞:

〈σiσj 〉ρ = lim
n→0

lim
N→∞

∑n
ρ ′ρ ′′=0

[ λρ′ (n)

λ0(n)

]j−i[ λρ′′ (n)

λ0(n)

]N−j+i
tr

(
S{ρ}U (ρ ′)

n S{ρ}U (ρ ′′)
n

)
1 +

∑n
ρ ′=1

[ λρ′ (n)

λ0(n)

]N

= lim
n→0

n∑
ρ ′=0

λρ ′(0)j−i tr
(
S{ρ}U (ρ ′)

n S{ρ}U (0)
n

)
. (64)
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To work out the trace in (64) we write the entries of our projection matrices as follows:

U(ρ ′)
n (σ, σ′) =

∑
{ς}, {ς ′}

|{ς}| = |{ς ′}| = ρ ′

V
(ρ ′)
{ς},{ς ′}u{ς}(σ)v{ς ′}(σ′) (65)

where the summation is over all different replica index sets {ς}, {ς ′} with fixed number of
elements ρ ′. We may now write

tr
(
S{ρ}U (ρ ′)

n S{ρ}U (0)
n

) =
∑
σ,σ′

[
v{0}(σ)

∏
α∈{ρ}

σα

]
U(ρ ′)

n (σ, σ′)
[
u{0}(σ′)

∏
α∈{ρ}

σ ′
α

]

=
∑

{ς}, {ς ′}
|{ς}| = |{ς ′}| = ρ ′

V
(ρ ′)
{ς},{ς ′}A

({0},{ς})
{ρ} A

({ς ′},{0})
{ρ} (66)

with

A
({0},{ς})
{ρ} =

∑
σ

v{0}(σ)u{ς}(σ)
∏

α∈{ρ}
σα (67)

A
({ς},{0})
{ρ} =

∑
σ

u{0}(σ)v{ς}(σ)
∏

α∈{ρ}
σα. (68)

Our correlations (64) can apparently be written in the simplified form

〈σiσj 〉ρ = lim
n→0

n∑
ρ ′=0

λρ ′(0)j−i
∑

{ς}, {ς ′}
|{ς}| = |{ς ′}| = ρ ′

V
(ρ ′)
{ς},{ς ′}A

({0},{ς})
{ρ} A

({ς ′},{0})
{ρ} . (69)

Inserting the eigenvectors (27), (28) into expressions (67), (68) for the coefficients A
({0},{ς})
{ρ} (n)

and A
({ς},{0})
{ρ} (n), followed by summation over the spin variables, gives

A
({0},{ς})
{ρ} (n) =

∫
dx dµPρ ′(x, µ|n)

∫
dy �0(y|n)

× [2 cosh(βx + βy)]n[1 − µ tanh(βx + βy)]|{ρ}∩{ς}|

× [tanh(βx + βy)]|{ρ}∩{ς}|[tanh(βx + βy) − µ]|{ρ}∩{ς}| (70)

A
({ς},{0})
{ρ} (n) =

∫
dx �0(x|n)

∫
dy dνQρ ′(y, ν|n)

× [2 cosh(βx + βy)]n[1 − ν tanh(βx + βy)]|{ρ}∩{ς}|

× [tanh(βx + βy)]|{ρ}∩{ς}|[tanh(βx + βy) − ν]|{ρ}∩{ς}|. (71)

These quantities no longer depend on the detailed realizations of the index sets, but only on
the sizes of these sets and of their intersections. Let us denote the number of elements in the
intersection of {ρ} and {ς} by k = |{ρ} ∩ {ς}|, k = 0, . . . , min{ρ, ρ ′} (since |{ς}| = ρ ′):

|{ρ} ∩ {ς}| = k, |{ρ} ∩ {ς}| = ρ − k, |{ρ} ∩ {ς}| = ρ ′ − k (72)

with similar definitions in the case of {ς ′}, defining the variable k′. We may now write (69) as

〈σiσj 〉ρ = lim
n→0

n∑
ρ ′=0

λρ ′(0)j−i

min{ρ,ρ ′}∑
k,k′=0

A
(0,ρ ′)
ρ,k A

(ρ ′,0)

ρ,k′

×
∑

{ς}, |{ς}| = ρ ′

|{ρ} ∩ {ς}| = k

∑
{ς ′}, |{ς ′}| = ρ ′

|{ρ} ∩ {ς ′}| = k′

V
(ρ ′)
{ς},{ς ′} (73)
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in which A
(0,ρ ′)
ρ,k and A

(ρ ′,0)

ρ,k denote the n → 0 limits of (70) and (71), respectively (with the
conventions as laid down in (72)):

A
(0,ρ ′)
ρ,k =

∫
dx dµPρ ′(x, µ|0)

∫
dy �0(y|0)[tanh(βx + βy)]ρ−k

× [1 − µ tanh(βx + βy)]k[tanh(βx + βy) − µ]ρ
′−k (74)

A
(ρ ′,0)

ρ,k =
∫

dx �0(x|0)

∫
dy dνQρ ′(y, ν|0)[tanh(βx + βy)]ρ−k

× [1 − ν tanh(βx + βy)]k[tanh(βx + βy) − ν]ρ
′−k. (75)

The rigorous evaluation of the last line in (73) for arbitrary models requires the explicit
calculation of the expansion factors V

(ρ ′)
{ς},{ς ′}. Although one can easily write formal expressions

for these quantities in terms of the inverse of the matrix of inner products of the eigenvectors
within a given eigenspace ρ ′, this leads as yet only to expressions in which it is not clear how
the limit n → 0 can be taken.

We can at present only push the evaluation of (73) to its conclusion for those cases where
the eigenvectors within each eigenspace are either explicitly orthogonal for any n (as in chains
without disorder, or in the random bond chain without external fields), or become effectively
orthogonal in the n → 0 limit. The latter is very hard to verify or disprove a priori, but can
serve as an efficient ansatz, to be verified later using numerical simulations. In these cases,
we are allowed to write simply V

(ρ ′)
{ς},{ς ′} = D−1

ρ ′ (n)δ{ς},{ς ′} and find (73) reducing to

〈σiσj 〉ρ = lim
n→0

{
ρ∑

ς=0

λς(0)j−i

Dς(0)

ς∑
k=0

(
ρ

k

)(
n − ρ

ς − k

)
A

(0,ς)

ρ,k A
(ς,0)

ρ,k

+
∑
ς>ρ

λς(0)j−i

Dς(0)

ρ∑
k=0

(
ρ

k

)(
n − ρ

ς − k

)
A

(0,ς)

ρ,k A
(ς,0)

ρ,k

}
. (76)

It turns out that in (76) only the terms with k = ς will survive the limit n → 0. In
the special case of non-disordered models, where Pρ(x, µ|n) = δ(x − x∗)δ(µ − µ∗) and
Qρ(y, ν|n) = δ(y − y∗)δ(ν − µ∗), with µ∗ = tanh(β(x∗ + y∗)), we see that A

(0,ς)

ρ,k and A
(ς,0)

ρ,k

vanish unless k = ς . More generally we show in the appendix that for integer ρ and �:

ρ � 1, � � 0: lim
n→0

(
n − ρ

�

)
= δ�,0 (77)

It follows that the second line of (76) must vanish entirely since there one always has the
ordering k � ρ < ς , whereas in the first line we retain only the terms with k = ς . Thus,
together with (52) we arrive at

〈σiσj 〉ρ =
ρ∑

ς=0

D−1
ς

(
ρ

ς

)
A(0,ς)

ρ A(ς,0)
ρ λς (0)j−i (78)

A(0,ς)
ρ =

∫
dx dµPς(x, µ|0)

∫
dy �0(y|0)[1 − µ tanh(βx + βy)]ς [tanh(βx + βy)]ρ−ς (79)

A(ς,0)
ρ =

∫
dx �0(x|0)

∫
dy dν Qς(y, ν|0)[1 − ν tanh(βx + βy)]ς [tanh(βx + βy)]ρ−ς (80)

Dρ =
∫

dx dµPρ(x, µ|0)

∫
dy dν Qρ(y, ν|0)

[
1 + µν − tanh(βx + βy)[µ + ν]

]ρ

. (81)
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This concludes our calculations for the random field Ising chain. The limit n → 0 has been
taken, and we are left with an explicit theory with which to calculate not only the free energy
per spin but also the relevant observables and correlation functions.

4.4. Comparison with simulations

We have tested the final predictions (62), (78) for the observables and correlations functions in
the random field Ising chain with p(θ) = pδ(θ − θ̃ ) + (1 − p)δ(θ + θ̃ ). Objects such as 〈σi〉2

or 〈σiσj 〉2 were measured by simulating two copies of the system, each with identical disorder
realizations but each evolving independently according to standard Glauber dynamics towards
equilibrium following a randomly chosen microscopic initial state. The results are shown in
figure 1. In all simulations the system size was N = 20 000 spins. We concentrated on the
following macroscopic quantities:

m = 1

N

∑
i

〈σi〉, a1 = 1

N

∑
i

〈σiσi+1〉, a2 = 1

N

∑
i

〈σiσi+2〉 (82)

q = 1

N

∑
i

〈σi〉2, r = 1

N

∑
i

〈σiσi+1〉2. (83)

Ideally in the thermodynamic limit the evolution of those observables are given by smooth
curves. The fluctuations in the plots we present are due to the finite (although very large) system
size and the fact that our data points correspond to integer values of t with the intermediate
lines segments serving as guides to the eye.

The evaluation of the theoretical predictions (62), (78) involved solving the relevant
functional eigenvalue equations numerically. For m and q, which both follow from (62),
one just needs to solve (39) for λ0(0) = 1, which is straightforward (either by iteration, or
using a population dynamics algorithm). The function �(y) subsequently follows via identity
(41). We see in figure 1 that for m and q the agreement between theory and experiment
is excellent. Figure 2 shows the corresponding shapes of the integrated field distribution
�̂(x) = ∫ x

−∞ dz �(z), and of the integrated single-site magnetization distribution

Ŵ (m) =
∫ m

−1
dn

∫
dx dy�(x)�(y)δ[n − tanh(β(x + y))]

which are smoother functions than the distributions themselves. We can see that they exhibit
the by now familiar characteristics of random field Ising models (see, e.g., [5, 6, 8, 9]).

For those observables which require evaluation of (78), and therefore numerical solution
of the eigenvalue problems (42), (43) for different values of ρ (which is feasible but extremely
demanding in computing time), we have used the approximation consisting of replacing
Pρ(· · ·) and Qρ(· · ·) for ρ > 0 by P0(· · ·) and Q0(· · ·), respectively. This would formally
be allowed only in the non-disordered case (where also the assumed orthogonality of our
eigenvectors within eigenspaces is correct), but is seen to give surprisingly accurate results
even for those cases where the shape of these distributions is highly non-trivial, see figures 1
and 2.

5. Applications of the theory: neural networks and ‘small-world’ systems

The theory in section 3 can be applied to any model which involves replicated transfer matrices.
Here, we demonstrate how it may be used to analyse models which are structurally different
from the random field Ising model, in having not only short-range but also long-range bonds.
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Figure 1. Relaxation of observables towards equilibrium at T = 1, in two random field
Ising chains with identical disorder realizations, of size N = 20 000 and with field distribution
p(θ) = pδ(θ − θ̃ )+ (1−p)δ(θ + θ̃ ). Left column: evolution of the magnetization m = N−1 ∑

i σi

and the order parameter q = N−1 ∑
i σiσ

′
i . Right column: evolution of the multiple site quantities

a1 = N−1 ∑
i σiσi+1, a2 = N−1 ∑

i σiσi+2 and r = N−1 ∑
i σiσi+1σ

′
i σ

′
i+1. Different rows

correspond to different control parameters. Top row: weak random fields, with J0 = 1, θ̃ = 0.05,

p = 0.7, where the theoretical equilibrium predictions are m � 0.14, q � 0.03, a1 � 0.76, a2 �
0.58, r � 0.58. Middle row: intermediate fields, with J0 = 0.5, θ̃ = 0.2, p = 0.7, where our
theory predicts m � 0.20, q � 0.08, a1 � 0.47, a2 � 0.22, r � 0.21. Bottom row: strong
random fields, with J0 = 0.2, θ̃ = 2, p = 0.5, where the theory predicts the equilibrium values
m � 0.006, q � 0.91, a1 � 0.018, a2 � 0.0003, r = 0.84. In all cases, the predictions are
indicated by markers at the right of the graphs.



Diagonalization of replicated transfer matrices 8449

Φ̂(x) Ŵ (m)
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Figure 2. The integrated field and site magnetization distributions corresponding to the data of
the previous figure 1, as obtained by numerical solution of our integral eigenvalue equations (39),
(40) via a population dynamics algorithm. The rows correspond again to weak random fields (top
row), intermediate random fields (middle row) and strong random fields (bottom row). Note that
in the second case the integrated distribution �̂(x) has the form of devil’s staircase which in turn
implies that the associated distribution �(x) is highly non-trivial.

5.1. (1 + ∞)-dimensional attractor neural networks

We now turn to the attractor neural network described by the Hamiltonian (2), where short-
range interactions compete with long-range ones. A detailed study of the model, based on
the more conventional methods of [5, 6] can be found in [15, 16]; here our objective is
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only to demonstrate how the present replicated transfer matrix diagonalization formalism
can also be put to use in the context of such models. Upon introducing the p overlap
order parameters mµ(σ) = N−1 ∑

i ξ
µ

i σi , each of which measures the similarity between
the system’s microscopic configuration σ and a given stored pattern, one arrives after some
standard manipulations at the following expression for the partition function:

Z =
∫

dm exp

(
N

[
−1

2
βJ�m

2 + r(m)

])
(84)

where m = (m1, . . . , mp),m2 = ∑
µ m2

µ and r(m) = 1
N

log R(m) with

R(m) =
∑

σ1...σN

exp

(
βJs

∑
i

σiσi+1(ξi · ξi+1) + βJ�

∑
i

σi(m · ξi )

)
. (85)

One may now calculate r(m) by regarding the random patterns as disorder and use the replica
approach to calculate the disorder average. In the thermodynamic limit, r(m) (which is
itself mathematically identical to the free energy per spin of a suitably defined chain) must be
identical to its disorder average, with probability 1. Therefore, we consider

r(m) = lim
n→0

1

n
lim

N→∞
1

N
log Rn(m).

In particular, we have

Rn(m) = 2−pN
∑

ξ1···ξN

∑
σ1···σN

∏
i

exp

(
βJs(σi · σi+1)(ξi · ξi+1) + βJ�(m · ξi )

n∑
α=1

σα
i

)

= tr(T N(m))

where σi = (
σ 1

i , . . . , σ n
i

)
, and T (m) is a 2np × 2np transfer matrix with entries

Tξ,ξ′(σ, σ′;m) = 2−p exp

(
βJs(ξ · ξ′)(σ · σ′) + βJ�(m · ξ)

n∑
α=1

σα

)
. (86)

In order to determine the largest eigenvalue of this replicated transfer matrix we make the by
now familiar type of ansatz for its left and right eigenvectors, but now applied to each value
of ξ ∈ {−1, 1}P separately:

vξ(σ) =
∫

dy �ξ(y|n) exp

(
βy

n∑
α=1

σα

)
uξ(σ) =

∫
dx �ξ(x|n) exp

(
βx

n∑
α=1

σα

)
.

(87)

Our motivation for this particular choice of the dependence on the pattern vectors ξ is that
for p = 1 the dependence on the remaining pattern can be transformed away by the gauge
transformation σi → ξiσi . This would leave a replicated transfer matrix of an Ising chain
with constant bonds, where the role of the external field is played by J�m. Thus, for p = 1
the present eigenvectors must reduce to those as studied in section 3.3. Secondly, the group
(87) obviously represents only a subset of all eigenvectors (to be precise: the ρ = 0 family,
in the language of the previous section). Building the full set is straightforward, but here
we restrict ourselves for brevity to the main ones, i.e., those which control the free energy
and the single-site observables (the other eigenvectors only play a role in the calculation of
multiple-site observables).

Having introduced our eigenvectors, we proceed as in the random field Ising model,
adding m as a conditioning label wherever needed. We then find in the limit n → 0 that
λ(0;m) = 1, and that our final eigenvalue problems are defined in terms of joint field-pattern
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distributions:

�ξ(y|0) = 2−p
∑
ξ′

∫
dy ′ �ξ′(y ′|0)δ[y − A(Js(ξ · ξ′), y ′ + J�(m · ξ′))] (88)

�ξ(x|0) = 2−p
∑
ξ′

∫
dx ′ �ξ′(x ′|0)δ[x − J�(m · ξ) − A(Js(ξ · ξ′), x ′)]. (89)

These distributions are normalized according to
∫

dx �ξ(x|0) = ∫
dy �ξ(y|0) = 1 for all

ξ. The actual value to be inserted for the vector m in the above expressions is to be solved
from the saddle-point equations which determine the stationary point of the extensive exponent
in the partition sum. This equation can simply be written as m = limN→∞ N−1 ∑

i 〈σiξ
µ

i 〉.
Upon repeating the steps taken earlier in solving the random field Ising model, we get

mµ = lim
n→0

tr
(
S

µ

{1}T
N(m)

)
tr(T N(m))

= 2−p
∑

ξ

∫
dx dy �ξ(x|0)�ξ(y|0)ξµ tanh(βx + βy) (90)

in which S
µ

{1} is a diagonal 2np × 2np matrix with elements

S
µ

{1},ξξ′(σ, σ′) = δξ,ξ′δσ,σ′ξµσ1.

The n = 0 eigenvalue problems for �ξ and �ξ are coupled to the saddle-point equations for
the ‘mean-field’ order parameters. This feature is typical, within the replica formalism, for
all models where a one-dimensional structure is embedded in a mean-field (or range-free)
architecture, as is the case here.

In order to calculate the free energy we need to know the O(n) contribution λ(m) to
λ(n;m) (i.e., λ(n;m) = 1 + nλ(m) + O(n2)). The latter can be expressed in terms of the
n = 0 effective field distributions, and is found to be given by

λ(m) = 2−2p
∑
ξ,ξ′

∫
dy �ξ′(y|0)βB(Js(ξ · ξ′), y + J�(m · ξ′)).

Hence,

r(m) = lim
n→0

1

n
lim

N→∞
1

N
log λN(n;m)

= lim
n→0

1

n
log[1 + nλ(m) + O(n2)] = λ(m). (91)

Substitution of this result for r(m) into the partition leads to our final result

f = 1
2J�m

2 − T λ(m) (92)

in which m is given by the solution of (90). The link with the results of [15] can now
be established upon defining a new random variable k, which in [15] represents the ratio of
conditioned partition functions, and is subject to a random nonlinear map as one builds up the
chain iteratively from N = 1 to N = ∞. With the following definition the two solutions (the
one in [15] and the other in this paper) become fully identical:

P(k, ξ) = 2−p

∫
dy �ξ(y)δ[k − e−2βy]. (93)
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5.2. ‘Small-world’ ferromagnets

Our final application example is the so-called ‘small-world’ ferromagnet, defined by the
Hamiltonian (3). As in the previous example this model represents a combination of one-
dimensional short-range interactions and long-range ones. In contrast to the previous example
the long-range bonds are not ‘all-to-all’, but represent a finitely connected Poissonian random
graph. This model was studied in more detail in [17], where it was shown that application of the
replica formalism generates the following replicated transfer matrix, with σ, σ′, τ ∈ {−1, 1}n:

T (σ, σ′|P) = exp

(
βJ0σ · σ′ + c

∑
τ

P(τ ) exp

[
βJ

c
σ · τ

]
− c

)
. (94)

Here the mean-field order parameter is a function P(τ ), which gives the fraction of sites where
the replicated spin σi equals τ . The saddle-point equations are here found to take the form of
an expression for P(τ ) in terms of those eigenvectors of T which correspond to the largest
eigenvalue:

P(τ ) = v0(τ )u0(τ )∑
τ v0(τ )u0(τ )

(95)

(assuming this eigenspace to be non-degenerated, similar to our previous models). In this
model one expects a replica symmetric solution (RS) to describe the physics correctly, which
for the order parameter P(τ ) implies the form

P(τ ) =
∫

dh W(h)
exp

(
βh

∑n
α=1 τα

)
[2 cosh(βh)]n

. (96)

Insertion of this RS expression into (94) results in the following replicated transfer matrix:

T RS(σ, σ′) =
∫

dθ p(θ |n) exp

(
βJ0σ · σ′ + βθ

∑
α

σα

)
(97)

p(θ |n) =
∑

k

e−cck

k!

∫ {
k∏

r=1

dhr W(hr) exp(nβB(J/c, hr))

[2 cosh(βhr)]n

}
δ
[
θ −

∑
r

A(J/c, hr)
]
. (98)

Again we observe that our replicated transfer matrix may be viewed as equivalent to that of
a one-dimensional chain with suitably chosen random fields. The associated ‘distribution’ of
these fields represents the overall effect within the system of the sparse Poissonian long-range
bonds on a given site of the ring. We note that p(θ |n) is normalized only for n = 0.

Having identified the structure of our RS replicated transfer matrix, one may proceed
to solve this model using the eigenvectors introduced in section 3.3. As in the Ising chain,
this results in a transformation of the eigenvalue problem to integral equations, viz (29), (30)
and (31), (32), involving now the above field distribution p(θ |n). In addition, the integral
eigenvalue equations become coupled with the new distribution W(h) in (96), which may be
viewed as the fundamental ‘mean-field’ order parameter in this model. In the limit n → 0 one
finds that W(h) is given by

W(h) =
∫

dx dy �(x)�(y)δ(h − x − y). (99)

In order to find also correlation functions in the present model we return to the previous
derivation in section 4 and invoke the identity:

〈σiσj 〉ρ = lim
n→0

∑
{σ}

σ
α1
1 σ

α1
j · · · σαρ

i σ
αρ

j

n∏
α=1

e−βH(σα).
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Figure 3. Relaxation of observables towards equilibrium at T = J = 1, in two ‘small-
world’ ferromagnets with identical realizations of the disorder (i.e., the Poissonian graph), of
size N = 20 000. Left column: evolution of the magnetization m = N−1 ∑

i σi and the order
parameter q = N−1 ∑

i σiσ
′
i . Right column: evolution of the multiple-site quantities a1 =

N−1 ∑
i σiσi+1, a2 = N−1 ∑

i σiσi+2 and r = N−1 ∑
i σiσi+1σ

′
i σ

′
i+1. Different rows correspond

to different control parameters. Top row: high Poissonian connectivity, viz J0 = 0.25 and c = 4,
where the predicted equilibrium values are m � 0.75, q � 0.58, a1 � 0.62, a2 � 0.57, r � 0.40.
Bottom row: low Poissonian connectivity, viz J0 = 1 and c = 0.5, where the theory predicts
m � 0.88, q � 0.80, a1 � 0.85, a2 � 0.81, r � 0.74. In all cases the predictions are indicated by
markers at the right of the graphs.

We find, after some straightforward and by now standard manipulations (viz averaging over
the disorder, insertion of the relevant order parameters and use of saddle-point equations) that
correlation functions can be again written in the form

〈σiσj 〉ρ = lim
n→0

tr
(
S{ρ}T j−i[P ]S{ρ}T N−j+i[P ]

)
tr(T N [P ])

where P is now given by expression (96). Since the steps which led us earlier for the
random field Ising chain to (78) apply again, we may simply use (78) again to find also
the correlation functions for the present model. The results of solving the relevant order
parameter equations numerically (via population dynamics algorithms) are shown in figure 3,
where we show the predicted equilibrium values for the scalar observables (82), (83)
together with the corresponding measurements in numerical simulations, for comparison.
The corresponding integrated field and site magnetization distributions are shown in figure 4.
As with the random field Ising model, the order parameter functions required for the calculation
of m and q have been calculated using the exact equations, whereas those required for the
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Figure 4. Integrated field and site magnetization distributions corresponding to the data of the
previous figure 3, obtained by numerical solution of our integral eigenvalue equations (39), (40)
via a population dynamics algorithm. The rows correspond to examples with high (top row) and
low (bottom row) Poissonian connectivity. In the latter case the integrated field distribution is less
smooth indicating that the assosiated �(x) is a complicated function.

multiple-site observables {a1, a2, r} have been solved approximately. This is borne out by
figure 3, which indeed shows excellent agreement between theory and simulations for m and q
(left column), but deviations for the three quantities that have been calculated in approximation
(right column).

6. Discussion

In this paper, we have developed new tools for the diagonalization of replicated transfer
matrices, which arise upon applying the replica method to disordered models with one-
dimensional short-range bonds, possibly in combination with (random) long-range ones. Our
method was based on mapping the problem of diagonalizing 2n × 2n matrices which are
invariant under the replica permutation group onto the problem of diagonalizing appropriate
n-dependent integral operators, in which the limit n → 0 can be taken much more easily, via
a suitable ansatz for the eigenvectors. The result, similar to that obtained earlier via more
traditional methods, is an integral eigenvalue problem, which is exact in the relevant limits
N → ∞ and n → 0, but which has to be solved numerically (using, e.g., population dynamics).
Given our explicit expressions for the eigenvectors, the route is open to the evaluation of the
free energy and several families of disorder-averaged observables, including the magnetization
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and the spin-glass order parameter, but also multiple-site correlation functions. It should be
emphasized, however, that to evaluate the latter types of objects we had to make two simplifying
assumptions, for which the only basis as yet is their validity in simpler and thereby verifiable
cases.

We have developed our theory in full detail for the random field Ising chain, and we
showed subsequently how the solution of other more complicated models can be obtained
from this, especially those where short-range bonds are combined with long-range ones and
where one effectively ends up with a random field Ising problem embedded within a mean-field
calculation. In particular, we have worked out our equations and predictions for (1 + ∞)-
dimensional recurrent neural networks and for ‘small-world’ ferromagnets.

Possible future applications of the alternative approach presented in this paper would be
to the analysis of two-dimensional disordered spin systems, or to spin models which require
finite −n replica calculations (e.g., those where the disorder is not truly frozen, but slowly and
stochastically evolving in time according to equations which involve expectation values of the
spins), or to situations where one has broken replica symmetry (RSB) in (1 + ∞)-dimensional
or ‘small-world’ spin systems. Especially, the latter two types of calculations would not seem
to be easily carried out using the more conventional random field methods as in, e.g., [5, 6], if
at all, but would appear to be quite feasible and straightforward extensions of the procedures
presented here.
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Appendix. Combinatorial terms in the n → 0 limit

Here we prove identity (77). We note that the natural continuation of factorials to non-integer
values is via the Gamma function [18], viz n! = �(n + 1). For integer ρ � 1, integer � > 0
and real-valued n < 1 (so that always � > n − ρ + 1) we may therefore write(

n − ρ

�

)
= 1

�!
lim
ε↓0

∫ ∞
ε

dx xn−ρ e−x∫ ∞
ε

dx xn−ρ−� e−x

= 1

�!
lim
ε↓0

∫ 1
ε

dx xn−ρ e−x + O(ε0)∫ 1
ε

dx xn−ρ−� e−x + O(ε0)

= 1

�!

n − ρ − � + 1

n − ρ + 1
lim
ε↓0

εn−ρ+1 + O(ε0)

εn−ρ−�+1 + O(ε0)

= 1

�!

n − ρ − � + 1

n − ρ + 1
lim
ε↓0

ε� + O(ε�+ρ−n−1)

1 + O(ε�+ρ−n−1)
= 0. (A.1)

We are left only with the case � = 0, for which the above factorial terms would be equal to 1.
This proves (77).
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[11] Dotsenko V, Franz S and Mézard M 1994 J. Phys. A: Math. Gen. 27 2351
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