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Abstract
It is shown how the generating functional method of De Dominicis can be used
to solve the dynamics of the original version of the minority game (MG), in
which agents observe real as opposed to fake market histories. Here one again
finds exact closed equations for correlation and response functions, but now
these are defined in terms of two connected effective non-Markovian stochastic
processes: a single effective agent equation similar to that of the ‘fake’ history
models, and a second effective equation for the overall market bid itself (the
latter is absent in ‘fake’ history models). The result is an exact theory, from
which one can calculate from first principles both the persistent observables in
the MG and the distribution of history frequencies.

PACS numbers: 02.50.Le, 87.23.Ge, 05.70.Ln, 64.60.Ht

1. Introduction

Minority games (MGs) [1] are simple and transparent models which were designed to increase
our understanding of the complex collective processes which result from inductive decision
making by interacting agents in simplified ‘markets’. They are mathematical implementations
of the so-called El Farol bar problem [2]. Many versions of the MG have by now been studied
in the literature, see e.g. the recent textbook [3] for an overview. They differ in the type of
microscopic dynamics used (e.g. batch versus on-line, stochastic versus deterministic), in the
definition of the information provided to the agents (real-valued versus discrete, true versus
fake market histories) and the agents’ decision making strategies, and also in the specific recipe
used for converting the observed external information into a trading action (inner products
versus look-up tables). Models with ‘fake’ market histories (proposed first in [4]), where at
each point in time all agents are given random rather than real market data upon which to
base their decisions, have the advantage of being Markovian and were therefore the first to
be studied and solved in the theoretical physics literature using techniques from equilibrium
[5–8] and non-equilibrium [9–12] statistical mechanics.
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After [4] had revealed the similarity between the behaviour of the volatility in the standard
MG models with real versus fake market histories, it was shown via numerical simulations
that this statement did not extend to many variations of the MG, such as games with different
strategy valuation update rules [13] or with populations where agents do not all observe history
strings of the same length [14]. Furthermore, even in the standard MG one does find profound
differences in the history frequency distributions (although there these differences do not
impact much on observables such as the volatility or the fraction of ‘frozen’ agents). A partly
phenomenological attempt at analysing quantitatively the effects of true history in the MG
was presented in [15], and followed by a simulation study [16] of bid periodicities induced
by having real histories. After these two papers virtually all theorists restricted themselves to
the exclusive analysis of MG versions with fake histories, simply because there is no proper
theory yet for MG versions with real histories, in spite of the fact that these are the more
realistic types.

There would thus seem to be merit in a mathematical procedure which would allow
for the derivation of exact dynamical solutions for MGs with real market histories. The
objective of this paper is to develop and apply such a procedure. Models with real market
histories are strongly non-Markovian, so analytical approaches based on pseudo-equilibrium
approximations (which require the existence of a microscopic Lyapunov function) are ruled
out. In contrast, the generating functional analysis (GFA) method of [17], which has an
excellent track record in solving the dynamics of Markovian MGs, will turn out to work also
in the case of non-Markovian models. There are two complications in developing a GFA for
MGs with real histories. Firstly, having real histories implies that no ‘batch’ version of the
dynamics can be defined (since batch models by definition involve averaging by hand over all
possible histories). Thus one has to return to the original on-line definitions. Secondly, the
temporal regularization method [18] upon which one normally relies in carrying out a GFA of
on-line MG versions is no longer helpful. This regularization is based on the introduction of
random durations of the individual on-line iteration steps of the process, which disrupts the
timing of all retarded microscopic forces and thereby leads to extremely messy equations1.
Thus, one has to develop the GFA directly in terms of the un-regularized microscopic laws.

This paper is divided into two distinct parts, similar to the more traditional GFA studies of
MGs with fake market histories. The first part deals with the derivation of closed macroscopic
laws from which to solve the canonical dynamic order parameters for the standard (on-line)
MG with true market history. These will turn out to be formulated in terms of two effective
equations (rather than a single equation, as for models with fake histories): one for an effective
agent, and the other for an effective overall market bid. These equations are fully exact. The
second part of the paper is devoted to constructing solutions for these effective processes.
In particular, this paper focuses on the usual persistent observables of the MG and on the
distribution of history frequencies, which are calculated in the form of an expansion of which
the first few terms are derived in explicit form. The final results find excellent confirmation in
numerical simulations.

2. Definitions

2.1. Generalized minority game with both valuation and overall bid perturbations

In the standard MG one imagines having N agents, labelled by i = 1, . . . , N . At each iteration
step � ∈ {0, 1, 2, . . .} of the game, each agent i submits a ‘bid’ bi(�) ∈ {−1, 1} to the market.

1 Note that in models with fake histories there are no retarded microscopic forces, so that this particular problem
could not occur.
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The (rescaled) cumulative market bid at stage � is defined as

A(�) = 1√
N

N∑
i=1

bi(�) + Ae(�). (1)

An external contribution Ae(�) has been added, representing e.g. the actions of market
regulators, which will enable us to identify specific response functions later. Profit is assumed
to be made by those agents who find themselves subsequently in the minority group, i.e.
when A(�) > 0 by those agents i with bi(�) < 0, and when A(�) < 0 by those with
bi(�) > 0. Each agent i determines his bid bi(�) at each step � on the basis of publicly
available information, which the agents believe to represent historic market data, here given
by the vector λ(�, A,Z) ∈ {−1, 1}M :

λ(�, A,Z) =




sgn[(1 − ζ )A(� − 1) + ζZ(�, 1)]
...

sgn[(1 − ζ )A(� − M) + ζZ(�,M)]


 . (2)

The numbers {Z(�, λ)}, with λ = 1, . . . , M , are zero-average Gaussian random variables,
which represent a ‘fake’ alternative to the true market data. M is the number of iteration steps
in the past for which market information is made available. We define α = 2M/N , and take
α to remain finite as N → ∞. The parameter ζ ∈ [0, 1] allows us to interpolate between
the cases of strictly true (ζ = 0) and strictly fake (ζ = 1) market histories. We distinguish
between two classes of ‘fake history’ variables:

consistent : Z(�, λ) = Z(� − λ), 〈Z(�)Z(�′)〉 = κ2δ��′ (3)

inconsistent : Z(�, λ) all independent, 〈Z(�, λ)Z(�′, λ′)〉 = κ2δ��′δλλ′ . (4)

We note that (4) does not correspond to a pattern being shifted in time, contrary to what
one expects of a string representing the time series of the overall bid, so that the agents in a
real market could easily detect that they are being fooled. Hence (3) seems a more natural
description of fake history. Although fake, it is at least consistently so.

Each agent has S trading strategies, which we label by a = 1, . . . , S. Each strategy
a of each trader i consists of a complete list Ria of 2M recommended trading decisions{
Ria

λ

} ∈ {−1, 1}, covering all 2M possible values of the external information vector λ. We
draw all entries

{
Ria

λ

}
randomly and independently before the start of the game, with equal

probabilities for ±1. Upon observing history string λ(�, A,Z) at stage �, given a trader’s
active strategy at that stage is ai(�), the agent will follow the instruction of his active strategy
and take the decision bi(�) = R

iai(�)

λ(�,A,Z). To determine their active strategies ai(�), all agents
keep track of valuations pia(�), which measure how often and to what extent each strategy a
would have led to a minority decision if it had been used from the start of the game onwards.
These valuations are updated continually, via

pia(� + 1) = pia(�) − η̃√
N

A(�)Ria
λ(�,A,Z). (5)

The factor η̃ represents a learning rate. If the active strategy ai(�) of trader i at stage
� is defined as the one with the highest valuation pia(�) at that point, and upon writing
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Fλ[�,A,Z] = √
αNδλ,λ(�,A,Z), our process becomes

pia(� + 1) = pia(�) − η̃

N
√

α
A(�)

∑
λ

Ria
λ Fλ[�,A,Z] (6)

A(�) = Ae(�) +
1

N
√

α

∑
i

∑
λ

R
iai(�)
λ Fλ[�,A,Z] (7)

ai(�) = arg max
a∈{1,...,S}

{pia(�)}. (8)

We note that (αN)−1∑
λ 1 = (αN)−1∑

λ F2
λ[�,A,Z] = 1. The standard MG is recovered

for ζ → 0 (i.e. true market data only), whereas the ‘fake history’ MG as in e.g. [4, 9] is found
for ζ → 1 (i.e. fake market data only, of the inconsistent type (4)).

Henceforth we will restrict ourselves to the simplest case S = 2, where each agent has
only two strategies, so a ∈ {1, 2}, since the choice made for S has been shown to have only
a quantitative effect on the behaviour of the MG. Our equations can now be simplified in the
standard way upon introducing the new variables

qi(�) = 1
2 [pi1(�) − pi2(�)] (9)

ωi = 1
2 [Ri1 + Ri2], ξi = 1

2 [Ri1 − Ri2] (10)

and Ω = N−1/2∑
i ωi . The bid of agent i at step � is now seen to follow from

Riai (�) = 1
2 [Ri1 − Ri2] + 1

2 sgn[qi(�)][Ri1 + Ri2]

= ωi + sgn[qi(�)]ξ
i . (11)

The above S = 2 formulation is easily generalized to include decision noise: one simply
replaces sgn[qi(�)] → σ [qi(�), zi(�)], in which the {zj (�)} are independent and zero
average random numbers, described by a symmetric and unit-variance distribution P(z).
The function σ [q, z] is taken to be non-decreasing in q for any z, and parametrized by
a control parameter T � 0 such that σ [q, z] ∈ {−1, 1}, with limT →0 σ [q, z] = sgn[q]
and limT →∞

∫
dz P (z)σ [q, z] = 0. Typical examples are additive and multiplicative noise

definitions, described by σ [q, z] = sgn[q +T z] and σ [q, z] = sgn[q]sgn[1+T z], respectively.
The parameter T measures the degree of randomness in the agents’ decision making, with
T = 0 bringing us back to ai(�) = arg maxa{pia(�)}, and with purely random strategy
selection for T = ∞.

Upon translating our microscopic laws (6) and (7) into the language of the valuation
differences (9) for S = 2, we find that now our MG equations close in terms of our
new dynamical variables {qi(�)}, so that perturbations of valuations (again for the purpose
of defining response functions later) can be implemented simply by replacing qi(�) →
qi(�) + θi(�), with θi(�) ∈ R. Thus we arrive at the following closed equations, defining
our generalized S = 2 MG process:

qi(� + 1) = qi(�) + θi(�) − η̃

N
√

α

∑
λ

ξ i
λFλ[�,A,Z]A(�) (12)

A(�) = Ae(�) +
1√
αN

∑
λ

{
�λ +

1√
N

∑
i

σ [qi(�), zi(�)]ξ
i
λ

}
Fλ[�,A,Z] (13)

Fλ[�,A,Z] =
√

αNδλ,λ(�,A,Z) (14)
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λ(�, A,Z) =




sgn[(1 − ζ )A(� − 1) + ζZ(�, 1)]
...

sgn[(1 − ζ )A(� − M) + ζZ(�,M)]


 . (15)

The values of {A(�), Z(�)} for � � 0 and of the qi(0) play the role of initial conditions.
The key differences at the mathematical level between MG models with fake history and

those with true history as defined above are in the dependence of the microscopic laws on the
past via the history string {A(� − 1), . . . , A(� − M)} occurring in λ(�, A,Z) ∈ {−1, 1}M ,
in combination with the presence and role of the zero-average Gaussian random variables
{Z(�, λ)}.

2.2. Mathematical consequences of having real history

In all generating functional analyses of MGs which have been published so far, the choice
ζ = 1 eliminated with one stroke of the pen the dependence of the process on the history
{A(� − 1), . . . , A(� − M)}. The variables {Z(�, 1), . . . , Z(�,M)} could subsequently be
replaced simply by integer numbers µ, labelling each of the 2M = p = αN possible ‘pseudo-
histories’ that could have been drawn at any given time step �. Here this is no longer possible.
The variables {Z(�, λ)} now play the role of random disturbances of the true market history
as perceived by the agents, and there is no reason why all possible histories should occur (let
alone with equal frequencies) or why some entries {Z(�, λ)} (e.g. those with small values
of λ, which corrupt the most recent past in the history string) could not be more important
than others. The problem has become qualitatively different. One can thus anticipate various
mathematical consequences for the generating functional analysis of introducing history into
the MG. An early appreciation of these will help us to proceed with the calculation more
efficiently.

Firstly, we will have to analyse the original on-line version of the MG; the batch version can
no longer exist by definition, since it involves averaging by hand over all possible ‘histories’ at
each iteration step. However, the temporal regularization method of [18] which was employed
successfully for the on-line MG with fake history [10], based on introducing Poissonnian
distributed real-valued random durations for the individual iterations in (12, 13), can in
practice no longer be used in the non-Markovian case. The reason for this is the problem
which prompted the authors of [10] to add the external perturbations θi(�) to the regularized on-
line process rather than to the original equations: whereas in a Markov chain the introduction
of random durations for the individual iteration steps only implies a harmless uncertainty in
which we are on the time axis, in a system with retarded interactions one would generate
very messy equations. We must therefore proceed with our process as it is, without temporal
regularization (although we will be able to recover the previous theory in the limit ζ → 1, as
it should). It will in fact turn out that the more direct application of the generating functional
method presented in this paper brings the benefit of greater transparency. For instance, the
continuity assumptions underlying our use of saddle-point arguments in path integrals become
much more clear than they were in [10]. As always we continue to concentrate on the
evaluation and disorder averaging of the generating functional

Z[ψ] =
〈

exp

(
i
∑
�>0

∑
i

ψi(�)σ [qi(�), zi(�)]

)〉
. (16)

The brackets in (16) denote averaging over the stochastic process (12) and (13), whose
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randomness is here caused by the decision noise {z(�)} and the fake history variables {Z(�, λ)}.
Although (16) looks like the corresponding expressions for batch MGs, here we have to allow
for � = O(N). Studying the un-regularized process also implies that one has to be more
careful with finite size corrections. This has consequences in working out the disorder
average of the generating functional: in previous MG versions one needed only the first two
moments of the distribution of the strategy look-up table entries. Here, although one must
still expect only the first two moments to play a role in the final theory, the need to keep track
initially of the finite size correction terms implies that our equations simplify considerably
if, instead of binary strategy entries, we choose the variables

{
Ria

λ

}
to be zero-average and

unit-variance Gaussian variables.
It will turn out that in our analysis of (16) an important role will be played by the following

quantity:

W [�, �′;A,Z] = 1

αN

∑
λ

F[�,A,Z]F[�′, A,Z]

= δλ(�,A,Z),λ(�′,A,Z). (17)

This object is a function of the paths {A} and {Z}, and indicates whether or not the histories
as perceived by the agents at times � and �′ are identical (irrespective of the extent to which
these ‘histories’ are true). Its statistics are trivial in the absence of history, but will here
generally contain information regarding the recurrence of overall bid trajectories. For reasons
of economy we will formulate our theory in terms of the quantity (17), rather than substitute
δλ(�,A,Z),λ(�′,A,Z) directly. This will prevent unnecessary future repetition, since it will allow
for most of the theory to be applied also to MG models with inner product rather than look-up
table definitons for the agents’ history-to-action conversion [19].

3. The disorder averaged generating functional

3.1. Evaluation of the disorder average

Rather than first writing the microscopic process in probabilistic form, as in [10], we will
express the generating functional (16) as an integral over all possible joint paths of the
state vector q and of the overall bid A, and insert appropriate δ-distributions to enforce the
microscopic dynamical equations (12) and (13), i.e.

1 =
∏
i�

∫ [
dq̂i (�)

2π

]
exp

(
iq̂i (�)[qi(� + 1) − qi(�) − θi(�) +

η̃

N
√

α

∑
λ

ξ i
λFλ[�,A,Z]]A(�)

)

1 =
∏

�

∫ [
dÂ(�)

2π

]
exp

(
iÂ(�)[A(�) − Ae(�)

− 1√
αN

∑
λ

{
�λ +

1√
N

∑
i

σ [qi(�), zi(�)]ξ
i
λ

}
Fλ[�,A,Z]

)

(since our microscopic laws are of an iterative and causal form, they have unique solutions).
To compactify our equations we will use the short-hand si(�) = σ [qi(�), zi(�)]. We can now
write the disorder average Z[ψ] of (16) as follows:
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Z[ψ] =
∫ [∏

�>0

dA(�) dÂ(�)

2π
exp(iÂ(�)[A(�) − Ae(�)])

]

×
〈∫ [∏

i�

dqi(�)dq̂i (�)

2π
exp(iq̂i (�)[qi(� + 1) − qi(�) − θi(�)] + iψi(�)si(�))

]

× exp
(

i
N

√
α

∑
λ

∑
i�

[
η̃q̂i (�)ξ

i
λA(�) − Â(�)

(
ωi

λ + si(�)ξ
i
λ

)]
Fλ[�,A,Z]

)〉
{z,Z}

.

(18)

The brackets 〈· · ·〉{z,Z} denote averaging over the Gaussian decision noise and the pseudo-
memory variables, and we have used the abbreviations (10). The short-hand Du =
(2π)−

1
2 e− 1

2 u2
and the previously introduced quantity W [· · ·] in (17) allow us to write the

disorder average (over the independently distributed zero-average and unit-variance Ria
λ ) in

the last line of (18) as

exp

(
i

N
√

α

∑
λ

∑
i�

. . .

)
=
∏
λ

∏
i

∫
Du exp

(
iu

2N
√

α

∑
�

[η̃q̂i (�)A(�)

− Â(�)[1 + si(�)]]Fλ[�,A,Z]

)

×
∏
λ

∏
i

∫
Dv exp

(
iv

2N
√

α

∑
�

[η̃q̂i (�)A(�) + Â(�)[1 − si(�)]]Fλ[�,A,Z]

)

= exp

(
− 1

4N

∑
��′>0

W [�, �′;A,Z]
∑

i

[η̃q̂i (�)A(�)

− Â(�)si(�)][η̃q̂i (�
′)A(�′) − Â(�′)si(�

′)]

)

× exp

(
−1

4

∑
��′>0

Â(�)W [�, �′;A,Z]Â(�′)

)
. (19)

We next isolate the usual observables L(�, �′) = N−1∑
i q̂i (�)q̂i(�

′),K(�, �′) =
N−1∑

i si(�)q̂i(�
′) and C(�, �′) = N−1∑

i si(�)si(�
′), by inserting appropriate integrals over

δ-distributions. We also use the abbreviations DC = ∏
��′[

√
N dC(�, �′)/

√
2π ] (similarly

for other two-time observables) and DA = ∏
�>0[dA(�)/

√
2π ] (similarly for Â). Initial

conditions for the qi(0) are assumed to be of the factorized form p0(q) = ∏
i p0(qi). In

anticipation of issues to arise in subsequent stages of our analysis, especially those related to
the scaling with N of the number of individual iterations of the process, we will also define
the largest iteration step in the generating functional as �max. All this allows us to write Z[ψ]
in the form

Z[ψ] =
∫

DCDĈDKDK̂DLDL̂

× exp

(
iN
∑
��′

[Ĉ(�, �′)C(�, �′) + K̂(�, �′)K(�, �′) + L̂(�, �′)L(�, �′)]

)

× exp
(
O
(
�2

max log N
)) ∫

DADÂ exp

(
i
∑

�

Â(�)[A(�) − Ae(�)]

)
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× exp

(
1

4
η̃
∑
��′

W [�, �′;A,Z]{Â(�)K(�, �′)A(�′) + Â(�′)K(�′, �)A(�)}
)

×exp

(
−1

4

∑
��′

W [�,�′;A,Z]{η̃2A(�)L(�,�′)A(�′) + Â(�)[1 + C(�,�′)]Â(�′)}
)

×
〈∫ ∏

i�

[
dqi(�) dq̂i (�)

2π
exp(iq̂i (�)[qi(� + 1)

− qi(�) − θi(�)] + iψi(�)si(�))

]
.
∏

i

p0(qi(0))

×
∏

i

exp

(
−i
∑
��′

{L̂(�, �′)q̂i(�)q̂i(�
′) + K̂(�, �′)si(�)q̂i(�

′)

+ Ĉ(�, �′)si(�)si(�
′)}
)〉

{z,Z}

=
∫

DCDĈDKDK̂DLDL̂ exp
(
N [� + � + �] + O

(
�2

max log N
))

(20)

with

� = i
∑

��′��max

[Ĉ(�, �′)C(�, �′) + K̂(�, �′)K(�, �′) + L̂(�, �′)L(�, �′)] (21)

� = 1

N
log

〈 ∫
DADÂ exp

(
i
∑

���max

Â(�)[A(�) − Ae(�)]

)

× exp

(
−1

4

∑
��′��max

W [�, �′;A,Z]M[�, �′;A, Â]

)〉
{Z}

(22)

� = 1

N

∑
i

log

〈 ∫ [
�max∏
�=0

dq(�) dq̂(�)

2π

]
p0(q(0)) exp

(
i
∑

���max

[q̂(�)[q(� + 1) − q(�)

− θi(�)] + ψi(�)σ [q(�), z(�)]] − i
∑

��′��max

q̂(�)L̂(�, �′)q̂(�′)

)

× exp

(
−i

∑
��′��max

[Ĉ(�, �′)σ [q(�), z(�)]σ [q(�′), z(�′)]

+ K̂(�, �′)σ [q(�), z(�)]q̂(�′)]

)〉
z

(23)

and with

M[�, �′;A, Â] = η̃2A(�)L(�, �′)A(�′) − η̃[Â(�)K(�, �′)A(�′) + Â(�′)K(�′, �)A(�)]

+ Â(�)[1 + C(�, �′)]Â(�′). (24)

The O
(
�2

max log N
)

corrections in (20) are constants, which reflect the scaling with N used in
defining the conjugate order parameters.

Compared to the Markovian (fake history) MG versions, we note that � and � take their
conventional forms, and that all the complications induced by having true market history are
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concentrated in the function �[C,K,L], which is now defined in terms of a stochastic process
for the overall bid A(�) rather than being an explicit function of the order parameters (which
had been the situation in all fake history versions of the game), and in the remaining task
to implement an appropriate scaling with N of the timescale �max. We can now also see the
advantage in our earlier decision to define Gaussian rather than binary look-up table entries.
With the N-scaling of �max still pending, instead of (19), in the binary case we would have
found

exp

(
i

N
√

α

∑
λ

∑
i�

. . .

)
= exp


∑

i

∑
λ

log cos


 1

2N
√

α

∑
���max

[η̃q̂i (�)A(�)

− Â(�)[1 + si(�)]]Fλ[�,A,Z]




 exp

(∑
i

∑
λ

log cos

[
1

2N
√

α

×
∑

���max

[
η̃q̂i (�)A(�) + Â(�)[1 − si(�)]

]
Fλ[�,A,Z]

])
. (25)

In this expression we see that, for �max = O(N), the different choices of strategy look-up table
entry distribution will give the same results only for those paths {A,Z} where the frequency
of occurrence of each of the 2M possible histories is of order O(N−1). In the latter case the
function Fλ[�,A,Z] scales effectively inside summations over � as Fλ[�,A,Z] = O

(
N− 1

2
)
,

and we return to (19). Thus, for non-Gaussian distributions of the
{
Ria

λ

}
at this stage of the

GFA one either has to carry on with the more complicated expression (25), which cannot be
expressed in terms of the order parameters {C,K,L}, or one has to make further assumptions
on the overall bid statistics, which (although turning out to be correct) require validation
a posteriori.

3.2. Canonical timescaling

For the on-line MG with random external information (i.e. with ζ = 1), it is known that the
relevant timescale is �max = O(N). Rather than imposing the timescale �max = O(N) by
hand, it is satisfactory to see that one can also extract this canonical timescaling from our
present equations (20)–(23).

For finite �max we immediately find limN→∞ � = 0 in (22), and our generating functional
will be dominated by the physical saddle point of limN→∞[� + �], giving Ĉ = K̂ = L̂ = 0.
This leads to a trivial effective single spin problem, which just describes a frozen state.
This makes perfect sense in view of our definitions (12) and (13): individual updates of
the variables qi are of order N− 1

2 , so nothing can change on timescales corresponding to
only a finite number of iteration steps. Thus our present equations automatically lead us
to the choice �max = O(1/δN), where limN→∞ δN = 0; the function � will indeed scale
differently as soon as �max is allowed to diverge with N. We thus define �max = tmax/δN , where
0 � tmax < ∞ (of order N0) and with limN→∞ δN = 0. In order to obtain well-defined limits
at the end in (21), we see that we have to rescale our conjugate order parameters according
to (Ĉ, K̂, L̂) → δN

2(Ĉ, K̂, L̂). Furthermore, for the perturbation fields {θi, ψi} to retain
statistical significance they also will have to be rescaled in the familiar manner, according
to (θi, ψi) → δN

−1(θ̃i , ψ̃i) (similar to [10]). The integrations over order parameters and
conjugate order parameters in (20) will now become path integrals for N → ∞.2

2 This is the point, therefore, where the inevitable continuity assumptions regarding our macroscopic dynamic
observables enter. In the present derivation these take a more transparent form than in [10], where they were hidden
inside the details of the temporal regularization.
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It will be convenient to introduce the following effective measure:

〈g[{q, q̂, z}]〉� = lim
N→∞

1

N

∑
i

∫ ∏tmax/δN

�=1 [dq(�) dq̂(�)]〈Mi[{q, q̂, z}]g[{q, q̂, z}]〉z∫ ∏tmax/δN

�=1 [dq(�) dq̂(�)]〈Mi[{q, q̂, z}]〉z

(26)

Mi[{q, q̂, z}] = p0(q(0)) exp

(
iδN

tmax/δN∑
�=1

q̂(�)

[
q(� + 1) − q(�)

δN

− θ̃i (�)

]

+ iδN

∑
�

ψ̃i(�)σ [q(�), z(�)]

)
exp

(
−iδN

2
tmax/δN∑
��′=1

[L̂(�, �′)q̂(�)q̂(�′)

+ K̂(�, �′)σ [q(�), z(�)]q̂(�′) + Ĉ(�, �′)σ [q(�), z(�)]σ [q(�′), z(�′)]]

)
. (27)

Upon substituting �max = tmax/δN into our equations (21)–(23), followed by appropriate
rescaling of the conjugate order parameters, these three functions acquire the following form
(modulo irrelevant constants):

� = iδN
2

∑
��′�tmax/δN

[Ĉ(�, �′)C(�, �′) + K̂(�, �′)K(�, �′) + L̂(�, �′)L(�, �′)] (28)

� = 1

N
log

〈∫
DADÂW[A, Â|Z]

〉
{Z}

(29)

� = 1

N

∑
i

log
∫ tmax/δN∏

�=1

[dq(�) dq̂(�)]〈Mi[{q, q̂, z}]〉z (30)

with

W[A, Â|Z] = exp

(
i
tmax/δN∑

�=1

Â(�)[A(�) − Ae(�)] − 1

4

tmax/δN∑
��′=1

W [�, �′;A,Z]M[�, �′;A, Â]

)
.

(31)

It is clear that � and � now have proper N → ∞ limits. The canonical choice of δN is
subsequently determined by the mathematical condition that limN→∞ �[C,K,L] �= 0, but
finite. It follows that (20) is again dominated by its physical saddle point, and we are nearly
back in familiar territory.

3.3. The saddle-point equations

In order to eliminate the fields {ψi(�), θi(�)}, and thereby simplify our equations, we next
extract the physical meaning of our order parameters from the generating functional by taking
appropriate derivatives with respect to these fields. This gives

C(�, �′) = lim
N→∞

1

N

∑
i

〈si(�)si(�′)〉 = 〈σ [q(�), z(�)]σ [q(�′), z(�′)]〉� (32)

G(�, �′) = lim
N→∞

1

N

∑
i

∂〈si(�)〉
∂θi(�′)

= −i〈σ [q(�), z(�)]q̂(�′)〉� (33)

0 = lim
N→∞

1

N

∑
i

∂21

∂θi(�)∂θi(�′)
= −〈q̂(�)q̂(�′)〉�. (34)
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Thus at the physical saddle point of (20) we have the usual relations L(�, �′) = 0 and
K(�, �′) = iG(�, �′), where G denotes the single-site response function. Upon varying
{Ĉ, K̂, L̂} in (20) we reproduce self-consistently the by now standard equations

C(�, �′) = 〈σ [q(�), z(�)]σ [q(�′), z(�′)]〉� (35)

G(�, �′) = −i〈σ [q(�), z(�)]q̂(�′)〉� (36)

L(�, �′) = 〈q̂(�)q̂(�′)〉� = 0. (37)

We turn to variation of the order parameters {C,K,L} in � + � (as � only depends on the
conjugate order parameters). In working out derivatives of � we observe that the conjugate
bids effectively act as differential operators, i.e. Â(s) → i∂/∂Ae(s). This gives us our
remaining three saddle-point equations:

Ĉ(s, s ′) = lim
N→∞

i

4NδN
2

∂2

∂Ae(s)∂Ae(s ′)

〈∫
DADÂW[A, Â|Z]W [s, s ′;A,Z]

〉
{Z}〈∫

DADÂW[A, Â|Z]
〉
{Z}

(38)

K̂(s, s ′) = lim
N→∞

−η̃

2NδN
2

∂
∂Ae(s)

〈∫
DADÂW[A, Â|Z]W [s, s ′;A,Z]A(s ′)

〉
{Z}〈∫

DADÂW[A, Â|Z]
〉
{Z}

(39)

L̂(s, s ′) = lim
N→∞

−iη̃2

4NδN
2

〈∫
DADÂW[A, Â|Z]W [s, s ′;A,Z]A(s)A(s ′)

〉
{Z}〈∫

DADÂW[A, Â|Z]
〉
{Z}

. (40)

At the physical saddle point, we may use L = 0 and the symmetry of W [· · ·] to simplify the
function M[�, �′;A, Â] which occurs in measure (31) to

M[�, �′;A, Â] = Â(�)[1 + C(�, �′)]Â(�′) − 2iη̃Â(�)G(�, �′)A(�′). (41)

The generating fields {ψ̃i(�)} are now no longer needed and can be removed. The perturbations
θ̃i are still useful for calculating the response function G, but can be chosen site independent,
i.e. θ̃i (�) = θ̃ (�). Measure (27) will then lose its site dependence. Also the functions {�,�,�}
have at this stage become obsolete. We may define a new time t = �δN = O(N0), which
will be real valued as N → ∞, and we may take the limit N → ∞ in the definitions of
our observables. The latter can subsequently be written in terms of the new real-valued time
arguments, C(�, �′) → C(t, t ′) (and similar for the other kernels). By the same token we put
simply θ̃ (�) → θ(t).

4. The resulting theory

4.1. Simplification of saddle-point equations

We may now summarize our saddle-point equations for {C,G} in the usual compact way, in
terms of an effective single agent process:

C(t, t ′) = 〈sgn[q(t)]sgn[q(t ′)]〉� G(t, t ′) = −i〈sgn[q(t)]q̂(t ′)〉� (42)

with a measure which is defined in terms of path integrals, as in [10] (and with time integrals
running from t = 0 to t = tmax):
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〈g[{q, q̂, z}]〉� =
∫ {dq dq̂}〈M[{q, q̂, z}]g[{q, q̂, z}]〉z∫ {dq dq̂}〈M[{q, q̂, z}]〉z

(43)

M[{q, q̂, z}] = p0(q(0)) exp

(
i
∫

dt q̂(t)

[
d

dt
q(t) − θ(t) −

∫
dt ′K̂(t ′, t)σ [q(t ′), z(t ′)]

])

× exp

(
−i
∫

dt dt ′[L̂(t, t ′)q̂(t)q̂(t ′) + Ĉ(t, t ′)σ [q(t), z(t)]σ [q(t ′), z(t ′)]]
)

.

(44)

To find the kernels {Ĉ, K̂, L̂} we have to evaluate equations (38)–(40) further, remembering
that the left-hand sides as yet still involve the integer time labels (s, s ′), rather than the
continuous times. Now the scaling chosen for δN with N which we adopt will be crucial. We
observe that all complications are contained in the evaluation, for large N and for any given
realization of the fake market information path {Z}, of objects of the following general form
(with all operators evaluated at the saddle point):

〈Q[{A}]〉{A|Z} =
∫

DADÂW[A, Â|Z]Q[{A}]. (45)

We can confirm, by repeating the steps taken in evaluating the disorder-averaged generating
functional Z[ψ] but now for calculating averages of arbitrary functions of the overall market
bid path {A}, that the physical interpretation of measure (45) is

lim
N→∞

〈Q[{A}]〉 = 〈〈Q[{A}]〉{A|Z}〉{Z}. (46)

Thus (45) defines the asymptotic disorder-averaged probability density for observing a ‘path’
{A} of global bids, for a given realization of the fake history path {Z}. To evaluate (45) we
introduce two path-dependent matrices G[A,Z] and D[A,Z], with entries

G[A,Z](�, �′) = W [�, �′;A,Z]G(�, �′) (47)

D[A,Z](�, �′) = W [�, �′;A,Z][1 + C(�, �′)]. (48)

Definition (17) tells us that G[A,Z](�, �′) = G(�, �′) if the ‘history’ observed at stage � is
identical to that observed at stage �′, and zero otherwise, and similarly for the relation between
D[A,Z](�, �′) and 1 + C(�, �′). We now use auxiliary integration variables {φ�} to linearize
the term in the exponent of (45) which is quadratic in Â, and use causality of the response
function G where appropriate:

〈Q[{A}]〉{A|Z} =
∫ tmax/δN∏

�=1

[
dA(�) dÂ(�)

2π
exp

(
iÂ(�)[A(�) − Ae(�)

+
1

2
η̃
∑
�′<�

G[A,Z](�, �′)A(�′)]

)]
Q[{A}]

×
∫ [∏tmax/δN

�=1 dφ�

]
exp

(−∑tmax/δN

��′=1 φ�(D
−1[A,Z])��′φ�′ − i

∑tmax/δN

�=1 φ�Â�

)
∫ [∏

� dφ�

]
exp

(−∑tmax/δN

��′=1 φ�(D−1[A,Z])��′φ�′
)

=
∫ [

tmax/δN∏
�=1

dA(�)

]
Q[{A}]

×
〈

tmax/δN∏
�=1

δ

[
A(�) − Ae(�) +

1

2
η̃
∑
�′<�

G[A,Z](�, �′)A(�′) − φ�

]〉
{φ|A,Z}

.
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Here 〈· · ·〉{φ|A,Z} refers to averaging over the zero-average Gaussian fields φ� with {A,Z}-
dependent covariance 〈φ�φ�′ 〉{φ|A,Z} = 1

2D[A,Z](�, �′). We conclude from our expression
for 〈Q[{A}]〉{A|Z} that the conditional disorder-averaged probability density P[{A}|{Z}] for
finding a bid path {A}, given a realization {Z} of the pseudo-history, is given by

P[{A}|{Z}] =
〈

tmax/δN∏
�=1

δ

[
A(�) − Ae(�) +

1

2
η̃
∑
�′<�

G(�, �′)W [�, �′;A,Z]A(�′) − φ�

]〉
{φ|A,Z}

(49)

with 〈Q[{A}]〉{A|Z} = ∫ [∏
� dA(�)

]
P[{A}|{Z}]Q[{A}]. Causality ensures that the density

(49) is normalized, since both φ� and G[A,Z](�, �′) involve only entries of the paths {A,Z}
with times k < �.

Having established (49), our equations (38)–(40) can be simplified considerably. We
immediately find that Ĉ = 0. To simplify comparison with the theory of [10] (corresponding
to ζ = 1), we will make a final change in notation and put

K̂(�, �′) = −αR(�′, �) L̂(�, �′) = − 1
2αi�(�, �′). (50)

This allows us, with p = αN and in anticipation of our expected timescaling δN = η̃/2p

(known from the analysis in [10] of the Markovian limit ζ = 1), to write the remaining
equations (39) and (40) in the simple form

R(�, �′) = lim
N→∞

∂

∂Ae(�′)

{
η̃

2pδN
2 〈〈W [�′, �;A,Z]A(�)〉{A|Z}〉{Z}

}
(51)

�(�, �′) = lim
N→∞

{
η̃2

2pδN
2 〈〈W [�, �′;A,Z]A(�)A(�′)〉{A|Z}〉{Z}

}
. (52)

We see that R defines a response function associated with external bid perturbation, and hence
obeys causality: R(�, �′) = 0 for �′ > �. This, in turn, enables us to simplify equations (42)
for {C,G} and the measure 〈· · ·〉� to a form identical to that found in [10] for the Markovian
(‘fake history’) on-line MG:

C(t, t ′) = 〈σ [q(t), z(t)]σ [q(t ′), z(t ′)]〉� (53)

G(t, t ′) = δ

δθ(t ′)
〈σ [q(t), z(t)]〉� (54)

〈g[{q, z}]〉� =
∫ {dq}〈g[{q, z}]M[{q, z}]〉z∫ {dq}〈M[{q, z}]〉z

(55)

M[{q, z}] = p0(q(0))

∫
{dq̂} exp

(
−1

2
α

∫
dt dt ′�(t, t ′)q̂(t)q̂(t ′)

)

× exp

(
i
∫

dt q̂(t)

[
d

dt
q(t) − θ(t) + α

∫
dt ′R(t, t ′)σ [q(t ′), z(t ′)]

])
. (56)

4.2. Summary and interpretation

We recognize that (56) describes the usual effective single-trader equation with a retarded
self-interaction and zero-average Gaussian noise η(t) with covariances 〈η(t)η(t ′)〉 = �(t, t ′):

d

dt
q(t) = θ(t) − α

∫ t

0
dt ′R(t, t ′)σ [q(t ′)] +

√
αη(t). (57)

We have used the fact, as in [10], that the discontinuity of the correlation function for equal
times, i.e. C(t, t) = 1, will in the continuous time limit be irrelevant. This implies that we
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may carry out the averages over the decision noise and are left only with expressions involving
σ [q] = ∫

dz P (z)σ [q, z], and that (with the exclusion of t = t ′, where one has C(t, t) = 1)
the order parameter equations (53) and (54) simplify to

C(t, t ′) = 〈σ [q(t)]σ [q(t ′)]〉� G(t, t ′) = δ

δθ(t ′)
〈σ [q(t)]〉�. (58)

Our remaining problem is to solve the order parameters {R,�} from (51) and (52). To do so
we must select the canonical timescale δN such that the N → ∞ limit in (51) and (52) is both
nontrivial (i.e. δN sufficiently small) and well defined (i.e. δN not too small). For the special
value ζ = 1 we know [10] that δN = η̃/2p. Although here we have followed a different route
towards a continuous time description, it can be shown that indeed δN = η̃/2p, by working out
our present equations in detail for the fake history limit ζ → 1 (see [20]). Given this canonical
timescaling and the definition W [�, �′;A,Z] = δλ(�,A,Z),λ(�′,A,Z), we find our equations (51)
and (52) taking their final forms

R(t, t ′) = lim
δN→0

δ

δAe(t ′)
〈〈A(�)δλ(�,A,Z),λ(�′,A,Z)〉〉{A,Z}|�=t/δN ,�′=t ′/δN

(59)

�(t, t ′) = η̃ lim
δN→0

1

δN

〈〈A(�)A(�′)δλ(�,A,Z),λ(�′,A,Z)〉〉{A,Z}|�=t/δN ,�′=t ′/δN
(60)

with δ/δAe(�) = δN
−1∂/∂A(�). Here 〈〈· · ·〉〉A,Z refers to an average over the stochastic process

(49) for the overall bids {A} and over the pseudo-history {Z}. The bid evolution process can
be written in more explicit form as

A(�) = Ae(�) + φ� − 1

2
η̃
∑
�′<�

G(�, �′)δλ(�,A,Z),λ(�′,A,Z)A(�′) (61)

with the zero-average Gaussian random fields {φ}, characterized by

〈φ�φ�′ 〉{φ|A,Z} = 1
2 [1 + C(�, �′)]δλ(�,A,Z),λ(�′,A,Z). (62)

Equation (61) is to be interpreted as follows. For every realization {Z} of the fake history
‘path’ one iterates (61) to find successive bid values upon generating the zero-average Gaussian
random variables φ� with statistics (62) (which depend, in turn, on the recent bid realizations).
The result is averaged over the fake history paths {Z}.

Let us now summarize the structure of the present theory describing the MG with true
market history in the limit N → ∞, by indicating the similarities and the differences with the
previous theory describing the on-line MG without market history.
Similarities between the theory of real and fake history MGs:

• The MG with real history is described again by the effective single agent equation (57),
from which the usual order dynamical order parameters {C,G} are to be solved self-
consistently via (58).

• The scaling with N of the characteristic times in the MG with history is identical to that
of the MG without history, if we avoid highly biased global bid initializations (where the
MG with history acts faster by a factor

√
N ).

Differences between the theory of real and fake history MGs:

• Real and fake history MGs differ in the retarded self-interaction kernel R and the noise
covariance kernel � of the single agent equation. Without history, {R,�} were found as
explicit functions of {C,G}. With history they are to be solved from an effective equation
(61) for the evolving global bid.
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The effective global bid process:

• The effective global bid process (61) is itself independent of the stochastic effective single
trader process (57). The two are linked only via the (time dependent) order parameters
occurring in their definitions.

• At each stage in process (61), the bid A(�) is coupled directly only to bids in the past
at times �′ with identical realization of the M-bit history string. In addition, only those
effective global bid noise variables φ� are correlated which correspond to times � with
identical realizations of the M-bit history string.

The differences between the two ‘fake history’ definitions (3,4) (i.e. consistent versus
inconsistent) are seen to be limited to the details of the averaging process 〈· · ·〉{Z}.

In [20] it is shown in detail how one can recover from (57) and (61) the earlier theory of
[10] in the fake history limit ζ → 1. This confirms that the canonical timescale of our process
is indeed given by δN = η̃/2p (modulo an irrelevant multiplicative constant).

5. The role of history statistics

We continue with our analysis of the full MG with history, and next show that all the effects
induced by having real market history can be concentrated in the statistics of the M-bit
memory strings λ of (15). More specifically, the core objects in the theory will turn out to be
the following functions, which measure the joint probability to find identical histories in the
effective global bid process (61) at k specified times {�1, . . . , �k}, relative to the probability
p1−k for this to happen in the case of randomly drawn fake histories and non-identical times:

�k(�1, . . . , �k) = pk−1
∑

λ

〈〈
k∏

i=1

δλ,λ(�i ,A,Z)

〉〉
{A,Z}

. (63)

We have abbreviated
∑

λ = ∑
λ∈{−1,1}M , with 2M = p = αN . For any value of k one recovers

in the random history limit and for non-identical times limζ→1 �k(· · ·) = 1. For k = 1 one
has �1(�) = ∑

λ〈〈δλ,λ(�,A,Z)〉〉{A,Z} = 1, for any ζ . In contrast, for arbitrary ζ (i.e. when
allowing for real histories) and k > 1 functions (63) are nontrivial.

5.1. Reduction of the kernels {R,�}
We rewrite the global bid equation (61) as∑

�′��

{
δ��′ +

1

2
η̃G(�, �′)δλ(�,A,Z),λ(�′,A,Z)

}
A(�′) = Ae(�) + φ�

and we formally invert the operator on the left-hand side, using δN = η̃/2p:

A(�) = Ae(�) + φ� +
∑
r>0

(
− η̃

2

)r ∑
�1...�r

G(�, �1)G(�1, �2) · · · G(�r−1, �r )

×
[

r∏
i=1

δλ(�,A,Z),λ(�i ,A,Z)

]
[Ae(�r) + φ�r

]. (64)

Expression (64) is itself not yet a solution of (61), since the bids {A(s)} also occur inside
the history strings λ(�′, A,Z) at the right-hand side. We now insert (64) first into (59), and
consider only infinitesimal external bid perturbations Ae, so that we need not worry about
indirect effects on A(�) of these perturbations via the history strings λ(s, A,Z):
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R(t, t ′) = δ(t − t ′) + lim
δN →0



∑
r>0

(−δN)r−1
∑

�1...�r−1

G(�, �1)G(�1, �2) · · · G(�r−1, �
′)

×pr

〈〈
δλ(�,A,Z),λ(�′,A,Z)

r−1∏
i=1

δλ(�,A,Z),λ(�i ,A,Z)

〉〉
{A,Z}



∣∣∣∣∣∣
�= t

δN
,�′= t ′

δN

= δ(t − t ′) + lim
δN→0



∑
r>0

(−δN)r−1
∑

�1...�r−1

G(�0, �1) . . . G(�r−1, �r )

×�r+1(�0, . . . , �r )

}∣∣∣∣∣
�0= t

δN
,�r= t ′

δN

. (65)

Similarly we can insert (64) into (60), again with Ae → 0, and find

�(t, t ′) = η̃ lim
δN→0

1

δN

{ ∑
r,r ′�0

(−δN)r+r ′ ∑
�1···�r

G(�0, �1) · · · G(�r−1, �r)

×
∑
�′

1···�′
r

G(�′
0, �

′
1) · · · G(�′

r−1, �
′
r )p

r+r ′
〈〈〈

φ�r
φ�′

r′

〉
{φ|A,Z}

×
[

r∏
i=1

δλ(�0,A,Z),λ(�i ,A,Z)

][
r ′∏

j=1

δλ(�′
0,A,Z),λ(�′

j ,A,Z)

]〉〉
{A,Z}

}∣∣∣∣∣
�0= t

δN
,�′

0= t ′
δN

= lim
δN→0

{ ∑
r,r ′�0

(−δN)r+r ′ ∑
�1,...,�r

G(�0, �1) · · · G(�r−1, �r )

×
∑

�′
1,...,�

′
r

G(�′
0, �

′
1) · · · G(�′

r−1, �
′
r )[1 + C(�r, �

′
r ′)]

×�r+r ′+2(�0, . . . , �r , �
′
0, . . . , �

′
r ′)

}∣∣∣∣∣
�0= t

δN
,�′

0= t ′
δN

. (66)

The limits δN → 0 in (65) and (66) are well defined, since each time summation combines
with a factor δN to generate an integral, whereas pairwise identical times in (66) leave a
‘bare’ factor δN but will also cause �r+r ′+2(· · ·) to gain a factor p = η̃/2δN in compensation.
In the limit ζ → 1 (the random history limit), where �k(· · ·) = 1 for any k, we see that
equations (65) and (66) reduce exactly to the corresponding expressions derived in [10], as
indeed they should.

Since the single agent process (57) is linked to the global bid process (61) only via the
kernels {R,�}, we conclude from (65) and (66) (which are still fully exact) that the effects of
having true market history are concentrated solely in the resulting history statistics as described
by functions (63). More specifically, there is no need for us to solve the global bid process
(61) beyond knowing the history statistics which it generates.

5.2. Time-translation invariant stationary states

In fully ergodic and time-translation invariant states without anomalous response, we could in
‘fake history’ MG versions find exact closed equations for persistent order parameters without
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having to solve for the kernels {C,G} in full, and locate phase transitions exactly. This
suggests that the same may be true for MGs with true history. Thus we make the standard
time-translation invariance (TTI) ansatz for the kernels in (57) and for the correlation- and
response functions:

C(t, t ′) = C(t − t ′) G(t, t ′) = G(t − t ′)
R(t, t ′) = R(t − t ′) �(t, t ′) = �(t − t ′)

with χ = ∫∞
0 dt G(t) finite. It turns out that several relations between persistent observables

in TTI stationary states of the present non-Markovian MG process, if such states again exist,
can be established on the basis of (57) alone. Upon following established notation conventions
and abbreviating time averages as f = limτ→∞ τ−1

∫ τ

0 dt f (t), we may write the time average
of (57) as

dq/dt = θ − αχRσ +
√

αη (67)

with χR = ∫∞
0 dt R(t). We may now define the familiar effective agent trajectories

corresponding to fickle versus frozen agents as those with either dq/dt = 0 or dq/dt �= 0,
respectively. For frozen agents, consistency demands that sgn[σ ] = sgn[dq/dt]. It then
follows from (67) that the (at least for χR > 0 complementary and mutually exclusive)
conditions for having a ‘fickle’ or a ‘frozen’ solution can be written as follows:

fickle : |θ +
√

αη| � αχRσ [∞], σ = θ +
√

αη

αχR

(68)

frozen: |θ +
√

αη| > αχRσ [∞], σ = σ [∞].sgn

[
θ +

√
αη

αχR

]
. (69)

Which solution of (68) and (69) we will find depends on the realization of the noise term η,
which is a frozen Gaussian variable with zero expectation value and with variance

S2
0 = 〈η2〉� = lim

τ→∞
1

τ 2

∫ τ

0
dt dt ′�(t, t ′) = �(∞). (70)

We may now proceed towards the calculation of the persistent order parameters φ, χ and c,
where φ denotes the fraction of frozen agents in the stationary state, where χ = ∫∞

0 dt G(t),
and with

c = lim
t→∞ C(t) = lim

τ→∞
1

τ 2

∫ τ

0
dt dt ′〈σ [q(t)]σ [q(t ′)]〉� = 〈σ 2〉�. (71)

Upon introducing the short-hand u = √
αχRσ [∞]/S0

√
2, and upon using the conditions and

relations (68) and (69), we find in the limit θ(t) → 0 of vanishing external fields:

φ =
∫

dη

S0

√
2π

exp

(
−1

2
η2

/
S2

0

)
θ [|η| − √

αχRσ [∞]] = 1 − Erf[u] (72)

c =
∫

dη

S0

√
2π

exp

(
−1

2
η2

/
S2

0

){
θ [|η| − √

αχRσ [∞]]σ 2[∞] + θ [
√

αχRσ [∞] − |η|] η2

αχ2
R

}

= σ 2[∞]

{
1 − Erf[u] +

1

2u2
Erf[u] − 1

u
√

π
e−u2

}
(73)

χ =
∫

dη

S0

√
2π

exp

(
−1

2
η2

/
S2

0

)
∂σ

∂(
√

αη)
= Erf[u]/αχR. (74)
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Hence, in order to find the TTI stationary solution {φ, c, χ} and the phase transition point
(defined by χ → ∞), we only need to extract expressions for χR and S0 from the stochastic
overall bid process (61). Using (65) and (66), the latter can be written as

χR =
∫ ∞

0
dt R(t) = 1 + lim

δN→0

{∑
r>0

(−δN)r
∑
�1...�r

G(�1 − �2)G(�2 − �3) · · ·

×G(�r−1 − �r)G(�r)�r+1(�1, . . . , �r , 0)

}
(75)

S2
0 = lim

L→∞
1

L2

∑
�0,�

′
0�L

lim
δN→0



∑

r,r ′�0

(−δN)r+r ′ ∑
�1...�r

G(�0 − �1) · · · G(�r−1 − �r)

×
∑
�′

1...�
′
r

G(�′
0 − �′

1) · · · G(�′
r−1 − �′

r )[1 + C(�r − �′
r ′)]

×�r+r ′+2(�0, . . . , �r , �
′
0, . . . , �

′
r ′)


 . (76)

5.3. TTI states with short history correlation times

Calculating the history statistics kernels (63) from the global bid process (61) is hard, but
in those cases where the history correlation time Lh (measured in individual iterations �) in
the process is much smaller than N, we can make progress in our analysis of TTI stationary
states. We define the asymptotic frequency πλ(A,Z) at which history string λ occurs in a
given realization {A,Z} of our process (61) as

πλ(A,Z) = lim
L→∞

1

L

L∑
�=1

δλ,λ(�,A,Z). (77)

Obviously
∑

λ πλ(A,Z) = 1. For ζ = 1 (no history) we would have πλ = p−1 for all λ.
We may also define the distribution �(f ) of these asymptotic history frequencies πλ(A,Z),
relative to the benchmark ‘no-memory’ values p−1, and averaged over the global bid process
(61) in the infinite system size (i.e. continuous time) limit:

�(f ) = lim
p→∞

1

p

∑
λ

〈〈δ[f − pπλ(A,Z)]〉〉{A,Z}. (78)

Our definitions guarantee that
∫∞

0 dff �(f ) = 1 for any ζ . For ζ = 1 we simply recover
�(f ) = δ[f − 1], i.e. all histories occur equally frequently. We have not yet shown
that the limit in (78) exists, i.e. that the history frequencies do indeed generally scale as
πλ(A,Z) = O(N−1). Numerical simulations, however, confirm quite convincingly that this
ansatz is indeed correct (see e.g. figure 1).

If Lh is the history correlation time in process (61), then finite samples of history
occurrence frequencies can be expected to approach the asymptotic value (77) as

1

2L

�+L∑
�′=�−L

δλ,λ(�′,A,Z) = πλ(A,Z)[1 + O((Lh/L)
1
2 )]. (79)

This implies that in expressions such as (75), where G(�)−G(�′) = O(|�−�′|/N) and where
only time strings {�1, . . . , �k} with mutual temporal separations of order O(N) will survive
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Figure 1. Typical examples of history frequency distributions (78) as measured in simulations of
the on-line MG without decision noise but with full history (i.e. ζ = 0), after equilibration. Here
N = 8193. Left: α = 0.125 (in the non-ergodic regime of the MG, below αc). Right: α = 2.0 (in
the ergodic regime, above αc). Measurements were taken during an observation stage of 2000N

individual iterations, following an equilibration stage of 1000N individual iterations.

the limit δN → 0, we may choose e.g. L = √
LhN and effectively replace3

�r+1(�1, . . . , �r , 0) → pr
∑

λ

[πλ[1 + O(
√

Lh/N)]]r+1. (80)

This results in

χR = lim
p→∞

1

p

∑
λ

∑
r�0

(−χ)r [pπλ[1 + O(
√

Lh/N)]]r+1

= lim
p→∞

1

p

∑
λ

pπλ[1 + O(
√

Lh/N)]

1 + χpπλ[1 + O(
√

Lh/N)]
=
∫ ∞

0
df �(f )

f

1 + χf
(81)

(provided indeed limN→∞ Lh/N = 0). The same simplification to an expression involving
only the distribution �(f ) can be achieved in (76), but there we have to be more careful in
dealing with the occurrences of similar or identical times in the argument of (63). We first
rewrite (76) by transforming the iteration times according to

for all i ∈ {0, . . . , r}: �i =
r∑

j=i

sj .

This gives, using lims→∞ G(s) = 0 (i.e. restricting ourselves to ergodic states with normal
response):

S2
0 = lim

δN →0

∑
r,r ′�0

(−δN)r+r ′ ∑
s0...sr−1>0

G(s0) · · · G(sr−1)
∑

s ′
0...s

′
r′−1

>0

G(s ′
0) · · · G(s ′

r−1)

3 There is a subtle issue here. Since the individual history frequencies each measure the relative occurrence of one
specific event out of O(N) possibilities, it is reasonable to expect that in fact Lh = O(N). However, ultimately one
does not rely on the individual 2M history frequencies to converge as such, but only demands that quantities which
are themselves averages over all these 2M frequencies will do so. To be specific: quantities (80). It is clear that this
issue warrants further investigation, and I am grateful to one of the referees for raising it.
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× lim
L→∞

1

L2

L−∑r−1
i=0 si∑

sr=0

L−∑r′−1
i=0 s ′

i∑
s ′
r′ =0

[1 + C(sr − s ′
r ′)]

×�r+r ′+2(s0 + · · · + sr , . . . , sr−1 + sr , sr , s
′
0 + · · · + sr ′ , . . . , s ′

r ′−1 + s ′
r ′ , s

′
r ′).

Each time summation is compensated either by a factor δN (giving an integral), or limited in
range by L and compensated by an associated factor L−1, so that any ‘pairing’ where two (or
more) times are close to each other (relative to the correlation time Lh) will not survive the
combined limits δN → 0 and L → ∞. Thus we may again put

�r+r ′+2(· · · · · ·) → pr+r ′+1
∑

λ

[πλ[1 + O(
√

Lh/N)]]r+r ′+2 (82)

and find, with C(∞) = c:

S2
0 = (1 + c) lim

p→∞
1

p

∑
λ

∑
r,r ′�0

(−χ)r+r ′
[pπλ[1 + O(

√
Lh/N)]]r+r ′+2

= (1 + c) lim
p→∞

1

p

∑
λ

[pπλ[1 + O(
√

Lh/N)]]2

[1 + χpπλ[1 + O(
√

Lh/N)]]2

= (1 + c)

∫ ∞

0
df �(f )

f 2

(1 + χf )2
. (83)

Since only χR and S0 are needed to solve our effective single agent process in TTI stationary
states, we see that upon making the ansatz of short history correlation times Lh 	 N the
effects of history on the persistent order parameters in the MG are fully concentrated in the
distribution �(f ) of history frequencies, as defined by (78). Once �(f ) has been extracted
from process (61), the TTI order parameters are given by the solution of the following set of
equations:

u = σ [∞]
√

αχR

S0

√
2

χ = 1 − φ

αχR

φ = 1 − Erf[u] (84)

c = σ 2[∞]

{
1 − Erf[u] +

1

2u2
Erf[u] − 1

u
√

π
e−u2

}
(85)

χR =
∫ ∞

0
df �(f )

f

1 + χf
(86)

S2
0 = (1 + c)

∫ ∞

0
df �(f )

f 2

(1 + χf )2
. (87)

For ζ = 1 (the fake history limit) we have �(f ) = δ[f − 1], leading to χR = (1 + χ)−1 and
S0 = √

1 + c/(1 + χ), and the above equations are seen to reduce to the corresponding ones
in [10], as they should.

6. Calculating the history statistics

Upon making the ansatz of short history correlation times in the MG, we have shown that
finding closed equations for persistent TTI order parameters boils down to calculating the
distribution �(f ) of relative history frequencies, as defined in (78). A similar conclusion was
reached also in [15], but on the basis of several approximations. Furthermore, in contrast to
the present GFA approach, in [15] there was no way to calculate �(f ) from the theory. Our
remaining programme of analysis is: (i) finding an expression for �(f ), (ii) expressing this
distribution in terms of the persistent order parameters {c, φ, χ, χR, S0}, and (iii) confirming
retrospectively the consistency of assuming short history correlation times.
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6.1. The moments of �(f )

Distribution (78) is generated by the non-Markovian process (61), which we cannot hope to
solve directly. However, we can get away with a self-consistent calculation which does not
require solving (61) in full. We focus on the moments µk of the distribution �, from which
the latter can always be recovered (if the integrals below exist):

µk =
∫ ∞

0
df �(f )f k (88)

�(f ) =
∫

dω

2π
eiωf

∑
k�0

µk

k!
(−iω)k. (89)

Obviously µ0 = µ1 = 1, for any ζ , which follows directly from definition (78). In the absence
of history (i.e. ζ = 1) we have �(f ) = δ[f − 1], so that µk = 1 for all k � 0. We will
rely on the sum over moments in (89) converging on scales of k which are independent of N.
This is equivalent to saying that limit (78) is well defined, so it does not restrict us further.
By combining definitions (77), (78), (88) and (15), we can obtain a more explicit but still
relatively simple expression for the moments µk:

µk = 1

p

∑
λ

〈〈[pπλ(A,Z)]k〉〉{A,Z}

= lim
L→∞

pk

Lk

L∑
�1...�k=1

〈〈
M∏
i=1

{
1

2

∑
λ=±1

k∏
j=1

δλ,λi (�j ,A,Z)

}〉〉
{A,Z}

= lim
L→∞

pk−1

Lk

L∑
�1...�k=1

〈〈
M∏
i=1

{
k∏

j=1

δ1,λi (�j ,A,Z) +
k∏

j=1

δ−1,λi (�j ,A,Z)

}〉〉
{A,Z}

. (90)

The average 〈〈· · ·〉〉{A,Z} in the last line of (90) equals the following joint probability:

〈〈· · ·〉〉{A,Z} = Prob[{λ1(�1, A,Z) = λ1(�2, A,Z) = · · · = λ1(�k, A,Z)}
and {λ2(�1, A,Z) = λ2(�2, A,Z) = · · · = λ2(�k, A,Z)}

...

and{λM(�1, A,Z) = λM(�2, A,Z) = · · · = λM(�k, A,Z)}]. (91)

Let us define the short hand

same (i) = {λi(�1, A,Z) = λi(�2, A,Z) = · · · = λi(�k, A,Z)} (92)

which states that the ith component of the history string takes the same value at the k specified
times {�1, . . . , �k}. Given that our bid process obeys causality4, statement (91) can be written
as

〈〈· · ·〉〉{A,Z} = Prob[same(1) ∧ same(2) ∧ · · · ∧ same(M)]

= Prob[same(1)|same(2) ∧ · · · ∧ same(M)]

× Prob[same(2)|same(3) ∧ · · · ∧ same(M)]
...

× [same(M − 1)|same(M)]

× Prob[same(M)]. (93)
4 We here use the fact that a component λi(�, A, Z) of the history string observed by the agents at time � is by
construction (see definition (15)) referring to the overall bid at time � − i. It follows that the probability of finding
a given value for λi(�, A, Z) depends via causality only on the bids at the earlier times {� − i − 1, � − i − 2, . . .},
hence on {λi+1(�, A, Z), λi+2(�, A, Z), . . .}.
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Since we need not consider the values of k which scale with N or L, the contributions to (90)
from those times {�1, . . . , �k} for which there are correlations between objects at a time �r ,
and those at another time �r ′ will vanish in the limit L → ∞. Since we also know that we are
in a TTI state, it follows that the conditional probabilities in (93) will not depend on the actual
values {�1, . . . , �k}. In the limit L → ∞ we may replace

Prob[same(r)|same(r + 1) ∧ · · · ∧ same(M)] → P[k|M−r]

where P[k|m] denotes the probability to find for randomly drawn and infinitely separated times
{�1, . . . , �k} that λi(�1, A,Z) = · · · = λi(�k, A,Z), for an index i, given that the identity
holds for the indices {i + 1, . . . , i + m} (with P[k|0] giving this probability in the absence of
conditions). This allows us to write (90) as

µk = pk−1P[k|M−1].P[k|M−2] · · ·P[k|1].P[k|0]. (94)

As a simple test one may verify (94) for the trivial case ζ = 1 (fake history only). Here
conditioning on the past is irrelevant, so P[k|m] = P[k|0] = 21−k for all m, which indeed gives
us µk = pk−12(1−k)M = 1 (as it should). In the continuous time limit N → ∞ (equivalently:
for M → ∞, since 2M = αN ) we thus find the as-yet exact formula

lim
M→∞

log(µk) = lim
M→∞

M−1∑
r=0

log[2k−1P[k|r]]. (95)

6.2. Reduction to history coincidence statistics

Next we have to find an expression for the probabilities P[k|r]. We know from (61) and
(62) that the value of the overall bid at any time � is only correlated with the bid value at
time �′ if the two times (�, �′) have identical history strings, i.e. if λ(�, A,Z) = λ(�′, A,Z).
We know that individual histories show up during the process with probabilities of order
N−1. Since the likelihood of finding recurring histories during any number r = O(M) of
consecutive iterations of our process is thus vanishingly small (of order O(M/N)) such direct
correlations are of no consequence in our calculation. The only relevant effect of conditioning
in the sense of the P[k|r] is via its biasing of histories in subsequent iterations. Although the
probability of history recurrence during a time window of size O(M) is vanishingly small,
if two (short) instances of global bid trajectories are found to have identical realizations of
some of the bits of their history strings, they will nevertheless be more likely than average
to have an identical history realization in the next time step. This is the subtle statistical
effect which, together with the resulting biases in the bids which are subsequently found at
times with specific histories, gives rise to the relative history frequency distributions �(f ) as
observed in e.g. figure 1.

The statement that the conditioning in P[k|r] acts only via the joint likelihood of finding
specific histories {λ1, . . . , λk} at the k specified (and widely separated) times {�1, . . . , �k},
translates into

P[k|r] =
∑

λ1,...,λk

P[k|λ1, . . . , λk]P[λ1, . . . , λk|r]. (96)

Here P[k|λ1, . . . , λk] denotes the likelihood to find λ(�1, A,Z) = · · · = λ(�k, A,Z), if the
history strings at those k times equal {λ1, . . . , λk}, and P[λ1, . . . , λk|r] denotes the likelihood
of finding those k specific histories given that the bits of the k history strings have been identical
over the r most recent iterations5. The probability of finding specific bid values A(�) will

5 Here one will find that consistent and inconsistent realizations of the history noise variables Z(�, i) are to be treated
differently: in the case of consistent noise, one will always have λi(�, A, Z) = λi+1(� + 1, A, Z). This is not true for
inconsistent history noise.
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in TTI states only depend on the history string λ associated with time �. Given this history
string, A(�) is a Gaussian variable (this follows from the effective bid process (61)), with some
average Aλ and a variance σ 2

λ (which will in due course have to be calculated). Using also
the fact that the Z(�, i) were defined as zero average Gaussian variables, with variance κ2, we
obtain

P[k|λ1, . . . , λk] =
k∏

j=1

[∫
DZ

∫
dAPλj

(A)θ [(1 − ζ )A + ζZ]

]

+
k∏

j=1

[∫
DZ

∫
dAPλj

(A)θ [−(1 − ζ )A − ζZ]

]

=
k∏

j=1


1

2
+

1

2
Erf


 (1 − ζ )Aλj√

2
√

ζ 2κ2 + (1 − ζ )2σ 2
λj






+
k∏

j=1


1

2
− 1

2
Erf


 (1 − ζ )Aλj√

2
√

ζ 2κ2 + (1 − ζ )2σ 2
λj




 . (97)

We now write the sum over all combinations of histories in (96) in terms of a partitioning in
groups, where two M-bit strings {λi , λj } are in the same group if and only if they are identical.
We write (g1, g2, . . .) for the subset of all combinations {λ1, . . . , λk} with one group of size
g1, a second group of size g2, and so on6. Clearly g1 + g2 + · · · = k, for all possible subsets of
our partitioning. This allows us to write

P[k|r] =
∑

(g1,g2,...)

δk,g1+g2+···P[k|g1, g2, . . .]P[g1, g2, . . . |r]. (98)

According to (97), the distribution P[k|g1, g2, . . .] is of the relatively simple form
P[k|g1, g2, . . .] = 21−k�(g1, g2, . . .), with

�(g1, g2, . . .) = 1

2

∏
j�1



∑

λ

πλ


1 + Erf


 (1 − ζ )Aλ

√
2
√

ζ 2κ2 + (1 − ζ )2σ 2
λ






gj



+
1

2

∏
j�1



∑

λ

πλ


1 − Erf


 (1 − ζ )Aλ

√
2
√

ζ 2κ2 + (1 − ζ )2σ 2
λ






gj

 . (99)

The insertion of representation (98) for P[k|r] into (95) allows us to write the moments of the
relative history frequencies in the following form:

lim
M→∞

log(µk) = lim
M→∞

M−1∑
r=0

log


 ∑

(g1,g2,...)

δk,g1+g2+···�(g1, g2, . . .)P[g1, g2, . . . |r]


 . (100)

It will be helpful to assess which values of r in (100) can survive the limit M → ∞. Whenever
we have a value r such that M − r → ∞ as M → ∞, the condition that the k history bits
were identical over the most recent r steps still leaves a large O(2M−r ) number of compatible
history strings to be found at the probing times {�1, . . . , �k}, so the likelihood of finding
histories coinciding in multiples (g1, g2, . . .) scales as

P[g1, g2, . . . |r] =
∏

j |gj >1

O(2(gj −1)(r−M)), P[1, 1, . . . |r] = 1 + O(2r−M).

6 For example: (k) denotes the subset of all combinations {λ1, . . . , λk} where λ1 = · · · = λk, (2, 1, 1, . . .) is the
subset of all {λ1, . . . , λk} where precisely two history strings are identical, and all others are distinct.
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Since k is finite and �(1, 1, 1, . . .) = 1, the total contribution to log(µk) from those terms
where M − r → ∞ as M → ∞ is negligible, since for 1 	 R 	 M we may write

R−1∑
r=0

log


 ∑

(g1,g2,...)

δk,g1+g2+···�(g1, g2, . . .)P[g1, g2, . . . |r]




=
R−1∑
r=0

log[1 + O(2r−M)] = O(2R−M). (101)

Hence in (100) we need only those terms where M − r is finite. These terms represent
contributions where virtually all past components of the history strings at the times {�1, . . . , �k}
were identical, which should indeed constrain the possible histories at the times {�1, . . . , �k}
most, and indeed gives the largest history coincidence rates. We consequently switch our
conditioning label from the number r of previously identical components to the number M − r

of unconstrained components, and write

P[g1, g2, . . . |r] = Q[g1, g2, . . . |M − r]

and find (100) converting into the simpler form

lim
M→∞

log(µk) =
∑
r�1

log


 ∑

(g1,g2,...)

δk,g1+g2+···�(g1, g2, . . .)Q[g1, g2, . . . |r]


 . (102)

We are left with the task to calculate the likelihood Q[g1, g2, . . . |r] of finding at the k distinct
times {�1, . . . , �k} of our process the histories {λ1, . . . , λk} to be identical in prescribed
multiples of (g1, g2, . . .), given that the bits of the k history vectors were identical during all
but r of the most recent iterations.

At this stage we benefit from having to consider only values of r in (102) which are
finite (compared to M, which is sent to infinity). For each value r of the number of ‘free’
components, there will be only 2r possible history strings λ available to be allocated to the k
times {�1, . . . , �k}. In principle one would have to worry about the probabilities to be assigned
to each of the 2r options. However, we know for the full M-component history strings that
their probabilities scale as πλ = fλp−1 with fλ = O(1), so the effective probabilities of
individual components of λ ∈ {−1, 1} must scale as

πλi
= O

(
π

1/M

λ

) = O
(

1
2f

1/M

λ

) = 1
2 [1 + O(M−1)].

From this we deduce that for finite r we may take all 2r allowed history strings to have
equal probabilities. This turns the evaluation of Q[g1, g2, . . . |r] into a solvable combinatorial
problem. Each of k elements is given randomly one of 2r colours (where each colour has
probability 2−r ), and Q[g1, g2, . . . |r] represents the likelihood of finding identical colour sets
of sizes (g1, g2, . . .). Let us abbreviate R = 2r , and write the rth term in (102) as log(Hr).
Now, using 2−r(g1+···+gR) = 2−rk = R−k we may simply write7

lim
M→∞

log(µk) =
∑
r�1

log Hr (103)

7 One easily confirms that our expression for Hr is properly normalized. Upon choosing �(g1, g2, . . .) = 1, one can
perform the summations iteratively, starting from gR and descending down to g1, which leads exactly to the factor
Rk to combine with the R−k present.
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Hr =
∑

(g1,g2,...)

�(g1, g2, . . .)Q[g1, g2, . . . |r]

=
k∑

g1=0

k−g1∑
g2=0

k−g1−g2∑
g3=0

· · ·
k−g1−···−gR−1∑

gR=0

�(g1, g2, . . .)δk,
∑

i gi

×R−k

(
k

g1

)(
k − g1

g2

)(
k − g1 − g2

g3

)
· · ·
(

k − g1 − · · · − gR−1

gR

)
. (104)

6.3. Expansion of sign-coincidence probabilities

Having simplified the conditional distribution Q[g1, g2, . . . |r] of history coincidences, we
turn to �(g1, g2, . . .) as given by (99). If we restrict ourselves to an expansion of (99) in
powers of the (random) bid biases Aλ in which we retain only the leading terms, our problem
simplifies further to the point where we can obtain a fully explicit expression for the moments
µk . In appendix A we derive the following compact relations:

�(1, 1, 1, . . .) = 1 (105)

�(g1, g2, . . .) = exp


1

2
�
∑
j�1

gj (gj − 1) − 1

4
�2
∑

j

gj (gj − 1)(2gj − 3) + O(�3)


 (106)

� =
∑

λ

πλErf2


 (1 − ζ )Aλ

√
2
√

ζ 2κ2 + (1 − ζ )2σ 2
λ


 . (107)

Results (105) and (106) imply that, rather than knowing the full probability distribution
P[g1, g2, . . . |r] in (100), we only need the (conditional) statistics of a modest number of
relatively simple monomials. Expanding the exponential in (106) up to the relevant orders,
and using

∑
j gj = k (which is always true inside (104)) produces

�(g1, g2, . . .) = 1 +
1

2
�


∑

j�1

g2
j − k


 +

1

4
�2


1

2

∑
ij�1

g2
i g

2
j

− 2
∑
j�1

g3
j − (k − 5)

∑
j�1

g2
j +

1

2
k2 − 3k


 + O(�3). (108)

Since the combinatorial averaging process of (104) in this particular representation involves
a measure which is invariant under permutations of the numbers {g1, g2, . . .}, the average of
(108) is identical to that of the following simpler function (with R = 2r ):

�eff(g1, g2, . . .) = 1 + 1
2�
(
Rg2

1 − k
)

+ 1
8�2

[
Rg4

1

+ R(R − 1)g2
1g

2
2 − 4Rg3

1 − 2(k − 5)Rg2
1 + k2 − 6k

]
+ O(�3). (109)

Instead of having to use full combinatorial measure (104), we can therefore extract all the
relevant information from the (joint) marginal distribution for the pair (g1, g2) only. Inserting
(109) into (104) gives us

Hr = 1 + 1
2�
[
RG

k,R
2,0 − k

]
+ 1

8�2
[
RG

k,R
4,0 + R(R − 1)G

k,R
2,2

− 4RG
k,R
3,0 − 2(k − 5)RG

k,R
2,0 + k2 − 6k

]
+ O(�3) (110)
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with

G
k,R
a,b =

k∑
g1=0

k−g1∑
g2=0

k−g1−g2∑
g3=0

· · ·
k−g1−···−gR−1∑

gR=0

ga
1gb

2δk,
∑

i gi

×R−k

(
k

g1

)(
k − g1

g2

)(
k − g1 − g2

g3

)
· · ·
(

k − g1 − · · · − gR−1

gR

)

= R−k

k∑
g1=0

k−g1∑
g2=0

(
k

g1

)(
k − g1

g2

)
(R − 2)k−g1−g2ga

1gb
2 . (111)

Those combinatorial factors G
k,R
a,b which we need in order to evaluate (110) are calculated in

appendix B. They are found to be

G
k,R
2,0 = k

R
+

k(k − 1)

R2

G
k,R
3,0 = k

R
+

3k(k − 1)

R2
+

k(k − 1)(k − 2)

R3

G
k,R
4,0 = k

R
+

7k(k − 1)

R2
+

6k(k − 1)(k − 2)

R3
+

k(k − 1)(k − 2)(k − 3)

R4

G
k,R
2,2 = k(k − 1)

R2
+

2k(k − 1)(k − 2)

R3
+

k(k − 1)(k − 2)(k − 3)

R4
.

The insertion of these factors into (110), followed by restoration of the short-hand R = 2r ,
gives us the fully explicit expression

Hr = 1 + 1
2�k(k − 1)2−r + 1

8�2k(k − 1)(k − 2)(k − 3)4−r + O(�3). (112)

We can now write explicit formulae for the moments of the relative history frequencies, and
hence also for the distribution �(f ) itself, in the form of an expansion in a parameter � which
controls the width of this distribution.

6.4. Resulting prediction for �(f )

Result (112), together with the earlier relation (103) and the geometric series, leads us finally
to the desired expression for the moments µk:

lim
M→∞

log(µk) = 1
2�k(k − 1) − 1

12�2k(k − 1)(2k − 3) + O(�3). (113)

We see that this general formula obeys µ0 = µ1 = 1, as it should, and that

lim
M→∞

µ2 = exp
(
� − 1

6�2 + O(�3)
)
. (114)

The insertion into our earlier expression (89) for �(f ) leads in the limit M → ∞ to a formula
in which, at least up the relevant orders in �, the insertion of a Gaussian integral allows us to
carry out the summation over moments explicitly:

�(f ) =
∫

dω

2π
eiωf

∑
k�0

(−iω)k

k!
exp

(
1

2
�k(k − 1) − 1

12
�2k(k − 1)(2k − 3) + O(�3)

)

=
∫

Dz

∫
dω

2π
eiωf

∑
k�0

(−iω)k

k!

[
1 − 1

6

√
�

d3

dz3
+ · · ·

]
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Figure 2. Test of the predicted history frequency distributions (116) (left picture,
based on expansion of the moments µk up to first order in the width, µk =
exp( 1

2 �k(k − 1))) and (118) (right picture, based on expansion up to second order, µk =
exp( 1

2 �k(k − 1)) − 1
12 �2k(k − 1)(2k − 3)), together with the data of figure 1 as measured in

simulations for α = 2.0 and N = 8193. In both cases the second moment which parametrizes
(116) and (118) was taken from the data: µ2 ≈ 1.380. Measurements were taken during an
observation stage of 2000N individual iterations, following an equilibration stage of 1000N

individual iterations.

× exp

(
zk

√
� +

5

6
�2 − 1

2
k

(
� +

1

2
�2

))

=
∫

Dz

[
1 +

1

6

√
�(3z − z3) + · · ·

]
δ

[
f − exp

(
z

√
� +

5

6
�2 − 1

2

(
� +

1

2
�2

))]
.

(115)

We may use (114) to express � in terms of µ2, turning our expansion of the moments µk into
an expansion in powers of log(µ2). Depending on whether we wish to take our expansion
only to order O(log(µ2)), or also to O(log2(µ2)), we obtain

toO(log(µ2)) : �(f ) = e− 1
2 z2(f )

f
√

2π log(µ2)
(116)

z(f ) = log(f ) + 1
2 log(µ2)√

log(µ2)
(117)

toO(log2(µ2)) : �(f ) = exp
(− 1

2z2(f )
) [

1 + 1
6

√
log(µ2)(3z(f ) − z3(f ))

]
f

√
2π [log(µ2) + log2(µ2)]

(118)

z(f ) = log(f ) + 1
2

[
log(µ2) + 2

3 log2(µ2)
]

√
log(µ2) + log2(µ2)

. (119)

The two statements (116) and (118) are indeed found to constitute increasingly accurate
predictions for the actual distribution of the relative history frequencies, see e.g. figure 2.
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We have thus been able to explain the origin and the characteristics of the observed history
frequency statistics. However, both formulae are the expansions for small �. Should (118)
be applied to the values of � which are not small, one has to be careful in dealing with large
values of f , where �(f ) could become negative (this would have been prevented by the higher
orders in �). The implication is that in the Gaussian integral (115) one must in practice either
introduce a cut-off zc = O(�−1/6), or exponentiate the factor

[
1+ 1

6

√
log(µ2)(3z(f )−z3(f ))

]
.

6.5. The width of �(f )

What remains in order to round off our analysis of the distribution of relative history frequencies
is to calculate the width parameter � in (113) self-consistently from our equations. According
to our theory, � is given by (107), i.e. by

� =
∑

λ

πλErf2


 (1 − ζ )Aλ

√
2
√

ζ 2κ2 + (1 − ζ )2σ 2
λ


 . (120)

The quantities Aλ and σ 2
λ = A2

λ − Aλ describe the statistics of those bids which
correspond to times with a prescribed history string λ. We know from (64) that these
are Gaussian variables, which implies that Aλ and σ 2

λ are all we need to know. Since we
restrict ourselves to non-anomalous TTI states, we can write both as long-time averages:

Aλ = π−1
λ lim

L→∞
L−1

L∑
�=1

δλ,λ(�,A,Z)A(�) (121)

A2
λ = π−1

λ lim
L→∞

L−1
L∑

�=1

δλ,λ(�,A,Z)A
2(�). (122)

We can work out the average Aλ, using (64) and time-translation invariance, and subsequently
define the new time variables si = �i − �i+1 (for i < r) and sr = �r (so that �j =
sj + sj+1 + · · · + sr ). This results in

Aλ = lim
L→∞

1

Lpπλ

L∑
�0=1

∑
r�0

(−δN)r
∑
�1...�r

G(�0 − �1) · · · G(�r−1 − �r)

[
r∏

i=0

pδλ,λ(�i ,A,Z)

]
φ�r

= 1

pπλ

∑
r�0

(−δN)r
∑

s0···sr−1

G(s0) · · · G(sr−1) lim
L→∞

1

L

L−∑i<r si∑
sr=0

[
r∏

i=0

pδλ,λ(si+···+sr ,A,Z)

]
φsr

.

(123)

Given our ansatz of short history correlation times, in the sense of (79), and given
χ = ∑

�>0 G(�) < ∞ (so G(�) must decay sufficiently fast), we find this expression
simplifying to

Aλ =
∑
r�0

(−χpπλ)r lim
L→∞

1

πλL

L∑
s=0

δλ,λ(s,A,Z)φs = φλ

1 + χpπλ

. (124)

In a similar manner, we find
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A2
λ = lim

L→∞
1

πλL

L∑
�0�

′
0=0

δλ,λ(�0,A,Z)A(�0)A(�′
0)δ�0�

′
0

= lim
L→∞

1

πλL

L∑
�0�

′
0=0

∑
r,r ′�0

(−δN)r+r ′ ∑
�1...�r

G(�0 − �1) · · · G(�r−1 − �r)

×
∑
�′

1...�
′
r

G(�′
0 − �′

1) · · · G(�′
r ′−1 − �′

r ′)δλ,λ(�0,A,Z)

×
[

r∏
i=1

pδλ,λ(�i ,A,Z)

][
r ′∏

i=1

pδλ,λ(�′
i ,A,Z)

]
δ�0�

′
0
φ�r

φ�′
r′

= 1

pπλ

∑
r,r ′�0

(−δN)r+r ′ ∑
s0...sr−1

G(s0) · · · G(sr−1)
∑

s ′
0...s

′
r′−1

G(s ′
0) · · · G(s ′

r ′−1)

× lim
L→∞

1

L

L−∑i<r si∑
sr=0

L−∑i<r′ s ′
i∑

s ′
r′ =0

pδλ,λ(s0+···+sr ,A,Z)

×
[

r∏
i=1

pδλ,λ(si+···+sr ,A,Z)

][
r ′∏

i=1

pδλ,λ(s ′
i+···+s ′

r′ ,A,Z)

]
δ∑

i si ,
∑

i s ′
i
φsr

φs ′
r′
. (125)

Again we use
∑

� G(�) < ∞ to justify that in the summations over sr and s ′
r ′ the upper limit

can safely be replaced by L. Thus

A2
λ = 1

pπλ

∑
r,r ′�0

(−δN)r+r ′ ∑
s0...sr−1

G(s0) · · · G(sr−1)
∑

s ′
0...s

′
r′−1

G(s ′
0) · · · G(s ′

r ′−1)

× lim
L→∞

1

L

L∑
sr=0

pδλ,λ(
∑

j sj ,A,Z)

[
r∏

i=1

pδλ,λ(
∑

j�i sj ,A,Z)

]

×
[

r ′∏
i=1

pδλ,λ(
∑

j sj −
∑

j<i s ′
j ,A,Z)

]
φsr

φ∑
j sj −

∑
j<r′ s ′

j
. (126)

The present calculation is similar to that of the volatility matrix in the fake history online

MG [10] (the quantity σ 2
λ = A2

λ − A
2
λ can be regarded as a conditional volatility, where

the condition is that in collecting our statistics we are to restrict ourselves to those times
where the observed history strings take the value λ), so also here we have to worry about
pairwise time coincidences. Each such coincidence effectively removes one constraint of
the type δλ,λ(...,A,Z), since the latter will be met automatically. The remaining terms will
occur in extensive summations, so that we may replace each ‘unpaired’ occurrence of a factor
δλ,λ(...,A,Z), except for those with the same argument as one of the Gaussian variables φ, by its
time average πλ. In practice this implies the replacement[

r−1∏
i=1

pδλ,λ(
∑

j�i sj ,A,Z)

][
r ′−1∏
i=1

pδλ,λ(
∑

j sj −
∑

j<i s ′
j ,A,Z)

]

→(pπλ)r+r ′−2π
−∑r−1

i=1

∑r′−1
j=1 δ∑

��i s�,
∑

� s�−∑�<j s′
�

λ

= (pπλ)r+r ′−2
r−1∏
i=1

r ′−1∏
j=1

[
1 +

1 − πλ

pπλ

η̃

2δN

δ∑
�<i s�,

∑
�<j s ′

�

]
(127)
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and therefore

A2
λ =

∑
r,r ′�0

(−δN)r+r ′ ∑
s0...sr−1

G(s0) · · · G(sr−1)
∑

s ′
0...s

′
r′−1

G(s ′
0) · · · G(s ′

r ′−1)

× (pπλ)r+r ′
r−1∏
i=1

r ′−1∏
j=1

[
1 +

1 − πλ

pπλ

η̃

2δN

δ∑
�<i s�,

∑
�<j s ′

�

]

×
∑

k

δk,
∑

j<r sj −
∑

j<r′ s ′
j

lim
L→∞

1

π2
λL

L∑
s=0

δλ,λ(s,A,Z)δλ,λ(s+k,A,Z)φsφs+k. (128)

As in the calculation of the volatility in [10], lacking as yet a method to deal with all the
complicated terms generated by the factor proportional to the learning rate η̃, we have to
restrict ourselves in practice to approximations. As in [10] we first remove the most tricky
terms by putting η̃ → 0. This gives

A2
λ =

∑
r,r ′�0

(−δNpπλ)r+r ′ ∑
s0...sr−1

G(s0) · · · G(sr−1)
∑

s ′
0...s

′
r′−1

G(s ′
0) · · · G(s ′

r ′−1)

×
∑

k

δk,
∑

j<r sj −
∑

j<r′ s ′
j

lim
L→∞

1

π2
λL

L∑
s=0

δλ,λ(s,A,Z)δλ,λ(s+k,A,Z)φsφs+k. (129)

We then assume that the limit L → ∞ in the last line converts the associated sample average
into a full average over the statistics of the Gaussian fields φ� given by (62), i.e.

lim
L→∞

1

π2
λL

L∑
s=0

δλ,λ(s,A,Z)δλ,λ(s+k,A,Z)φsφs+k

→ lim
L→∞

1

π2
λL

L∑
s=0

δλ,λ(s,A,Z)δλ,λ(s+k,A,Z)〈φsφs+k〉φ|A,Z = 1

2
[1 + C(k)].

Separating the correlation function into a persistent and a non-persistent term, C(k) =
c + C̃(k), and returning to the earlier notation with time differences inside the kernels G,
results in the history-conditioned equivalent of the volatility approximation in [10]:

A2
λ =

∑
r,r ′�0

(−δNpπλ)r+r ′ ∑
s0...sr−1

G(s0) · · · G(sr−1)
∑

s ′
0...s

′
r′−1

G(s ′
0) · · · G(s ′

r ′−1)

× 1

2


1 + c + C̃


∑

j<r

sj −
∑
j<r ′

s ′
j






= 1 + c

2(1 + χpπλ)2
+

1

2

∫
ds ds ′(11 + pπλG)−1C̃(s − s ′)(11 + pπλG)−1 (130)

where 11(x, y) = δ(x − y). In order to get to the present stage we have averaged the
φ-dependent terms inside A2

λ over the Gaussian measure 〈· · ·〉φ|A,Z . Consistency demands

that in working out σ 2
λ = A2

λ − A
2
λ we do the same with the term A

2
λ, where Aλ is given by

(124), so our approximation for the history-conditioned volatility becomes

σ 2
λ = A2

λ −
〈
φ

2
λ

〉
(1 + χpπλ)2

= A2
λ − lim

L→∞
1

(Lπλ)2

L∑
��′=1

δλ,λ(�,A,Z)δλ,λ(�′,A,Z)

1 + C(� − �′)
2(1 + χpπλ)2

= 1

2

∫
ds ds ′(11 + pπλG)−1(s)C̃(s − s ′)(11 + pπλG)−1(s ′). (131)
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Our final step again follows [10]. We assume that the non-persistent correlations C̃(t) decay
very fast, away from the value C̃(0) = 1 − c, so that in the expansion of (131) in powers of G
we retain only the zero-th term:

σ 2
λ = 1

2 (1 − c). (132)

We may now return to expression (120) and insert our approximations (124) and (132):

� = lim
p→∞

∑
λ

πλErf2


 (1 − ζ )φλ√

2(1 + χpπλ)

√
ζ 2κ2 + 1

2 (1 − ζ )2(1 − c)




=
∫

df dφ�(f, φ)f Erf2


 (1 − ζ )φ

√
2(1 + χf )

√
ζ 2κ2 + 1

2 (1 − ζ )2(1 − c)


 (133)

with

�(f, φ) = lim
p→∞

1

p

∑
λ

δ[f − pπλ]δ[φ − φλ]. (134)

We know the φλ to be Gaussian variables, with 〈φλ〉 = 0 and 〈φ2
λ〉 = 1

2 (1 + c) (see the above
derivation of σ 2

λ where this was shown and used). Hence, upon making our final simplifying
assumption that in the relevant orders of our calculation the correlations between the history
frequencies πλ and the Gaussian fields φλ are irrelevant, we obtain

�(f, φ) = �(f )
e−φ2/(1+c)

√
π(1 + c)

(135)

and hence (133) simplifies to

� =
∫ ∞

0
df �(f )f

∫
Dx Erf2


 x(1 − ζ )

√
1 + c

2(1 + χf )

√
ζ 2κ2 + 1

2 (1 − ζ )2(1 − c)


 . (136)

Using the integral
∫

Dx Erf2(Ax) = 4
π

arctan[
√

1 + 4A2]−1, in combination with the identity∫
df �(f )f = 1, our approximate expression for the parameter � thus becomes

� = 4

π

∫ ∞

0
df �(f )f arctan

[
1 +

(1 − ζ )2(1 + c)

(1 + χf )2
[
ζ 2κ2 + 1

2 (1 − ζ )2(1 − c)
]
] 1

2

− 1. (137)

In the limit of strictly fake history we recover from (137) the value limζ→1 � =
(4/π) arctan[1] − 1 = 0, as it should. For MGs with strictly true market history, on the
other hand, expression (137) simplifies to

lim
ζ→0

� = 4

π

∫ ∞

0
df �(f )f arctan

[
1 +

2(1 + c)

(1 + χf )2(1 − c)

] 1
2

− 1. (138)

In accordance with earlier observations in simulations [15] we also see that, as the system
approaches the phase transition when α is lowered from within the ergodic regime, the
increase of the susceptibility χ automatically reduces the width parameter �, until it vanishes
completely at the critical point.
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7. Closed theory for persistent observables in the ergodic regime

We have now obtained a closed theory for the time-translation invariant states of our MG,
albeit in approximation. It consists of equations (84)–(87) for the persistent order parameters,
combined with expressions (116) and (118) for the shape and (114) and (137) for the width
of the relative history frequency distribution �(f ). This theory predicts correctly (i) that the
phase transition point αc(T ) of the MG with history is identical to that of the model with fake
memory, (ii) that at the transition point the relative history frequency distribution reduces to
�(f ) = δ[f − 1] (with at that point also the order parameters all becoming independent of
whether we have true or fake history), and (iii) the shape of the relative history frequency
distribution. In the limit α → ∞ the theory also reproduces the correct order parameter
values χ = φ = c = 0, for any value of ζ . For ζ = 0 (strictly true memory) it predicts
limα→∞ � = 1

3 and hence limα→∞ µ2 ≈ 1.37.
Let us finally reduce our closed equations to a more compact form, for the simplest

nontrivial case of the MG with strictly true market history (i.e. ζ = 0) and without decision
noise (i.e. σ [∞] = 1). Here we have

u =
√

αχR

S0

√
2

χ = 1 − φ

αχR

φ = 1 − Erf[u] (139)

c = 1 − Erf[u] +
1

2u2
Erf[u] − 1

u
√

π
e−u2

(140)

χR =
∫

Dz

[
1 +

1

6

√
�(3z − z3) + · · ·

][
exp

(
−z

√
� +

5

6
�2 +

1

2

(
� +

1

2
�2

))
+ χ

]−1

(141)

S2
0 = (1 + c)

∫
Dz

[
1 +

1

6

√
�(3z − z3) + · · ·

][
exp

(
−z

√
� +

5

6
�2 +

1

2

(
� +

1

2
�2

))
+ χ

]−2

(142)

� =
∫

Dz

[
1 +

1

6

√
�(3z − z3) + · · ·

]
exp

(
z

√
� +

5

6
�2 − 1

2

(
� +

1

2
�2

))

×




4

π
arctan


1 +

2(1 + c)

(1 − c)
[
1 + χ exp

(
z

√
� + 5

6�2 − 1
2

(
� + 1

2�2
))]2




1
2

− 1


 .

(143)

Upon using (140) to write c as a function of u, i.e. c = c(u) with c(u) denoting the right-hand
side of (140), and upon eliminating the quantities φ and S0, we find ourselves with a closed
set of equations for the trio {u, χ,�}:

u = Erf[u]

χ
√

2α(1 + c[u])



∫

Dz
1 + 1

6

√
�(3z − z3) + · · ·[

exp
(−z

√
� + 5

6�2 + 1
2

(
� + 1

2�2
))

+ χ
]2



− 1
2

(144)

χ = Erf[u]

α



∫

Dz
1 + 1

6

√
�(3z − z3) + · · ·

exp
(−z

√
� + 5

6�2 + 1
2

(
� + 1

2�2
))

+ χ




−1

(145)
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Figure 3. Left: the predicted persistent correlations c together with simulation data in the non-
ergodic regime, for the on-line MG with strictly true history (i.e. ζ = 0; the solid line gives the
theoretical prediction, full circles the experimental data) and for the on-line MG with strictly fake
memory (i.e. ζ = 1; the dashed line gives the theoretical prediction, open circles the experimental
data). In both cases decision noise was absent. Right: the corresponding predicted fraction φ of
frozen agents, under the same experimental conditions and with the same meaning of lines and
markers. Measurements were taken during an observation stage of 2000N individual iterations,
following an equilibration stage of 1000N individual iterations.

� =
∫

Dz

[
1 +

1

6

√
�(3z − z3) + · · ·

]
exp

(
z

√
� +

5

6
�2 − 1

2

(
� +

1

2
�2
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×




4

π
arctan


1 +

2[1 + c(u)]

[1 − c(u)]
[
1 + χ exp

(
z

√
� + 5

6�2 − 1
2 (� + 1

2�2
)
)
]2



1
2

− 1


 .

(146)

Solving these three coupled equations numerically, followed by comparison with
simulation data, shows a surprising level of agreement, in spite of the expansions and
assumptions which have been used to derive (144)–(146). Figure 3 shows the performance of
the theory in describing the on-line MG with strictly true market history (i.e. ζ = 0), together
with similar data for the on-line fake history MG (i.e. ζ = 1), for comparison8. In all these
simulations N = 8193. Calculation of the first two nontrivial moments µk of the distribution
of relative history frequencies, see e.g. figure 4 (where in the simulations αN2 = 228), shows
that for small values of the width of �(f ) (i.e. µ2 close to 1, which is true close to and below the
critical point) the predictions of the theory are excellent, but that the performance of equations
(144)–(146) deteriorates for larger values of µ2. This is obvious, since these equations result
effectively from an expansion for small values of µ2 − 1. Taking this expansion to higher
orders should lead to systematic improvement, but will be nontrivial.

8 Below the critical point, where χ = ∞ throughout, equation (137) predicts that � = 0. This implies that
�(f ) = δ[f − 1] for α < αc(T ), and that below the critical point the differences between true and fake history (if
any) are confined to dynamical phenomena or to states without time-translation invariance. This confirms earlier
observations in numerical simulations [15], where it was found that the persistent order parameters in MGs with and
without history were identical in the low α regime.
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Figure 4. The moments µ2 = ∫
df �(f )f 2 and µ3 = ∫

df �(f )f 3 of the distribution of
relative history frequencies for the MG with strictly true history and absent decision noise (i.e.
ζ = T = 0), as predicted by the theory (solid and dashed lines), compared to the moments as
measured in numerical simulations (markers, with circles indicating µ2 and squares indicating µ3).
Note that µ0 = µ1 = 1 (by definition). Measurements were taken during an observation stage of
2000N individual iterations, following an equilibration stage of 1000N individual iterations.

8. Discussion

We have developed a mathematical procedure for the derivation of exact dynamical solutions
for minority games with real market histories, using the generating functional analysis
techniques of [17]. So far these techniques had only been developed for (and applied
successfully to) the less realistic but mathematically simpler MG versions with fake market
histories, restricting theoretical progress to those particular game versions only. We have
shown how the technical difficulties associated with the non-Markovian character of the
microscopic laws induced by having real histories can be dealt with, and found (in the infinite
system size limit) exact and closed macroscopic laws from which to solve the canonical
dynamic order parameters for the standard (on-line) MG with true market history. Here these
laws turn out to be formulated in terms of two effective equations (rather than a single equation,
as for models with fake histories): one for an effective agent, and one for an effective overall
market bid.

In the second part of this paper we have constructed solutions for these effective equations,
focusing mostly on the usual persistent observables of the MG in time-translation invariant
states (persistent correlations and the fraction of frozen agents) and on the calculation from first
principles of the distribution of history frequencies. These objects are calculated in the form of
an expansion in powers of the width of the history frequency distribution, of which the first few
terms are derived in explicit form. This latter calculation required two further assumptions.
The first is that of small history correlation times (or, to be more precise, self-averaging of the
history coincidence probabilities on O(N) timescales, see the footnote in section 5.3), which
allows us to express all persistent order parameters in terms of the distribution of history
frequencies. The second assumption is that we are allowed to approximate our expression for
the history-conditioned volatility σ 2

λ in the manner which had proven acceptable and successful
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in the past, when it was applied to the ordinary (full) volatility σ 2 in fake history MGs [9–11].
At present the consistency of both assumptions has only been tested in an indirect and implicit
manner, by the performance of the resulting theory.

The final theory was shown to give accurate predictions for the persistent observables and
for the shape of the history frequency distribution. It gives precise predictions for the width
in the region where this width remains relatively small (which is inevitable in view of the
expansion used).

Appendix A. Expansion of bid sign recurrence probabilities

Here we derive expansion (106) of the function �(g1, g2, . . .) as defined in (99). We abbreviate

Eλ = Erf


 (1 − ζ )Aλ

√
2
√

ζ 2κ2 + (1 − ζ )2σ 2
λ


 (A.1)

with
∑

λ πλEr
λ = 〈Er〉. These short hands allow us to compactify (99) to

�(g1, g2, . . .) = 1

2

∏
j�1

[∑
λ

πλ(1 + Eλ)gj

]
+

1

2

∏
j�1

[∑
λ

πλ(1 − Eλ)gj

]

= 1

2

∏
j�1

[
gj∑

n=0

(
gj

n

)
〈En〉

]
+

1

2

∏
j�1

[
gj∑

n=0

(
gj

n

)
(−1)n〈En〉

]

=
g1∑

n1=0

g2∑
n2=0

· · ·
(

g1

n1

)(
g2

n2

)
· · · 1

2
[1 + (−1)n1+n2+···]〈En1〉〈En2〉 · · · . (A.2)

Since the overall average bid in the MG is equally likely to be positive than negative, and since
(A.1) tells us that sgn[Eλ] = sgn[Aλ], the moments 〈Er〉 for even values of r will have to be
zero. From this it follows that

�(g1, g2, . . .) =
∑

0�n1� 1
2 g1

∑
0�n2� 1

2 g2

· · ·
(

g1

2n1

)(
g2

2n2

)
· · · 〈E2n1〉〈E2n2〉 · · ·

=
∏
j�1


1 +

∑
1�n�gj /2

(
gj

2n

)
〈E2n〉




so

log �(g1, g2, . . .) =
∑
j�1

log


1 +

∑
1�n�gj /2

(
gj

2n

)
〈E2n〉


 . (A.3)

Equation (A.3) tells us, firstly, that

�(1, 1, 1, . . .) = 1. (A.4)

For arbitrary history coincidence numbers (g1, g2, . . .), not necessarily all equal to 1, we may
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expand (A.3) in the moments 〈Er〉:

log �(g1, g2, . . .) =
∑
j�1

log

[
1 +

1

2
gj (gj − 1)〈E2〉

+
1

24
gj (gj − 1)(gj − 2)(gj − 3)〈E4〉 + O(〈E6〉)

]

= 1

2

∑
j�1

gj (gj − 1)

{
〈E2〉 +

1

12
[(gj − 2)(gj − 3)〈E4〉 − 3gj (gj − 1)〈E2〉2]

}

+O(〈E6〉).
Finally, in leading order in E we may regard the variables Eλ as proportional to Aλ, and
therefore as distributed in a Gaussian manner. This implies (since 〈E〉 = 0) that in leading
order we have 〈E4〉 = 3〈E2〉. Hence

log �(g1, g2, . . .) = 1

2
〈E2〉

∑
j�1

gj (gj − 1) − 1

4
〈E2〉2

∑
j�1

gj (gj − 1)(2gj − 3) + O(〈E6〉).

(A.5)

Appendix B. Combinatorics in history frequency moments

In this appendix we calculate the combinatorial factors G
k,R
a,b as defined in (111). They can be

obtained by differentiation of a simple generating function:

G
k,R
a,b = R−k

k∑
g1=0

k−g1∑
g2=0

(
k

g1

)(
k − g1

g2

)
(R − 2)k−g1−g2ga

1gb
2

= R−k lim
x,y→1

(
x

d

dx

)a (
y

d

dy

)b

(R − 2 + x + y)k. (B.1)

In particular:

G
k,R
2,0 = kR−1 + k(k − 1)R−2 (B.2)

G
k,R
3,0 = kR−1 + 3k(k − 1)R−2 + k(k − 1)(k − 2)R−3 (B.3)

G
k,R
4,0 = kR−1 + 7k(k − 1)R−2 + 6k(k − 1)(k − 2)R−3 + k(k − 1)(k − 2)(k − 3)R−4 (B.4)

G
k,R
2,2 = k(k − 1)R−2 + 2k(k − 1)(k − 2)R−3 + k(k − 1)(k − 2)(k − 3)R−4. (B.5)
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