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We study the synchronous stochastic dynamics of the random field and
random bond Ising chain. For this model the generating functional analysis
method of De Dominicis leads to a formalism with transfer operators,
similar to transfer matrices in equilibrium studies, but with dynamical paths
of spins and (conjugate) fields as arguments, as opposed to replicated spins.
In the thermodynamic limit the macroscopic dynamics is captured by the
dominant eigenspace of the transfer operator, leading to a relatively simple
and transparent set of equations that are easy to solve numerically. Our
results are supported excellently by numerical simulations.
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1. Introduction

In spite of the absence of equilibrium phase transitions at finite temperature in one-
dimensional Ising chains, the dynamics of such systems (solved formally several
decades ago [1–3]) continue to be of interest in the context of ageing phenomena, see,
e.g. [4]. Disordered versions of such chains, with random bonds and/or random
fields, generally require new techniques for solution, unless the disorder can be
transformed away as for binary bonds. One method for solving disordered chains in
equilibrium is based on iteration of partition functions for growing chains,
constrained by the state of the last spin [5–9]. More recently such models were
also solved by diagonalisation of replicated transfer matrices [10–11]. The situation
with the dynamics of disordered Ising chains is less satisfactory. Except for special
cases, e.g. [12], our analytical methods are still under development, although it is
clear from numerical simulations (e.g. [13,14]) and from the equilibrium solution that
the dynamical phenomenology of disordered Ising chains is rich. A renormalisation
group approach was advocated in [15]. In this paper, we use the generating
functional method of [16] to handle the disorder, and show that this leads to a
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transfer operator formalism very similar to that found in equilibrium studies; we use
parallel dynamics to keep computations simpler, but results for Glauber dynamics
will be similar. While developing our study, another study was published [17], also
with parallel dynamics but based on the cavity method, which appears to represent
an alternative but mathematically equivalent perspective on some of our equations.

2. Model definitions

We consider N Ising spins !i 2 f!1, 1g on a periodic one-dimensional chain. Their
dynamics are given by a synchronous stochastic alignment to local fields of the form
hiðr; tÞ ¼ Ji!i!1 þ Jiþ1!iþ1 þ "iðtÞ, with the convention iþN & i for all i 2 f1, . . . ,Ng,
and with r ¼ ð!1, . . . , !NÞ. Upon defining ptðrÞ as the probability to find the system
at time t in state p, this Markovian process can be written as

ptþ1ðrÞ ¼
X

r0

Wt½r; r0( ptðr0Þ, Wt½r; r0( ¼
Y

i

e#!ihiðr
0;tÞ

2 cosh½#hiðr0; tÞ(
: ð1Þ

The parameter # ¼ T!1 ) 0 measures the noise in the dynamics, which is fully
random for #¼ 0 and fully deterministic for #!1. The "i(t) represent external
fields of the form "iðtÞ ¼ "i þ ~"iðtÞ, with random frozen parts "i and weak time
dependent perturbations ~"iðtÞ that serve to define response functions. The bonds Ji
and the frozen fields "i are regarded as quenched disorder, drawn for each site i
independently from a distribution ~PðJ, "Þ. We write averages over the process (1) as
h * * * i and averages over the disorder as * * *. Upon removing the time dependent parts
of the external fields, so that hiðr; tÞ ¼ Ji!i!1 þ Jiþ1!iþ1 þ "i, the process (1) obeys
detailed balance, and the equilibrium state will be of the Peretto [18] form

pðrÞ ¼ Z!1e!#
~H#ðrÞ, ð2Þ

~H#ðrÞ ¼ !
X

i

"i!i !
1

#

X

i

log 2 cosh½#hiðrÞ(: ð3Þ

The correlation and response functions Cijðt, t0Þ ¼ h!iðtÞ!j ðt0Þi and Gijðt, t0Þ ¼
@h!iðtÞi=@ ~"j ðt0Þ will be related by the FDT (fluctuation-dissipation theorem) [19]

Gijð$4 0Þ ¼ !#½Cijð$ þ 1Þ ! Cijð$ ! 1Þ(, Gijð$ + 0Þ ¼ 0: ð4Þ

3. Generating functional analysis

In order to analyse the macroscopic dynamics of the chain we concentrate on the
calculation of the disorder averaged generating functional proposed in [16]:

Z½w( ¼
!
exp

"
! i

X

i

X

t5tm

 iðtÞ!iðtÞ
#$

¼
X

rð0Þ
. . .
X

rðtmÞ
P½rð0Þ, . . . , rðtmÞ( exp

"
! i

X

i

X

t5tm

 iðtÞ!iðtÞ
#
: ð5Þ

2 A.C.C. Coolen and K. Takeda

D
ow

nl
oa

de
d 

by
 [A

nt
ho

ny
 C

oo
le

n]
 a

t 1
3:

06
 3

1 
A

ug
us

t 2
01

1 



We isolate the local fields at times t 2 f0, . . . , tm ! 1g in the usual manner via delta
functions, using the shorthand fdh dĥg ¼

Q
i

Q
t5tm
½dhiðtÞdĥiðtÞ=2%(, which gives

Z½w( ¼
Z
fdh dĥg

X

rð0Þ
. . .
X

rðtmÞ
pðrð0ÞÞeNF ½frg, fĥg(

,
Y

i

Y

t5tm

eiĥiðtÞ½hiðtÞ!
~"iðtÞ(!i iðtÞ!iðtÞþ#!iðtþ1ÞhiðtÞ!log 2 cosh½#hiðtÞ(, ð6Þ

with the disorder dependent exponent

F ½frg, fĥg( ¼ 1

N
log

Y

i

Z
dJ d" ~PðJ, "Þe!i

P
t

%
"ĥiðtÞþJ½ĥiðtÞ!i!1ðtÞþĥi!1ðtÞ!iðtÞ(

&
: ð7Þ

To benefit from the linear nature of the chain we write (6) in terms of the single-site
objects ri ¼ ð!ið0Þ, . . . , !iðtm ! 1ÞÞ, hi ¼ ðhið0Þ, . . . , hiðtm ! 1ÞÞ, and ĥi ¼ ðĥið0Þ, . . . ,
ĥiðtm ! 1ÞÞ, with analogous definitions for ~hi and wi. We also introduce the time shift
matrix S, with entries Stt0 ¼ &t,t0þ1, and the vector u ¼ ð1, . . . , 1Þ, so that
x * Sy ¼

P
t xðtþ 1Þ yðtÞ and u * x ¼

P
t xðtÞ. For factorised and homogeneous initial

conditions p0ðrð0ÞÞ ¼
Q

i pð!ið0ÞÞ we then obtain

Z½w( ¼
Z Y

i

½dhi dĥi(
X

r1...rN

e!i
P

i
½ĥi*~hiþwi*ri(

,
Y

i

hri, hi, ĥijMjri!1, hi!1, ĥi!1(i, ð8Þ

with operators acting as ðKf Þðr, h, ĥÞ ¼
P

r0

R
dh dĥ hr, h, ĥjMjr0, h0, ĥ0if ðr0, h, h0Þ, and

with a non-symmetric transfer operator M, defined as

hr, h, ĥjMjr0, h0, ĥ0i ¼ pð!ð0ÞÞeiĥ*hþ#½r*Shþ!ðtmÞhðtm!1Þ(Q
t5tm
½4% cosh½#hðtÞ((

,
Z

dJ d" ~PðJ, "Þe!i"u*ĥ!iJ½ĥ*r0þĥ
0*r(: ð9Þ

Expression (8) is for N!1 dominated by the largest eigenvalue 'max of (9),
provided its spectrum is discrete at 'max. In an equilibrium replica analysis [10,11] the
relevant kernel would have replicated spins as arguments; here the arguments are
spin ‘paths’, field ‘paths’ and conjugate field ‘paths’ through time. The fields ~hi
and wi were only introduced for generating perturbations, so we may expand Z½w(
in powers of these fields. To do this efficiently we define

Tr½K ( ¼
Z

dh dĥ
X

r

hr, h, ĥjKjr, h, ĥi, ð10Þ

hr, h, ĥjSðtÞjr0, h0, ĥ0i ¼ !ðtÞ&ðh! h0Þ&ðĥ! ĥ0Þ&r,r0 , ð11Þ

hr, h, ĥjĤðtÞjr0, h0, ĥ0i ¼ ĥðtÞ&ðh! h0Þ&ðĥ! ĥ0Þ&r,r0 : ð12Þ
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Since Z½0( ¼ 1 for any ~h and Z½0( ¼ Tr½MN( for ~h ¼ 0, according to (5) and (8)
respectively, we can be sure that Tr½MN( ¼ 1 and that all terms of order ~h or order ~h2

in our expansion (which can be written in terms of derivatives with respect to ~h of
Z½0() must be zero. Thus we may write our expansion in the form

Z½w( ¼ 1! i
X

it

 iðtÞ
Tr½SðtÞMN(
Tr½MN(

! 1

2

X

itt0
 iðtÞ iðt0Þ

Tr½SðtÞSðt0ÞMN(
Tr½MN(

!
X

i5j

X

tt0
 iðtÞ j ðt0Þ

Tr½MNþi!jSðtÞMj!iSðt0Þ(
Tr½MN(

!
X

i6¼j

X

tt0
 iðtÞ ~"j ðt0Þ

Tr½MN!ji!j jSðtÞMji!j jĤðt0Þ(
Tr½MN(

þOðw3, ~hw2,w~h2Þ: ð13Þ

We may now use the usual relations [16] to express the quantities of interest in the
spin chain in terms of derivatives of (5), e.g. h!iðtÞi ¼ i limw,~h!0 @Z½w(=@ iðtÞ and
h!iðtÞ!j ðt0Þi ¼ ! limw,~h!0 @

2Z½w(=@ iðtÞ, giving

miðtÞ ¼ h!iðtÞi ¼ Tr½SðtÞMN(=Tr½MN(, ð14Þ

Cijðt, t0Þ ¼ h!iðtÞ!j ðt0Þi ¼ Tr½MNþi!jSðtÞMj!iSðt0Þ(=Tr½MN( ði + j Þ, ð15Þ

Gijðt, t0Þ ¼ lim
~h!0

@h!iðtÞi
@ ~"jðt0Þ

¼ !iTr½MN!ji!j jSðtÞMji!j jĤðt0Þ(=Tr½MN(: ð16Þ

Left- and right-eigenvectors with different eigenvalues of (9) are always orthogonal,
so we can write (9) in the form M ¼

P
' 'Uð'Þ, in which the U(') are eigenspace

projection operators,1 with Uð'ÞUð'0Þ ¼ 0 if ' 6¼ '0. The operator M‘ ¼
P

' '
‘Uð'Þ

exchanges dynamical information between sites at distance ‘. Hence j'j + 1 for all ',
and since Tr½MN( ¼ 1 for any N, M must have an eigenvalue '¼ 1. Provided
the largest eigenvalue is isolated in the spectrum, it follows that limN!1MN ¼
limN!1

P
' '

NUð'Þ ¼ Uð1Þ, and the above expressions give

lim
N!1

miðtÞ ¼ Tr½SðtÞUð1Þ(=Tr½Uð1Þ(, ð17Þ

lim
N!1

Cijðt, t0Þ ¼ Tr½Uð1ÞSðtÞMj!iSðt0Þ(=Tr½Uð1Þ( ði + j Þ, ð18Þ

lim
N!1

Gijðt, t0Þ ¼ !i Tr½Uð1ÞSðtÞMji!j jĤðt0Þ(=Tr½Uð1Þ(: ð19Þ

The above quantities are disorder averages of quantities which, by carrying site
indices, will not generally be self-averaging. Hence they will not describe the
dynamics of an individual realisation of the chain, but averages over many such
realisations. In contrast, the following quantities are expected to be self-averaging:

mðtÞ ¼ lim
N!1

N!1
X

i

h!iðtÞi ¼
Tr½SðtÞUð1Þ(
Tr½Uð1Þ(

, ð20Þ
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Cðt, t0Þ ¼ lim
N!1

N!1
X

i

h!iðtÞ!iðt0Þi ¼
Tr½Uð1ÞSðtÞSðt0Þ(

Tr½Uð1Þ(
, ð21Þ

Gðt, t0Þ ¼ lim
N!1

N!1
X

i

lim
~h!0

@h!iðtÞi
@ ~"iðt0Þ

¼ !i Tr½Uð1ÞSðtÞĤðt
0Þ(

Tr½Uð1Þ(
: ð22Þ

4. Spectral properties of the transfer operator

From now on we consider only chains with independently distributed bonds and
fields, i.e. ~PðJ, "Þ ¼ ~PðJ Þ ~Pð"Þ. This is the natural and technically easier scenario. To
study the spectral properties of M it will be helpful to write this operator as

hr, h, ĥjMjr0, h0, ĥ0i ¼ ð2%Þ!tmP½rjh(eiĥ*h
Z

dJ d" ~PðJ, "Þe!i"u*ĥ!iJ½ĥ*r0þĥ
0*r(, ð23Þ

with the probability P½rjh( of a spin exposed to field path h to follow path p:

P½rjh( ¼ pð!ð0ÞÞ
Y

t5tm

e#!ðtþ1ÞhðtÞ

2 cosh½#hðtÞ(
: ð24Þ

The left- and right-eigenvectors uR and uL of (23) are to be solved from,
respectively

'uRðr, h, ĥÞ ¼
X

r0

Z
dh0dĥ0hr, h, ĥjMjr0, h0, ĥ0iuRðr0, h0, ĥ0Þ, ð25Þ

'uLðr, h, ĥÞ ¼
X

r0

Z
dh0dĥ0hr0, h0, ĥ0jMjr, h, ĥiuLðr0, h0, ĥ0Þ: ð26Þ

4.1. Reduction of left- and right-eigenvectors

On the right-eigenvectors uR we carry out the following transformation:

uRðr, h, ĥÞ ¼
Z

dxQ
tð2%Þ

wRðr, h, xÞeiĥ*xP½rjh(: ð27Þ

Insertion into the eigenvalue equation (25) reveals that wRðr, h, yÞ ¼ wRðr, h! yÞ,
and after some trivial manipulations we obtain the simplified eigenvalue problem

'wRðr, hÞ ¼
X

r0

Z
dh0wRðr0, h0Þ

Z
dJ d" ~PðJ, "Þ&½h! "u! Jr0(P½r0jh0 þ Jr(: ð28Þ

Writing out the left-eigenvector equation (26) immediately reveals that
uLðr, h, ĥÞ ¼ uLðr, ĥÞ. We now carry out a simple Fourier transformation:

uLðr, ĥÞ ¼
Z

dxQ
tð2%Þ

wLðr, xÞe!iĥ*x: ð29Þ
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Insertion into the left-eigenvalue problem then gives

'wLðr, hÞ ¼
X

r0

Z
dh0wLðr0, h0Þ

Z
dJ d" ~PðJ, "Þ&½h! Jr0(P½r0jh0 þ "uþ Jr(: ð30Þ

The wL,Rðr, hÞ apparently represent distributions of field path contributions,
conditioned on spin paths p. Given that ~PðJ, "Þ ¼ ~PðJ Þ ~Pð"Þ, they are connected via

wRðr, hÞ ¼
Z

d" ~Pð"ÞwLðr, h! "uÞ: ð31Þ

To see this we simply define the function wðr, hÞ ¼
R
d" ~Pð"ÞwLðr, h! "uÞ and use (30)

to establish that it obeys

'wðr, hÞ ¼
X

r0

Z
dh0wLðr0, h0Þ

Z
dJ d" d"0 ~PðJ, "Þ ~Pð"0Þ&½h! "0u! Jr0(P½r0jh0 þ "uþ Jr(

¼
X

r0

Z
dh0wðr0, h0Þ

Z
dJ d" ~PðJ, "Þ&½h! "u! Jr0(P½r0jh0 þ Jr(: ð32Þ

Hence wðr, hÞ obeys (28) and therefore (31) holds. We are now left with only one
eigenvalue problem, and upon combining our results we may summarise

uLðr, h, ĥÞ ¼
Z

dx e!iĥ*xQ
tð2%Þ

(ðr, xÞ, ð33Þ

uRðr, h, ĥÞ ¼ P½rjh(
Z

dx eiĥ*ðh!xÞQ
tð2%Þ

Z
d" ~Pð"Þ(ðr, x! "uÞ, ð34Þ

with (ðr, xÞ & wLðr, xÞ to be solved from

'(ðr, hÞ ¼
X

r0

Z
dh0(ðr0, h0Þ

Z
dJ d" ~PðJ, "Þ&½h! Jr0(P½r0jh0 þ "uþ Jr(: ð35Þ

For #! 0 one easily calculates that (ðr, hÞ ¼ 2!tm
P

r

R
dJ ~PðJ Þ&ðh! JrÞ and that

the only possible eigenvalue of (23) is '¼ 1.

4.2. Physical meaning of the k^ 1 eigenfunctions

The fields experienced at site i can be writen as hi ¼ hRi þ Jiþ1riþ1 þ "iu, where
hRi ¼ Jiri!1. Apart from the periodicity constraint, all information communicated to
site i from spins at sites j< i is channeled via hRi . The conditional likelihood PiðhRjrÞ
to observe hRi ¼ hR at site i, given we know that ri ¼ r, thus obeys

PiðhRjrÞ ¼
X

r0

Z
dh0Pi!1ðh0jr0ÞP½r0jh0 þ "i!1uþ Jir(&ðhR ! Jir

0Þ: ð36Þ

The spin path r0 at site i! 1 is prescribed in Pi!1ðh0jr0Þ, so Pi!1ðh0jr0Þ no longer
depends on "i!1 or Ji. Hence if we average (36) over the disorder we obtain

PiðhRjrÞ ¼
X

r0

Z
dh0Pi!1ðh0jr0ÞP½r0jh0 þ "i!1uþ Jir(&ðhR ! Jir0Þ: ð37Þ
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Disorder averaging removes any site dependence of PiðhjrÞ, hence PiðhjrÞ ¼ (ðhjrÞ,
where the latter is now a true conditional probability distribution, although not
corresponding to any specific site, giving the final result

(ðhjrÞ ¼ lim
N!1

N!1
X

i

PiðhjrÞ ¼ lim
N!1

N!1
X

i

h&ðh! Jiri!1Þijri¼r, ð38Þ

(ðhjrÞ ¼
X

r0

Z
dh0(ðh0jr0Þ

Z
dJ d" ~PðJ, "Þ&ðh! Jr0ÞP½r0jh0 þ "uþ Jr(: ð39Þ

Equation (39) is identical to (35) for '¼ 1. Expression (38) obeys causality, i.e. (ðhj/Þ
is independent of !ðtmaxÞ. It is reasonable to assume that for '¼ 1 there is only one
solution of (39) that obeys causality, and that non-causal solutions will be ruled out
by time boundary conditions. Thus we may for '¼ 1 identify (ðr, hÞ ¼ (ðhjrÞ.
Similar arguments underly the cavity approach in [17], from which (35) is recovered
upon substituting the characteristics of the one-dimensional chain.

5. Calculation of observables

To calculate the observables (20)–(21) we need the projection operator U(1). If we
make the reasonable assumption that for #> 0 the '¼ 1 eigenspace is not degenerate,
we may use (33), (34), Tr½Uð1Þ( ¼ 1, and (ðr, hÞ ¼ (ðhjrÞ to write

hr, h, ĥjUð1Þjr0, h0, ĥ0i ¼ )!1uRðr, h, ĥÞuLðr0, h0, ĥ0Þ

¼ 1

)
P½rjh(

Z
dxdx0(ðxjrÞ(ðx0jr0Þ

Z
d" ~Pð"Þ e

iĥ*ðh!x!"uÞ!iĥ0*x0

ð2%Þ2tm
,

ð40Þ
with

) ¼
X

r

Z
dh dĥ uRðr, h, ĥÞuLðr, h, ĥÞ

¼ ð2%Þ!tm
X

r

Z
d" ~Pð"Þ

Z
dx dx0P½rj"uþ xþ x0((ðxjrÞ(ðx0jrÞ: ð41Þ

Since (ðhjrÞ is independent of !ðtmÞ and P½rjh( is independent of h(tm), we can sum in
(41) over !ðtmÞ and integrate over h(tm) (in that order), resulting in the same
expression for ) but with the replacement tm ! tm ! 1. Further iteration of this
process leads to ) ¼ ð2%Þ!tm . Hence

hr, h, ĥjUð1Þjr0, h0, ĥ0i ¼ P½rjh(
Z

dx dx0(ðxjrÞ(ðx0jr0Þ

, ð2%Þ!tm
Z

d" ~Pð"Þeiĥ*ðh!x!"uÞ!iĥ
0*x0 : ð42Þ

We can now write the dynamical observables (20)–(22) in the following physically
transparent form (see Appendix A for details):

mðtÞ ¼
X

r

!ðtÞ
Z

dxdx0(ðxjrÞ(ðx0jrÞ
Z

d" ~Pð"ÞP½rj"uþ xþ x0(, ð43Þ
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Cðt, t0Þ ¼
X

r

!ðtÞ!ðt0Þ
Z

dx dx0(ðxjrÞ(ðx0jrÞ
Z

d" ~Pð"ÞP½rj"uþ xþ x0(, ð44Þ

Gðt, t0Þ ¼ #
n
Cðt, t0 þ 1Þ !

X

r

!ðtÞ
Z

dxdx0(ðxjrÞ(ðx0jrÞ

,
Z

d" ~Pð"ÞP½rj"uþ xþ x0( tanh½#ð" þ xðt0Þ þ x0ðt0ÞÞ(
o
: ð45Þ

6. Binary bonds and symmetrically distributed random fields

Our equations take a simpler form when the bonds are binary, i.e. for the choice
~PðJ, "Þ ¼ ~Pð"Þ½12 ð1þ *Þ&ðJ! 1Þ þ 1

2 ð1! *Þ&ðJþ 1Þ(, where * 2 ½!1, 1(. Insertion into
(39) shows that the dynamic order parameter can now be written as

(ðhjrÞ ¼
X

r0

!ðr0jrÞ&ðh! r0Þ, ð46Þ

!ðr0jrÞ ¼ lim
N!1

N!1
X

i

h&r0,Jiri!1ijri¼r, ð47Þ

with

!ðr0jrÞ ¼ 1

2
ð1þ *Þ

X

r00

!ðr00jr0Þ
Z

d" ~Pð"ÞP½r0jr00 þ "uþ r(

þ 1

2
ð1! *Þ

X

r00

!ð!r00j! r0Þ
Z

d" ~Pð"ÞP½!r0j"u! r00 ! r(: ð48Þ

If, furthermore, we choose random fields with ~Pð!"Þ ¼ ~Pð"Þ and unbiased
initial conditions p0ð!ð0ÞÞ ¼ 1

2, then
R
d" ~Pð"ÞP½!r0j"u! r0 ! r00( ¼

R
d" ~Pð"Þ,

P½r0j"uþ r0 þ r00(, and the operator in (39) of which we need eigenfunctions
commutes with the spin-flip operator ðF!Þðr0jrÞ ¼ !ð!r0j! rÞ. We then find that
!ð!r0j!rÞ ¼ !ðr0jrÞ, and the relatively simple equation

!ðr0jrÞ ¼
X

r00

!ðr00jr0Þ
Z

d" ~Pð"ÞP½r0j"uþ rþ r00(: ð49Þ

The formulae for the macroscopic observables can now also be simplified. If we use
the following identity, which follows directly from (46), (49),

Z
dxdx0(ðxjrÞ(ðx0jrÞ

Z
d" ~Pð"ÞP½rj"uþ xþ x0( ¼

X

r0

!ðrjr0Þ!ðr0jrÞ, ð50Þ

then we find mðtÞ ¼ 0 for all t, and

Cðt, t0Þ ¼
X

r

!ðtÞ!ðt0Þ
X

r0

!ðrjr0Þ!ðr0jrÞ, ð51Þ
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Gðt, t0Þ ¼ #
n
Cðt, t0 þ 1Þ !

X

r

!ðtÞ
X

r0r00

!ðr0jrÞ!ðr00jrÞ

,
Z

d" ~Pð"ÞP½rj"uþ r0 þ r00( tanh½#ð" þ !0ðt0Þ þ !00ðt0ÞÞ(
o
: ð52Þ

Equations (49), (51), (52) no longer depend on *, since for symmetric field
distributions and with Ji 2 f!1, 1g the observables C and G are invariant under
gauge transformations of the type !i ! $i!i, so the bonds can be transformed away.

For ~Pð"Þ ¼ 1
2 &ð" ! ~"Þ þ 1

2 &ð" þ ~"Þ, with ~" ) 0, we are studying the synchronous
dynamics random field Ising chain for which the statics was solved in [9]. If ~"4 2 the
dynamics close to T¼ 0 will be trivial. Each spin freezes into the direction dictated by
its external field, and the T¼ 0 order parameter reduces to

!ðr0jrÞ ¼ 1

4

"Ytm

t¼1
&!0ðtÞ,1 þ

Ytm

t¼1
&!0ðtÞ,!1

#
: ð53Þ

For ~"5 2 the dynamics remains non-trivial. Since P½rjh( and !ðr0jrÞ obey causality,
numerical solution of Equations (49), (51), (52) is for binary fields quite manage-
able.2 Examples are shown in Figures 1 and 2, and compared to data from
simulations of chains with N ¼ 106 spins. We observe that Cðt, t0Þ ¼ 0 for t! t0 odd if
~Pð"Þ ¼ &ð"Þ; this is a consequence of a further symmetry of the eigenvalue problem
(49), as is shown in Appendix B. For non-zero fields this symmetry is broken, but
one still retains a prominent difference between correlations at odd versus even time
separations. For those times for which solution of (49), (51), (52) is feasible, i.e.
t, t0 + 10, the agreement with simulation data is seen to be perfect.

7. Beyond single-site observables

Let us finally turn to the calculation of observables that involve multiple sites. It is
not difficult to transform the eigenvalue problem for M into an equivalent one
involving a self-adjoint transfer operator, with the same spectrum. This implies that
all eigenvalues ' of M must be real. We note that, unlike the maximum eigenvalue of
(35), the non-leading eigenvalues may well depend on the upper time tm, so we will
from now on write M(tm) and Uð'jtmÞ instead of M and U('). Since our formulae for
observables cannot depend on which choice is made, provided tm is equal to or
exceeding the largest time argument in the observable, we can combine (17), (18), the
expansion MðtÞ ¼

P
' 'Uð'jtÞ, and the property Tr½Uð1jtÞ( ¼ 1. This allows us to

define and work out the two-site correlation function, with i< j:

~Cijðt, tÞ ¼ lim
N!1

n
h!iðtÞ!j ðtÞi! h!iðtÞih!j ðtÞi

o

¼ Tr½Uð1jtÞSðtÞMj!iðtÞSðtÞ( ! Tr½SðtÞUð1jtÞ(Tr½SðtÞUð1jtÞ(
¼
X

'ðtÞ6¼1
'j!iðtÞTr½Uð1jtÞSðtÞUð'jtÞSðtÞ(

þ Tr½Uð1jtÞSðtÞUð1jtÞSðtÞ( ! Tr½SðtÞUð1jtÞ(Tr½SðtÞUð1jtÞ(: ð54Þ
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Figure 1. Correlations Cðt, t0Þ calculated via numerical solution of (49) (for t, t0 + 10, circles)
versus correlations measured in numerical simulations with N ¼ 106 (crosses). Here T¼ 0.1
and ~PðJ, "Þ ¼ 1

2 &ð"Þ½*&ðJ! 1Þ þ ð1! *Þ&ðJþ 1Þ( (which can be mapped onto the non-disordered
Ising chain). Left: values of Cð0, tÞ, i.e. overlap with the initial state, plotted versus t (which
decays as a power law). Right: correlations Cðt, t0Þ plotted versus the ratio t=t0, for
t, t0 ¼ 1, . . . , 10. Dots show the values of Cðt, t0Þ for larger times 50 + t + t0 + 100, as measured
in simulations, showing the typical non-equilibrium behaviour Cðt, t0Þ - Cðt=t0Þ of the ageing
regime. Upper branches: even values of t! t0; lower branches: odd values of t! t0.
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Figure 2. Correlations Cðt, t0Þ calculated via numerical solution of (49) (t, t0 + 10, circles)
versus correlations measured in numerical simulations with N ¼ 106 (crosses). Here T¼ 0.1
and ~PðJ, "Þ ¼ 1

4 ½&ð" !
1
2Þ þ &ð" þ

1
2Þ(½*&ðJ! 1Þ þ ð1! *Þ&ðJþ 1Þ(, i.e. weak random fields. Left:

values of Cð0, tÞ, i.e. overlap with the initial state, plotted versus t. Right: correlations plotted
versus the ratio t=t0, for t, t0 ¼ 1, . . . , 10. Dots show the values of Cðt, t0Þ for larger times
50 + t + t0 + 100, as measured in simulations. Upper branches: even values of t! t0; lower
branches: odd values of t! t0. The system stabilises into a meta-stable state on the time-scales
considered, from which it takes significantly more time to escape.
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We note that if the correlation length in the chain is finite, then

Tr½Uð1jtÞSðtÞUð1jtÞSðtÞ( ! Tr½SðtÞUð1jtÞ(Tr½SðtÞUð1jtÞ(
¼ lim

K!1
Tr½Uð1jtÞSðtÞMKðtÞSðtÞ( ! Tr½SðtÞUð1jtÞ(Tr½SðtÞUð1jtÞ(

¼ lim
N!1

1

N2

X

rs

'
h!rðtÞ!sðtÞi! h!rðtÞih!sðtÞi

(

¼ lim
N!1

1

N2

X

rs

'
h!rðtÞih!sðtÞi! h!rðtÞih!sðtÞi

(

¼ lim
N!1

)!
N!1

X

r

!rðtÞ
$!
N!1

X

s

!sðtÞ
$
!
!
N!1

X

r

!rðtÞ
$!
N!1

X

s

!sðtÞ
$*

¼ 0 ð55Þ

(since the overall magnetisation was assumed to be self-averaging). Hence

~Cijðt, tÞ ¼
X

'ðtÞ6¼1
'j!iðtÞTr½Uð1jtÞSðtÞUð'jtÞSðtÞ(: ð56Þ

If not only 'max ¼ 1 but also the second largest eigenvalue '2(t) is isolated, then the
evolving correlation length +(t) in the chain can be calculated via

1=+ðtÞ ¼ ! lim
L!1

1

L
log

"
N!1

X

i

~Ci,iþLðt, tÞ
#

¼ ! lim
L!1

1

L
log

X

'ðtÞ 6¼1
'LðtÞTr½Uð1jtÞSðtÞUð'ðtÞjtÞSðtÞ(

¼ ! log '2ðtÞ: ð57Þ

So the present transfer operator picture gives a transparent (although not necessarily
trivial) route towards evolving correlation lengths. It is not immediately clear
whether and how such formulae could be extracted from the cavity formalism [17].

8. Discussion

We have shown that application of the elegant generating functional analysis method
of [16] to disordered Ising chains (with random fields and/or random bonds) leads to
a dynamical version of the familiar transfer matrix formalism used in equilibrium
studies, with a transfer operator whose arguments are spin paths, field paths and
conjugate field paths. Under weak assumptions (e.g. isolated largest eigenvalue in the
spectrum of the transfer operator) one can take the thermodynamic limit and find an
exact self-consistency equation for a dynamical order parameter, from which
disorder-averaged single-site correlation and response functions can be calculated
explicitly. The latter equation can also be derived from cavity arguments [17], but
without the appealing connection with the equilibrium transfer matrix formalism. As
expected, solving the dynamical order parameter equation is still non-trivial. In this
paper we have focused on establishing the principles of the method, and we therefore
limited ourselves to numerical solution, for short times only. In a future study we
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hope to take further steps, and calculate, e.g. equilibrium forms for the order
parameter (using the parallel dynamics FDT relation) as well as the form of the
solution in the ageing regime. We have also limited ourselves here to investigating
those properties than can be extracted from the eigenvectors of the operator that
correspond to the largest eigenvalue, which implies calculating single-site objects
only. However, in analogy with the usual procedure for equilibrium transfer matrices
one can also calculate multi-site quantities (such as evolving correlation lengths)
from the second largest eigenvalue of the transfer operator. Whether and how the
same could be done within the cavity formalism of [17] is not obvious. Finally, our
choice to consider parallel dynamics is not critical for the feasibility of the proposed
formalism. In the case of sequential (Glauber) dynamics one will find a very similar
structure, but with transfer operators that have continuous time paths rather than
discrete time paths as arguments.
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Notes

1. If the spectrum of M has continuous parts, the eigenvalue sum becomes an integral.
2. We interpret (49) as the fixed-point condition of a map !nþ1 ¼ ð1! ,Þ!n þ ,F!n (where
F denotes the operator in the right-hand side of (49)), and iterate this map until
j!nþ1 !!nj no longer decreases, upon which , is reduced and the process repeated until a
solution of (49) is found. The complexity of solving (49) numerically scales with the
dimension of !, i.e. as -2tm .
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Appendix A. Formulae for magnetisation, correlations, and response function

Here we give details of the derivation of formulae (43)–(45) from (20)–(22). Using Tr½Uð1Þ( ¼ 1
and (42) we can immediately simplify (20), (21) to

mðtÞ ¼
X

r

!ðtÞ
Z

dxdx0(ðxjrÞ(ðx0jrÞ
Z

d" ~Pð"ÞP½rj"uþ xþ x0(, ðA1Þ

Cðt, t0Þ ¼
X

r

!ðtÞ
Z

dxdx0(ðxjrÞ(ðx0jrÞ
Z

d" ~Pð"ÞP½rj"uþ xþ x0(: ðA2Þ

To evaluate (22) we again use Tr½Uð1Þ( ¼ 1 and (42), followed by the simple identity ĥðt0Þeiĥ*h

¼ !i@eiĥ*h=@hðt0Þ and integration by parts over h(t). This gives

Gðt, t0Þ ¼
X

r

!ðtÞ
Z

dxdx0(ðxjrÞ(ðx0jrÞ
Z

dh
@P½rjh(
@hðt0Þ

Z
d" ~Pð"Þ&ðh! x! x0 ! "uÞ: ðA3Þ

Finally we use

@P½rjh(
@hðt0Þ

¼ P½rjh( @ logP½rjh(
@hðt0Þ

¼ #P½rjh(
h
!ðt0 þ 1Þ ! tanh½#hðt0Þ(

i
ðA4Þ

and obtain

Gðt, t0Þ ¼ #
X

r

!ðtÞ
Z

dxdx0(ðxjrÞ(ðx0jrÞ
Z

d" ~Pð"ÞP½rj"uþ xþ x0(

,
h
!ðt0 þ 1Þ ! tanh½#ð" þ xðt0Þ þ x0ðt0ÞÞ(

i

¼ #
n
Cðt, t0 þ 1Þ !

X

r

!ðtÞ
Z

dx dx0(ðxjrÞ(ðx0jrÞ

,
Z

d" ~Pð"ÞP½rj"uþ xþ x0( tanh½#ð" þ xðt0Þ þ x0ðt0ÞÞ(
o
: ðA5Þ

Appendix B. Vanishing autocorrelations at odd temporal distance

For ~Pð"Þ ¼ &ð"Þ Equation (60) simplifies to

!ðr0jrÞ ¼
X

r00

!ðr00jr0ÞP½r0jrþ r00(: ðB1Þ

We now define the operator F̂ as ðF̂!Þðr0jrÞ ¼ !ðF̂þr0jF̂!rÞ, in which F̂. denote commuting
spin-flip operators that act on spin states at even (!) or at odd (þ) times only:

ðF̂þrÞðtÞ ¼ ð!1Þt!ðtÞ, ðF̂!rÞðtÞ ¼ ð!1Þtþ1!ðtÞ: ðB2Þ
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Clearly F̂þF̂! ¼ !1 and ðF̂þÞ2 ¼ ðF̂!Þ2 ¼ 1. We will prove that ! is invariant under F̂, and
that this causes Cðt, t0Þ to be zero whenever t! t0 is odd. We note that the function (24) is
invariant under F̂, since

P½F̂þrjF̂!h( ¼ pðð!1Þ0!ð0ÞÞ
Ytm!1

t¼0

e#ð!1Þ
tþ1!ðtþ1Þð!1Þtþ1hðtÞ

2 cosh½#ð!1Þtþ1hðtÞ(

¼ pð!ð0ÞÞ
Ytm!1

t¼0

e#!ðtþ1ÞhðtÞ

2 cosh½#hðtÞ(
¼ P½rjh(: ðB3Þ

From this it follows upon transforming both sides of (B1) that

!ðF̂þr0jF̂!rÞ ¼
X

r00

!ðr00jF̂þr0ÞP½F̂þr0jF̂!rþ r00(

¼
X

r00

!ðF̂!r00jF̂þr0ÞP½r0jrþ r00(

¼
X

r00

!ððF̂þÞ2F̂!r00jðF̂!Þ2F̂þr0ÞP½r0jrþ r00(

¼
X

r00

!ð!F̂þr00j! F̂!r0ÞP½r0jrþ r00(

¼
X

r00

!ðF̂þr00jF̂!r0ÞP½r0jrþ r00(: ðB4Þ

In the last step, we used the previously established symmetry !ð!r0j!rÞ ¼ !ðr0jrÞ. Hence, if
! is a solution of (B1) then so is F̂!; since the solution of (B1) is assumed to be unique, we
deduce that F̂! ¼ !. Now

Cðt, t0Þ ¼
X

r

!ðtÞ!ðt0Þ
X

r0

!ðrjr0Þ!ðr0jrÞ

¼
X

r

!ðtÞ!ðt0Þ
X

r0

!ðF̂þrjF̂!r0Þ!ðF̂þr0jF̂!rÞ

¼
X

r

!ðtÞ!ðt0Þ
X

r0

!ðF̂þrjr0Þ!ð!r0jF̂!rÞ

¼
X

r

ð!1Þt!ðtÞð!1Þt
0
!ðt0Þ

X

r0

!ðrjr0Þ!ðr0jrÞ

¼ ð!1Þtþt
0
Cðt, t0Þ: ðB5Þ

Therefore, Cðt, t0Þ must vanish if t! t0 is odd, as claimed.
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