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Abstract
Overfitting, which happens when the number of parameters in a model is too 
large compared to the number of data points available for determining these 
parameters, is a serious and growing problem in survival analysis. While 
modern medicine presents us with data of unprecedented dimensionality, 
these data cannot yet be used effectively for clinical outcome prediction. 
Standard error measures in maximum likelihood regression, such as p-values 
and z-scores, are blind to overfitting, and even for Cox’s proportional hazards 
model (the main tool of medical statisticians), one finds in literature only 
rules of thumb on the number of samples required to avoid overfitting. In this 
paper we present a mathematical theory of overfitting in regression models 
for time-to-event data, which aims to increase our quantitative understanding 
of the problem and provide practical tools with which to correct regression 
outcomes for the impact of overfitting. It is based on the replica method, a 
statistical mechanical technique for the analysis of heterogeneous many-
variable systems that has been used successfully for several decades in 
physics, biology, and computer science, but not yet in medical statistics. We 
develop the theory initially for arbitrary regression models for time-to-event 
data, and verify its predictions in detail for the popular Cox model.
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1. Introduction

In the simplest possible scenario, survival analysis is concerned with data of the following 
form. We consider a cohort of N individuals, each of whom are at risk of a specified irrevers-
ible event, such as the onset of a given disease or death. For each individual i in this cohort 
we are given p specific measurements zi = (zi1, . . . , zip) (the covariates) which were taken at 
a baseline time t = 0, as well as the time ti > 0 at which for individual i we either observed 
the irreversible event, or we ceased our observation without having observed the event yet (the 
latter case is called ‘censoring’). More complex scenarios could involve e.g. having multiple 
distinct risk types, such as distinct causes of death, or interval censoring, where rather than ti 
itself, one is given an interval that contains ti. The theory developed in this paper can be gener-
alised without serious difficulty to include such extensions, but in the interest of transparency 
we will focus for now strictly on the simplest case.

The aim of survival analysis is regression, i.e. to use our data for detecting and quantify-
ing probabilistic patterns (if any) that relate an individual’s failure time t to their covariates 
z. Such patterns may allow us to predict individual patients’ clinical outcomes, distinguish 
between high-risk and low-risk patients, reveal general disease mechanisms, or design new 
data-driven therapeutic interventions (by changing the values of modifiable covariates). For 
general reviews of the considerable survival analysis literature we refer to textbooks such as 
[1–4]5. Being able to use the extracted patterns to predict clinical outcomes for unseen patients 
is the only reliable test of whether our regression results represent true knowledge. Accurate 
prediction requires that we use as much of the available covariate information as possible, so 
our focus must be on multivariate regression methods.

Most multivariate survival analysis methods are based on postulating a suitable and plau-
sible parametrisation of the covariate-conditioned event time distribution, whose parameters 
are estimated from the data via either the maximum likelihood protocol (ML), or (following 
Bayesian reasoning) via maximum a posteriori probability (MAP). The most popular para-
metrisation is undoubtedly the proportional hazards model of Cox [5], which uses ML infer-
ence, and assumes the event time distribution to be of the so-called proportional hazards form 
p(t|z) = − d

dt exp[− exp(β · z)Λ(t)]. MAP versions of [5] are the so-called ‘penalised Cox’ or 
‘ridge’ regression models (with Gaussian parameter priors), see e.g. [6, 7]. More complex par-
ametrisation proposals, such as frailty or random effects models [8–11] or latent class models 
[12], still tend to have proportional hazards type formulae as their building blocks. In all such 
models the number of parameters is always larger than or equal to the number p of covariates. 

5 Non-medical applications of survival analysis include e.g. the study of the time to component failure in manufac-
turing, or of the duration of unemployment in economics.
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Hence, to avoid overfitting they can be used safely only when N ≫ p. This limitation was 
harmless in the 1970s and 1980s, when many of the currently used models were devised, and 
where one would typically have datasets with p ∼ 102 at most. For the data of post-genome 
medicine, however, where we regularly have p ∼ 104−6, it poses a serious problem which has 
for instance prevented us from using genomic covariates in rigorous multivariate regression 
protocols, forcing us instead to work with ‘gene signatures’.

Overfitting in survival analysis models [14, 15] can be visualized effectively by combining 
regression with cross-validation. For the Cox model, for instance, one can use the inferred 
association parameters β of [5] in combination with Breslow’s [16] estimator for the base 
hazard rate (which is the canonical estimator for [5]), to predict whether an event will have 
happened by a given cutoff time, and compare the fraction of correct predictions in the train-
ing set (the data used for regression) to those in a validation set (the unseen data). When 
drawn as functions of the number of covariates used, the resulting curves typically exhibit the 
standard fingerprints of overfitting [17, 18]; see figure 1. Simulations with synthetic data [19] 
showed that the optimal number of covariates in Cox regression (see arrows in figure 1) tends 
to be roughly proportional to the number of samples N. Given this observed phenomenology, 
it seems vital before doing multivariate regression to have a tool for estimating the minimum 
number of samples or events needed to avoid the overfitting regime. To our knowledge, there 
is no theory in the literature yet for predicting this number, not even for the Cox model [5]. 
One finds only rules of thumb—e.g. the number of failure events must exceed 10 times the 
number of independent covariates—and empirical bootstrapping protocols, often based on 
relatively small scale simulation data [19–21]. This situation is not satisfactory.

To increase our intuition for the problem, we first explore via simple simulation studies the 
relation between inferred and true parameters in Cox’s model [5]. The parameters of [5] are 
the vector β = (β1, . . . ,βp) of regression coefficients (where p is the number of covariates), 
and the base hazard rate λ(t) = dΛ(t)/dt . We generated association parameters and covari-
ates randomly from zero-average Gaussian distributions, and corresponding synthetic survival 
data using Cox’s model without censoring (so all N samples correspond to failure events), 
for different base hazard rates. To understand the nature of the overfitting-induced regression 
errors we plotted the p pairs (βµ, β̂µ) as points in the plane, where βµ and β̂µ are the true and 
inferred association parameters of covariate µ, respectively, calculated via the recipes of [5]. 
This resulted in scatterplots as shown in figure 2. Simulations were done for different values 
of the ratio p/N , with multiple independent runs such that the number of points in each panel 
is identical. The true association parameters were drawn independently from a zero-average 
Gaussian distribution with ⟨β2

µ⟩ = 0.25 for all µ. Perfect regression would imply finding all 
points to lie on the diagonal. Rather than a widening of the variance (as with finite sample size 
regression errors) overfitting-induced errors are somewhat surprisingly seen to manifest them-
selves mainly as a reproducible tilt of the data cloud, which increases with p/N , and implies 
a consistent over-estimation of associations: both positive and negative βµ will always be 
reported as more extreme than their true values. These observed errors in association param-
eters appear to be independent of the form of the true base hazard rate. Similarly, we show in 
figure 3 the inferred integrated base hazard rates Λ̂(t) versus time (solid lines), together with 
the true values (dashed), which again shows consistent and reproducible overfitting errors. A 
quantitative theory of overfitting that can predict both the observed tilt and width of the data 
clouds of figure 2 and the deformed inferred hazard rates of figure 3 would enable us to correct 
the inferred parameters of the Cox model for overfitting, and thereby enable reliable regres-
sion up to hitherto forbidden ratios of p/N .

A C C Coolen et alJ. Phys. A: Math. Theor. 50 (2017) 375001
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There are mathematical obstacles to the development of a theory of overfitting in survival 
analysis, which probably explain why it has so far remained an open problem. First, unlike 
discriminant analysis, it is not immediately clear which error measure to study when out-
comes to be predicted are event times. Second, in most survival analysis models (including 
Cox regression) the estimated parameters are to be solved from coupled transcendental equa-
tions, and cannot therefore be written in explicit form. Third, in the overfitting regime one 
will by definition find even for large N that the inferred parameters depend on the realisation 
of the data set, while at the more macroscopic level of prediction accuracy there is no such 
dependence. It is thus not a priori clear which quantities to focus on in analytical studies of 
the regression process, and at which stage in the calculation (if any) averages over possible 
realisations of the data set may be performed safely.

Our present approach to the problem consists of distinct stages, each removing a spe-
cific obstacle, and this is reflected in the structure of our paper. We adapt to time-to-event 
regression the strategy proposed and executed several decades ago for binary classifiers in the 
groundbreaking paper by Gardner [22]. We first translate the problem of modelling overfit-
ting into the calculation of a specific information-theoretic generating function, from which 
we can extract the information we need. Next we use Laplace’s argument to eliminate the 

Figure 1. Illustration of overfitting in Cox-type regression. A breast cancer data set [13] 
containing N = 309 samples (129 with recorded events, 180 censored), with clinical 
and immunological covariates, and disease relapse chosen as event time, was randomly 
divided into training and validation sets (of roughly equal sizes). L2-regularised Cox 
regression was used to infer regression coefficients and base hazard rates from the 
training set (via Breslow’s formula [16]), upon which the model was used to predict 
survival at time t = 8 years, for the samples in the training set and for those in the 
validation set. The fractions of correct predictions are FT and FV, respectively. This was 
repeated multiple times, initially with all covariates, and following repeated iterative 
removal of the last relevant covariate after each regression. The resulting curves exhibit 
the standard fingerprints of overfitting: initially the validation performance improves as 
the number p of retained covariates increases, up to a critical point (here around p = 6, 
see arrows), followed by deterioration as p increases further.

A C C Coolen et alJ. Phys. A: Math. Theor. 50 (2017) 375001
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maximisation over model parameters that comes with all ML methods, which is equivalent to 
writing the ground state energy of a statistical mechanical system as the zero temperature limit 
of the free energy. The third stage is devoted to making the resulting calculation of the generat-
ing function feasible, using the so-called replica method. This method has an impressive track 
record of several decades in the analysis of complex heterogeneous many-variable systems 
in physics [23–27], computer science [22, 28], biology [29–31], and economics [32, 33], 
and enables us to carry out analytically the average of the generating function over all pos-
sible realisations of the data set. Finally we exploit steepest descent integration for N → ∞, 
leading to the identification of the ‘natural’ macroscopic order parameters of the problem, 
for which we derive closed equations within the replica symmetric (RS) ansatz. Some tech-
nical arguments are placed in appendices, to improve the flow of the paper. We develop our 
methods initially for generic time-to-event regression models, and then specialise to the Cox 
model. The final RS equations obtained for the Cox model involve a small number of scalar 
order parameters, from which we can compute the link between true and inferred regression 
parameters, and the inferred base hazard rate. The functional saddle point equation for the 
base hazard rate is rather nontrivial; while we can calculate the asymptotic form of its solution 
analytically, we limit ourselves mostly to a variational approximation, which already turns out 
to be quite accurate. We close with a discussion of our results, their implications and applica-
tions, and avenues for future work.

Figure 2. Inferred association parameters (vertical axis) versus true association 
parameters (horizontal axis) for synthetic survival data generated according to the Cox 
model, and subsequently analysed with the Cox model. Covariates and true association 
parameters were drawn randomly from zero-average Gaussian distributions. In all cases 
N = 400, ⟨β2

µ⟩ = 0.25 for all µ, and experiments were repeated such that the total 
number of points in each panel is identical. Top row: time-independent base hazard rate 
λ(t) = 1. Bottom row: time-dependent base hazard rate λ(t) = a/

√
t  (dashed), with 

a > 0 chosen such that the average event time is ⟨t⟩ = 1. The errors in the association 
parameters induced by overfitting are more dangerous than finite sample size errors, 
since they mainly take the form of a consistent bias and therefore cannot be ‘averaged 
out’. Moreover, they appear to be independent of the true base hazard rate.

A C C Coolen et alJ. Phys. A: Math. Theor. 50 (2017) 375001
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2. Overfitting in maximum likelihood models for survival analysis

2.1. Definitions

We assume we have simple time-to-event data D of the standard type, consisting of N inde-
pendently drawn samples i = 1 . . .N , with just one active risk and no censoring. Each sample 
consists of a covariate vector zi ∈ IR p, drawn independently from a distribution P(z), and an 
associated time to event ti ∈ [0,∞), drawn from P(t|z,θ⋆):

D = {(z1, t1), . . . , (zN , tN)}. (1)

Here P(t|z,θ⋆) describes a parametrised time-generating model, with q unknown real-valued 
parameters collected in a vector θ⋆ ∈ IRq that we seek to estimate from the data D. We are not 
interested in estimating P(z), so we take the covariate vectors {z1, . . . , zN} as given. The data 
probability for each parameter choice θ is

P(D|θ) =
N∏

i=1

P(ti|zi,θ). (2)

We next define the empirical distribution of covariates and event times, given the observed 
data:

P̂(t, z|D) =
1
N

N∑

i=1

δ(t − ti)δ(z − zi). (3)

This allows us to write

Figure 3. Inferred integrated base hazard rates Λ̂(t) =
∫ t

0 dt′ λ̂(t′) (solid curves, 
averaged over multiple experiments) for synthetic survival data, generated and 
subsequently analysed with the Cox model. Covariates and true association parameters 
were drawn randomly from zero-average Gaussian distributions. In all cases N = 400, 
⟨β2

µ⟩ = 0.25 for all µ, and p/N ∈ {0.05, 0.15, 0.25, 0.35, 0.45, 0.55} (lower to upper 
solid curves). Left: data generated with λ(t) = 1 (dashed). Right: data generated with 
λ(t) = a/

√
t  (dashed), with a > 0 chosen such that the average event time is ⟨t⟩ = 1. 

The errors induced by overfitting again take the form of a consistent bias: for very short 
time the base hazard rate is always under-estimated, whereas for large times it is always 
over-estimated.

A C C Coolen et alJ. Phys. A: Math. Theor. 50 (2017) 375001
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1
N

logP(D|θ) =
∫

dtdz P̂(t, z|D) logP(t|z,θ)

=

∫
dtdz P̂(t, z|D) log

( P(t|z,θ)
P̂(t|z,D)

)

+

∫
dtdz P̂(t, z|D) log P̂(t|z,D)

= − H(t|z,D)− D(P̂D||Pθ)

 (4)

with the conditional differential Shannon entropy of the event time distribution, and the 
Kullback–Leibler distance [34] between the empirical distribution P̂(t|z,D) and the parame-
trised form P(t|z,θ):

H(t|z,D) = −
∫

dz P̂(z|D)

∫
dt P̂(t|z,D) log P̂(t|z,D) (5)

D(P̂D||Pθ) =

∫
dz P̂(z|D)

∫
dt P̂(t|z,D) log

( P̂(t|z,D)

P(t|z,θ)

)
. (6)

The parameters θ estimated via the ML recipe are those that maximise P(D|θ). According to 
(4) they minimise the Kullback–Leibler distance D(P̂D||Pθ) between the empirical covariate-
conditioned event time distribution and the parametrised event time distribution with param-
eter values θ:

θML = argminθ D(P̂D||Pθ). (7)

If N → ∞ for fixed p and q, the law of large numbers guarantees that limN→∞ P̂(t|z,D) =

P(t|z,θ⋆) (in a distributional sense), and hence ML regression will indeed estimate the param-
eters θ asymptotically correctly, provided the chosen paramerisation is unambiguous:

lim
N→∞

θML = argminθ D(Pθ⋆ ||Pθ) = θ⋆. (8)

In this paper, however, we focus on the regime of large datasets with high-dimensional covari-
ate and parameter vectors where overfitting occurs, namely p, q = O(N) and N → ∞. Here 
P̂(t|z,D) no longer converges to P(t|z,θ⋆) for N → ∞ in any mathematical sense, the  identity 
(8) is therefore violated, and minimising D(P̂D||Pθ) as per the ML prescription is no longer 
appropriate. This is the information-theoretic description of the overfitting phenomenon in 
survival analysis.

2.2. An information-theoretic measure of under- and overfitting

Maximum likelihood regression algorithms report those parameters θ for which P(t, z|θ) is as 
similar as possible to the empirical distribution P̂(t|z,D), as opposed to the true distribution 
P(t|z,θ⋆) from which the data D were generated. The optimal outcome of regression is for 
the inferred parameters to be identical to the true ones, i.e. to find argminθ D(P̂D||Pθ) = θ⋆. 
We therefore define

E(θ⋆,D) = min
θ

D(P̂D||Pθ)− D(P̂D||Pθ⋆)

= min
θ

{ 1
N

N∑

i=1

log
[P(ti|zi,θ⋆)

P(ti|zi,θ)

]}
.

 (9)

A C C Coolen et alJ. Phys. A: Math. Theor. 50 (2017) 375001
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This allows us to interpret the value of E(θ⋆,D) as a measure of ML regression performance:

E(θ⋆,D) > 0 : underfitting (10)

E(θ⋆,D) = 0 : optimal parameter estimation (11)

E(θ⋆,D) < 0 : overfitting. (12)

Optimal regression algorithms would reduce D(P̂D||Pθ) until D(P̂D||Pθ) = D(P̂D||Pθ⋆) and 
then stop. Maximum likelihood regression will not do this; if it can reduce the Kullback–
Leibler distance further it will do so, and thereby cause overfitting. For N → ∞ we expect 
E(θ⋆,D) to depend on the data D only via P(z) and θ⋆, this is the fundamental assumption 
behind any regression. It allows us to focus on the average of E(θ⋆,D) over all realisations of 
the data, given P(z) and θ⋆:

E(θ⋆) =
〈
min
θ

{ 1
N

N∑

i=1

log
[P(ti|zi,θ⋆)

P(ti|zi,θ)

]}〉

D
 (13)

in which

⟨F(t1, . . . , tN ; z1, . . . , zN)⟩D =

∫ N∏

i=1

[
dtidzi P(zi)P(ti|zi,θ⋆)

]

× F(t1, . . . , tN ; z1, . . . , zN).

 

(14)

Evaluating E(θ⋆) analytically for N → ∞ is the focus of this paper. Clearly, if the relevant 
minimum over θ corresponds to the true value θ⋆ for all D, then E(θ⋆) = 0.

2.3. Analytical evaluation of the average over data sets

Working out (13) analytically for large N requires first that we deal with the minimisation 
over θ. This can be done by converting the problem into the calculation of the ground state 
energy for a statistical mechanical system with degrees of freedom θ ∈ IRq and Hamiltonian6 
H(θ) = NE(θ):

E(θ⋆) = lim
γ→∞

Eγ(θ
⋆) (15)

Eγ(θ
⋆) = − 1

N
∂

∂γ

〈
log

∫
dθ e

−γ
∑N

i=1 log

[
P(ti|zi ,θ⋆)
P(ti|zi ,θ)

]
〉

D

= − 1
N

∂

∂γ

〈
log

∫
dθ

N∏

i=1

[ P(ti|zi,θ)
P(ti|zi,θ⋆)

]γ〉

D
.

 (16)

For finite γ, the quantity Eγ(θ
⋆) can be interpreted as the average result of a stochastic mini-

misation, based on carrying out gradient descent on the function − logP(D|θ), supplemented 
by a Gaussian white noise with variance proportional to γ−1.

The remaining obstacle is the logarithm in (16), which prevents the average over all data 
sets D from factorising over the samples. This we handle using the so-called replica method, 
which is based on the identity ⟨log Z⟩ = limn→0 n−1 log⟨Zn⟩, and to our knowledge has not 
yet been applied in survival analysis. In the replica method the average ⟨Zn⟩ is carried out for 

6 The rescaling with N of the Hamiltonian is done in anticipation of subsequent limits.

A C C Coolen et alJ. Phys. A: Math. Theor. 50 (2017) 375001
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integer n, and the limit n → 0 is taken at the end of the calculation via analytical continuation. 
Application to (16) leads us after some simple manipulations to a new expression in which the 
average over data sets does factorise over samples:

Eγ(θ
⋆) =− ∂

∂γ
lim
n→0

1
Nn

log
〈{∫

dθ
N∏

i=1

[ P(ti|zi,θ)
P(ti|zi,θ⋆)

]γ}n〉

D

=− ∂

∂γ
lim
n→0

1
Nn

log

∫
dθ1 . . . dθn

〈 N∏

i=1

n∏

α=1

[P(ti|zi,θα)

P(ti|zi,θ⋆)

]γ〉

D

=− ∂

∂γ
lim
n→0

1
Nn

log

∫
dθ1 . . . dθn

{∫
dzdt P(z)P(t|z,θ⋆)

×
n∏

α=1

[P(t|z,θα)

P(t|z,θ⋆)

]γ}N
.

 

(17)

The average over data sets has now been done, and we are left with a completely general 
explicit expression for E(θ⋆) in terms of the covariate statistics P(z) and the assumed parame-
trised data generating model P(t|z,θ). We will now work out and study this expression for 
Cox’s proportional hazards model [5] with statistically independent zero-average Gaussian 
covariates.

2.4. Application to Cox regression

In Cox’s method [5] the model parameters are a base hazard rate λ(t) ! 0 (with t ! 0) and 
a vector β ∈ IR p of regression coefficients. The assumed event time statistics are then of the 
following form:

P(t|z,β,λ) = λ(t)eβ·z/√p−exp(β·z/√p)Λ(t), Λ(t) =
∫ t

0
ds λ(s). (18)

The factors 
√p only induce an irrelevant scaling factor that will make it easier to take the limit 

p → ∞. In fact, for large p it is inevitable that the typical association parameter in the Cox 
model will scale as O( p− 1

2 ), since otherwise one would not find finite nonzero event times.
For simplicity we assume that the covariates are distributed according to 

P(z) = (2π)−p/2 exp(− 1
2 z2). This restriction of our analysis to uncorrelated covariates is no 

limitation, since for the Cox model one can always obtain, via a simple mapping, the regres-
sion results for data with correlated covariates from those obtained for uncorrelated covari-
ates. This is demonstrated in appendix A.

For the Cox model our general result (17) takes the following form, involving ordinary 
integration over n-fold replicated vectors βα and functional integration over n-fold replicated 
base hazard rates λα:

Eγ(β
⋆,λ⋆) =− ∂

∂γ
lim
n→0

1
Nn

log

∫
{dλ1 . . . dλn}

∫
dβ1 . . . dβn

×
{∫

dzdt P(z)P(t|z,β⋆,λ⋆)
n∏

α=1

[P(t|z,βα,λα)

P(t|z,β⋆,λ⋆)

]γ}N
.

 

(19)

To enable efficient further analysis we define the short-hands

p(t|ξ,λ) = λ(t)eξ−exp(ξ)
∫ t

0 ds λ(s) (20)

A C C Coolen et alJ. Phys. A: Math. Theor. 50 (2017) 375001
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p(y|β0, . . . ,βn) =

∫
dz P(z)

n∏

α=0

δ
[
yα − βα · z

√p

]
 (21)

and the n + 1-dimensional vector y = (y0, . . . , yp). In addition we rename (β⋆,λ⋆) = (β0,λ0), 
so that

Eγ(β
0,λ0) =− ∂

∂γ
lim
n→0

1
Nn

log

∫
{dλ1 . . . dλn}

∫
dβ1 . . . dβn

×
{∫

dy p(y|β0, . . . ,βn)

∫
dt p(t|y0,λ0)

n∏

α=1

[p(t|yα,λα)

p(t|y0,λ0)

]γ}N
.

 

(22)

All {yα} are linear combinations of Gaussian random variables, so also p(y|β0, . . . ,βn) will 
be Gaussian (even for most non-Gaussian covariates this would still hold for large p due to the 
central limit theorem), giving

p(y|β0, . . . ,βn) =
e− 1

2 y·C−1[{β}]y
√
(2π)n+1DetC[{β}]

 (23)

in which the entries of the (n + 1)× (n + 1) covariance matrix C[{β}] are

Cαρ[{β}] =
1
p

∫
dz P(z)(βα · z)(βρ · z) =

1
p
βα · βρ. (24)

We introduce integrals over δ-distributions to transport variables to more convenient places, 
by substituting for each pair (α, ρ):

1 =

∫
dCαρ δ

[
Cαρ − Cαρ[{β}]

]
=

∫
dCαρdĈαρ

2π/p
eipĈαρ

[
Cαρ−Cαρ[{β}]

]
. (25)

We then obtain, after some simple manipulations,

Eγ(β
0,λ0) =− ∂

∂γ
lim
n→0

1
Nn

log

∫
{dλ1 . . . dλn}

∫
dCdĈ eip

∑n
αρ=0 ĈαρCαρ

(2π/p)(n+1)2

×
{∫

dy e− 1
2 y·C−1y

√
(2π)n+1DetC

∫
dt p(t|y0,λ0)

n∏

α=1

[p(t|yα,λα)

p(t|y0,λ0)

]γ}N

×
∫

dβ1 . . . dβn e−i
∑n

αρ=0 Ĉαρβ
α·βρ

.
 

(26)

For finite N, expressions such as (26) are of course not easy to use, but as with all statistical 
theories we will be able to progress upon assuming N to be large7. We therefore focus on the 
asymptotic behaviour of (26) for N → ∞, but with a fixed ratio p/N , and will confirm a pos-
teriori the extent to which the resulting theory describes what is observed for large but finite 
sample sizes.

7 Note that the standard use of Cox regression away from the overfitting regime, including its formulae for confi-
dence intervals and for p-values (which require Gaussian approximations that build on large N expansions around 
the most probable parameter values, and assume that uncertainty in base hazard rates can be neglected), is similarly 
valid only when N is sufficiently large.
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3. Asymptotic analysis of overfitting in the Cox model

3.1. Conversion to a saddle-point problem

Following extensive experience with the replica method in other disciplines, with similar 
definitions, we assume that the two limits N → ∞ and n → 0 commute. The invariance 
of the right-hand side of (26) under all permutations of the sample indices i ∈ {1, . . . , N} 
implies that E(β0,λ0) can depend on the true association parameters β0 only via the dis-
tribution P(β0) = p−1 ∑ p

µ=1 δ[β0 − β0
µ]. With a modest amount of foresight we define 

S2 = p−1 ∑ p
µ=1(β

0
µ)

2, and obtain

Eγ(P,λ0) =− ∂

∂γ
lim
n→0

1
Nn

log

∫
{dλ1 . . . dλn}

∫
dCdĈ eip

(∑n
αρ=0 ĈαρCαρ−Ĉ00S2

)

(2π/p)(n+1)2

×
{∫

dy e− 1
2 y·C−1y

√
(2π)n+1DetC

∫
dt p(t|y0,λ0)

n∏

α=1

[p(t|yα,λα)

p(t|y0,λ0)

]γ}N

× e p
∫

dβ0 P(β0) log
∫

dβ1...dβn e
−2iβ0

n∑

ρ=1
Ĉ0ρβρ−i

n∑

αρ=1
Ĉαρβαβρ

.
 

(27)

Writing the ratio of covariates over samples as p/N = ζ , to be kept fixed in the limit N → ∞, 
we may take the limit N → ∞ and obtain an integral that can be evaluated using steepest 
descent:

lim
N→∞

Eγ(P,λ0) =− ∂

∂γ
lim
n→0

lim
N→∞

1
Nn

log

∫
{dλ1 . . . dλn}

× e−
1
2 N log[(2π)n+1DetC]

∫
dCdĈ e

iζN(
n∑

αρ=0
ĈαρCαρ−Ĉ00S2)

× e
N log

∫
dy e−

1
2 y·C−1y ∫ dt p(t|y0,λ0)

n∏
α=1

[
p(t|yα ,λα)
p(t|y0,λ0)

]γ

× eζN
∫

dβ0 P(β0) log
∫

dβ1...dβn e
−2iβ0

n∑

ρ=1
Ĉ0ρβρ−i

n∑

αρ=1
Ĉαρβαβρ

=
∂

∂γ
lim
n→0

1
n

extrC,Ĉ,λ1,...,λn
Ψ[C, Ĉ;λ1, . . . ,λn]

 

(28)

in which the function to be extremized is

Ψ[. . .] =− iζ
[ n∑

αρ=0

ĈαρCαρ − Ĉ00S2
]
+

1
2
(n + 1) log(2π) +

1
2
logDetC

− ζ

∫
dβ0 P(β0) log

∫
dβ1 . . . dβn e

−2iβ0
n∑

ρ=1
Ĉ0ρβρ−i

n∑
αρ=1

Ĉαρβαβρ

− log

∫
dy e−

1
2 y·C−1y

∫
dt p(t|y0,λ0)

n∏

α=1

[p(t|yα,λα)

p(t|y0,λ0)

]γ
.

 

(29)

Differentiation with respect to Ĉ00 immediately gives C00 = S2. Moreover, for various int-
egrals to be well-defined, the relevant saddle-point must (after contour deformation in the 
complex plane) be of a form where
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α, ρ = 1 . . . n : Ĉαρ = −1
2

iDαρ, Ĉ0ρ = −1
2

idρ (30)

with Dαρ, dρ ∈ IR, and where the n × n matrix D = {Dαρ} is positive definite. Thus at the 
relevant saddle-point we will have

Ψ[. . .] =− 1
2
ζ

n∑

αρ=1

DαρCαρ − ζ
n∑

ρ=1

dρC0ρ +
1
2
(n + 1) log(2π) +

1
2
logDetC

− log

∫
dy e−

1
2 y·C−1y

∫
dt p(t|y0,λ0)

n∏

α=1

[p(t|yα,λα)

p(t|y0,λ0)

]γ

− ζ

∫
dβ0 P(β0) log

∫
dβ1 . . . dβn e

−β0
n∑

ρ=1
dρβρ− 1

2

n∑
αρ=1

Dαρβαβρ

=− 1
2
ζ

n∑

αρ=1

DαρCαρ − ζ
n∑

ρ=1

dρC0ρ −
1
2
ζS2

n∑

αρ=1

dα(D−1)αρdρ

+
1
2
(n + 1) log(2π) +

1
2
logDetC

− log

∫
dy e−

1
2 y·C−1y

∫
dt p(t|y0,λ0)

n∏

α=1

[p(t|yα,λα)

p(t|y0,λ0)

]γ

− ζ log

∫
dβ1 . . . dβn e

− 1
2

n∑
αρ=1

Dαρβαβρ

.
 

(31)

Variation with respect to the n components {dα} gives dα = −S−2 ∑
ρ DαρC0ρ, so

Ψ[. . .] =− 1
2
ζ

n∑

αρ=1

Dαρ

[
Cαρ −

C0αC0ρ

S2

]
+

1
2
(n + 1) log(2π) +

1
2
logDetC

− log

∫
dy e−

1
2 y·C−1y

∫
dt p(t|y0,λ0)

n∏

α=1

[p(t|yα,λα)

p(t|y0,λ0)

]γ

− ζ log

∫
dβ1 . . . dβn e

− 1
2

n∑
αρ=1

Dαρβαβρ

.

 
(32)

This intermediate result confirms that limN→∞ Eγ(P,λ0) indeed depends on the distribution 
P(β0) only via S2 =

∫
dβ0 P(β0)β2

0 , hence we may henceforth write the former quantity as 
Eγ(S,λ0). Variation with respect to D finally gives (D−1)αρ = Cαρ − C0αC0ρ/S2. Hence we 
arrive at the following expression, in which the short-hand C′ denotes the n × n matrix with 
entries C′

αρ = Cαρ − C0αC0ρ/S2 (for α, ρ = 1 . . . n):

Eγ(S,λ0) =
∂

∂γ
lim
n→0

1
n

extr C;λ1, . . . ,λnΨ[C;λ1, . . . ,λn]. (33)

Ψ[C;λ1, . . . ,λn] =
1
2
logDetC − 1

2
ζ logDetC′

− log

∫
dy√
2π

e−
1
2 y·C−1y

∫
dt p(t|y0,λ0)

n∏

α=1

[p(t|yα,λα)

p(t|y0,λ0)

]γ
.

 

(34)
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The extremisation over C is to be done subject to C00 = S2, and we have removed from Ψ[. . .] 
those terms that will vanish after taking n → 0 and differentiating with respect to γ.

3.2. Replica symmetric extrema

The replica symmetry ansatz (RS) can be translated into the statement that the solution space 
of the regression algorithm is ergodic [18, 25, 28], i.e. the typical set of equivalent minima in 
regression parameter space is connected. Replica symmetric saddle-points of (34) are of the 
following form:

∀α, ρ = 1 . . . n : λα(t) = λ(t), C00 = S2, C0α = c0, (35)

Cαρ = Cδαρ + c(1 − δαρ). (36)

In appendix B we derive the equations corresponding to the RS ansatz for the stochastic gen-
eralization of the Cox model. With the short-hand Dy = (2π)−1/2e− 1

2 y2
dy, and upon removing 

terms that vanish upon differentiation by γ, we can summarise these equations in the limit of 
large data sets, by the following compact expression:

Eγ(S,λ0) =

∫
Dy0

∫
dt p(t|Sy0,λ0) {log p(t|Sy0,λ0)

−
∫

Dz
[∫

Dy pγ(t|uy + wy0 + vz,λ) log p(t|uy + wy0 + vz,λ)∫
Dy pγ(t|uy + wy0 + vz,λ)

]}

 

(37)

in which the order parameters {u, v, w;λ}, which are related to the RS order parameters 
{C, c0, c} via

c0 = Sw, c = v2 + w2, C = u2 + v2 + w2, (38)

are to be evaluated at the saddle point of

ΨRS(u, v, w;λ) = ζ
( v2

2u2 + log u
)

+

∫
DzDy0

∫
dt p(t|Sy0,λ0) log

∫
Dy pγ(t|uy + wy0 + vz,λ).

 
(39)

3.3. Physical interpretation of order parameters

The physical meaning of the order parameters in the replica symmetric matrix C is found in 
the usual manner for replica calculations [25], by direct application of our manipulations to 
the calculation of observables. We will write averages over the stochastic maximization of the 
data log-likelihood at finite γ, for a fixed training set D, as ⟨. . .⟩, and averages over all data 
sets (as before) as ⟨. . .⟩D. Since the relevant quantities in the theory are found asymptotically 
to depend on the true association vector β⋆ only via S2 = p−1 ∑ p

µ=1(β
⋆
µ)

2, there is no need 
for explicit averages over β⋆. This results upon application to the Cox model in the following 
identifications, in the limit n → 0:

c0 = lim
p→∞

1
p
β⋆ · ⟨⟨β⟩⟩D, c = lim

p→∞

1
p
⟨⟨β⟩2⟩D, C = lim

p→∞

1
p
⟨⟨β2⟩⟩D. (40)

In terms of the transformed order parameters (u, v, w) this becomes
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u2 = lim
p→∞

1
p
⟨⟨β2⟩ − ⟨β⟩2⟩D (41)

v2 = lim
p→∞

1
p

[
⟨⟨β⟩2⟩D −

(β⋆ · ⟨⟨β⟩⟩D
|β⋆|

)2]
 (42)

w = lim
p→∞

1
√p

β⋆ · ⟨⟨β⟩⟩D
|β⋆| . (43)

Here β is the outcome of maximum likelihood regression for data set D generated with true 
association parameters β⋆. Fully random parameter guessing would give c0 = c = 0 and 
C > 0. Perfect regression would imply β = β⋆ for all D and all β⋆, and hence correspond 
to c0 = c = C = S2, giving u = v = 0 and w = S. It is reassuring to observe that for ζ = 0, 
expression (37) indeed reproduces Eγ(S,λ0) = 0 if in the right-hand side we substitute the 
values u = v = 0 and w = S.

From (40) follow useful inequalities that must hold at the relevant saddle-point in the limit 
n → 0, which are consistent with our claim that u, v, w ! 0:

C ! 0, c ! 0, c0 ! 0, C ! c, c ! c2
0/S2. (44)

The first four inequalities are easy to derive. The fifth follows from:

c = lim
p→∞

1
p
⟨⟨β⟩2⟩D ! lim

p→∞

1
p

〈( β⋆

|β⋆| · ⟨β⟩
)2〉

D

=
1
p

( p
|β⋆|c0

)2
= c2

0/S2.
 (45)

If, as suggested by the γ → ∞ simulation results shown in appendix A, ⟨β⟩ ≈ κβ⋆ + ξ for  
some κ > 0, with a zero-average random vector ξ that reflects data set variability, such that  
⟨ξ⟩D = 0 and with amplitude limp→∞ p−1 ∑ p

µ=1⟨ξ2
µ⟩D = σ2, then we would find the RS sad-

dle point obeying c0 = κS2 and c = κ2S2 + σ2 . Hence we would find v = σ and κ = w/S, 
and we would expect limγ→∞ u = 0 for ζ < 1. Note that the above relations are true given 
our definition of the event time distribution as P(t|z,β,λ) = − d

dt exp[− exp(β · z/√p)Λ(t)].  
If we were to define this distribution instead without the rescaling factor 

√p as P(t|z,β,λ) = 
− d

dt exp[− exp(β · z)Λ(t)] (which is the convention of [5]), then the connection between regres-
sion of the form ⟨β⟩ ≈ κβ⋆ + ξ and our order parameters would be:

κ = w/S, σ = v/
√

p. (46)

We conclude that from our RS equations we can extract the dependence on the covariates/
samples ratio ζ = p/N  of the two main quantitative characteristics of the data clouds in 
 figure 2: their angle κ and their width σ.

Finally, let us turn to the interpretation of equation (37). We observe that this equation can 
be written as

Eγ(S,λ0) =

∫
dtdxdx′ Pγ(x, x′, t) log

[p(t|x,λ0)

p(t|x′,λ)

]
 (47)

Pγ(x, x′, t) =
∫

DzDy0 δ[x − Sy0] p(t|Sy0,λ0)

×
[∫ Dy pγ(t|uy + wy0 + vz,λ) δ[x′ − uy − wy0 − vz]∫

Dy pγ(t|uy + wy0 + vz,λ)

]
.

 
(48)
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If we compare expression (47) with the definition of Eγ(S,λ0), which for the Cox model is

Eγ(S,λ0) = lim
N→∞

〈〈 1
N

N∑

i=1

log
[p(ti|β⋆ · zi/

√p,λ0)

p(ti|β · zi/
√p,λ)

]〉〉

D
 (49)

we can infer that

Pγ(x, x′, t) = lim
N→∞

〈〈 1
N

N∑

i=1

δ[t − ti] δ
[
x − β⋆ · zi√p

]
δ
[
x′ − β · zi√p

]〉〉

D
. (50)

As a consistency test one can confirm that, as an alternative to retracing the replica derivation, 
the expressions (40) can also be derived explicitly from (48) and (50).

3.4. Derivation of RS saddle point equations

The equations  from which to solve the replica symmetric order parameters (u, v, w,λ) are 
obtained by extremization of (39). Using ∂ log p(t|ξ)/∂ξ = 1 − eξΛ(t), the three scalar equa-
tions are found to be

ζ

γu

(v2

u2 − 1
)
=

∫
DzDy0

∫
dt p(t|Sy0,λ0)

×

∫
Dy y pγ(t|uy + wy0 + vz,λ)

[
1 − euy+wy0+vzΛ(t)

]

∫
Dy pγ(t|uy + wy0 + vz,λ)

 
(51)

ζ
v
γu2 =

∫
DzDy0 z

∫
dt p(t|Sy0,λ0)Λ(t)

∫
Dy pγ(t|uy + wy0 + vz,λ)euy+wy0+vz

∫
Dy pγ(t|uy + wy0 + vz,λ)

 

(52)

0 =

∫
DzDy0 y0

∫
dt p(t|Sy0,λ0)Λ(t)

∫
Dy pγ(t|uy + wy0 + vz,λ)euy+wy0+vz

∫
Dy pγ(t|uy + wy0 + vz,λ)

.

 

(53)

Upon integrating by parts over y, we can also write equation (51) as

ζ

γu2

( v2

γu2 − 1
γ

)
=

∫
DzDy0

∫
dt p(t|Sy0,λ0)

×

∫
Dy pγ(t|uy + wy0 + vz,λ)

[
[1 − euy+wy0+vzΛ(t)]2 − γ−1euy+wy0+vzΛ(t)

]

∫
Dy pγ(t|uy + wy0 + vz,λ)

.

 (54)
To work out the functional order parameter equation  δΨRS(u, v, w;λ)/δλ(s) = 0 
we use δ log p(t|ξ)/δλ(s) = δ(t − s)/λ(s)− eξθ(t − s), and the abbreviation 
p(t) =

∫
Dy0 p(t|Sy0,λ0). This gives

0 =

∫
DzDy0

∫
dt p(t|Sy0,λ0)

∫
Dy pγ(t|uy + wy0 + vz,λ)

[
δ(t−s)
λ(s) − euy+wy0+vzθ(t − s)

]

∫
Dy pγ(t|uy + wy0 + vz,λ)

=
p(s)
λ(s)

−
∫

DzDy0

∫ ∞

s
dt p(t|Sy0,λ0)

∫
Dy pγ(t|uy + wy0 + vz,λ)euy+wy0+vz

∫
Dy pγ(t|uy + wy0 + vz,λ)

.

 

(55)
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This latter equation can also be written in terms of the distribution (48), giving a form that 
reduces to Breslow’s [16] estimator when we subsequently use the interpretation identity (50):

λ(t) =
∫

dxdx′ Pγ(x, x′, t)∫∞
t dt′

∫
dxdx′ Pγ(x, x′, t)ex′

. (56)

The remaining integrations over y in our equations are for finite γ quite nontrivial. They can 
be expressed in terms of the Laplace transform of the lognormal distribution [36], or mapped 
onto the core integral in the Random Energy Model [37], both of which could in the past be 
evaluated analytically only in specific parameter limits.

4. Analysis of the RS equations for the Cox model

4.1. RS equations in the limit γ → ∞

The original Cox model [5] corresponds to the limit γ → ∞ of our equations. It turns out that 
the correct scaling with γ of u for γ → ∞ is u = ũ/√γ ; this is suggested by equation (54) 
and confirms our expectation that follows from the physical meaning of u. Upon substituting 
u = ũ/√γ  as an ansatz into our equations, assuming the other order parameters to have finite 
γ → ∞ limits, allows us to simplify the trio (52)–(54) and the functional equation (55) to

ζv
ũ2 =

∫
DzDy0 z

∫
dt p(t|Sy0,λ0)Λ(t)A1(wy0 + vz, t) (57)

0 =

∫
DzDy0 y0

∫
dt p(t|Sy0,λ0)Λ(t)A1(wy0 + vz, t) (58)

ζv2

ũ4 = 1 +

∫
DzDy0

∫
dt p(t|Sy0,λ0)

[
Λ2(t)A2(y0, z, t)

− 2Λ(t)A1(wy0 + vz, t)
] 

(59)

p(t)
λ(t)

=

∫
DzDy0

∫ ∞

t
dt′ p(t′|Sy0,λ0)A1(wy0 + vz, t′). (60)

The remaining complexities of the limit are concentrated in

Ar(η, t) = lim
γ→∞

∫
Dy pγ(t|uy + η,λ)er(uy+η)

∫
Dy pγ(t|uy + η,λ)

= lim
γ→∞

∫
dy e−

1
2 y2+γ

[
uy+η−euy+ηΛ(t)

]
+r(uy+η)

∫
dy e−

1
2 y2+γ

[
uy+η−euy+ηΛ(t)

]

= lim
γ→∞

∫
dq eγ

[
− 1

2 q2+ũq+η−eũq+ηΛ(t)
]
+r(ũq+wy0+vz)

∫
dq eγ

[
− 1

2 q2+ũq+η−eũq+ηΛ(t)
]

=
[
eϕ(wy0+vz,t)ũ+wy0+vz]r

 (61)
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with

ϕ(η, t) = argmaxq

{
− 1

2
q2 + ũq + η − eũq+ηΛ(t)

}
. (62)

After differentiation and rewriting the resulting equation, we find that ϕ(η, t) can be written in 
explicit form in terms of the Lambert W-function [35] as:

ϕ(η, t) = ũ − ũ−1W
(

ũ2eũ2+ηΛ(t)
)

 (63)

Hence

Ar(η, t) = er
[

ũ2+η−W
(

ũ2 exp(ũ2+η)Λ(t)
)]

. (64)

Using the identity e−W(z) = W(z)/z , which follows directly from the definition of the Lambert 
W-function, we can simplify the above result to

Ar(η, t) =
(W

(
ũ2eũ2+ηΛ(t)

)

ũ2Λ(t)

)r
. (65)

Substitution into our γ → ∞ order parameter equations finally gives:

ζv2 =

∫
DzDy0

∫
dt p(t|Sy0,λ0)

[
ũ2 − W

(
ũ2eũ2+wy0+vzΛ(t)

)]2
 (66)

ζv =

∫
DzDy0 z

∫
dt p(t|Sy0,λ0)W

(
ũ2eũ2+wy0+vzΛ(t)

)
 (67)

0 =

∫
DzDy0 y0

∫
dt p(t|Sy0,λ0)W

(
ũ2eũ2+wy0+vzΛ(t)

)
 (68)

p(t)
λ(t)

=

∫
DzDy0

∫ ∞

t
dt′ p(t′|Sy0,λ0)

W
(
ũ2eũ2+wy0+vzΛ(t′)

)

ũ2Λ(t′)
. (69)

We observe that the choice v = 0 always solves (67), but that for ζ > 0 it is ruled out by (66). 
Upon doing integration by parts over z, using dW(z)/dz = W(z)/z[1 + W(z)] and dismissing 
the solution v = 0, we can simplify equation (67) further to

ζ =

∫
DzDy0

∫
dt p(t|Sy0,λ0)

W
(
ũ2eũ2+wy0+vzΛ(t)

)

1 + W
(
ũ2eũ2+wy0+vzΛ(t)

) . (70)

To compute the corresponding value of the overfitting measure E(S,λ0) = limγ→∞ Eγ(S,λ0), 
we substitute u = ũ/√γ  into (37) and take the limit γ → ∞. This gives, using the short-hands 
(63) and p(t) =

∫
Dy0 p(t|Sy0,λ0) and the identity exp[−W(z)] = W(z)/z:

A C C Coolen et alJ. Phys. A: Math. Theor. 50 (2017) 375001



18

E(S,λ0) =

∫
Dy0

∫
dt p(t|Sy0,λ0) {log p(t|Sy0,λ0)− log λ(t)

− lim
γ→∞

∫
Dz

∫
dy eγ[ũy+wy0+vz−eũy+wy0+vzΛ(t)− 1

2 y2]
[
ũy + wy0 + vz − eũy+wy0+vzΛ(t)

]

∫
dy eγ[ũy+wy0+vz−eũy+wy0+vzΛ(t)− 1

2 y2]

⎫
⎬

⎭

=

∫
Dy0

∫
dt p(t|Sy0,λ0)

{
log[λ0(t)/λ(t)]− eSy0Λ0(t)

−
∫

Dz
[
ũϕ(wy0 + vz, t)− eũϕ(wy0+vz,t)+wy0+vzΛ(t)

]}

=

∫
dt p(t) log

[λ0(t)
λ(t)

]
−
∫

Dy0

∫
dt p(t|Sy0,λ0)eSy0Λ0(t)− ũ2

+ (1 +
1
ũ2 )

∫
DzDy0

∫
dt p(t|Sy0,λ0)W

(
ũ2eũ2+wy0+vzΛ(t)

)
.

 

(71)

The second integral can be worked out explicitly:
∫

Dy0

∫ ∞

0
dt p(t|Sy0,λ0)eSy0Λ0(t)

= −
∫

Dy0

∫ ∞

0
dt eSy0Λ0(t)

d
dt

e− exp(Sy0)Λ0(t)

=

∫ ∞

0
dx xe−x = 1.

 

(72)

Therefore

E(S,λ0) =

∫
dt p(t) log

[λ0(t)
λ(t)

]

− (1 + ũ2)
[
1 − 1

ũ2

∫
DzDy0

∫
dt p(t|Sy0,λ0)W

(
ũ2eũ2+wy0+vzΛ(t)

)]

 
(73)

In appendix C we study the behaviour of the above equations  in the two limits ζ → 0 and 
ζ → 1. For ζ → 0 we recover the correct solution corresponding to perfect (overfitting-free) 
regression, as required. For ζ → 1 we find a phase transition, characterised by divergence of 
the order parameters {ũ, v, w}.

4.2. Numerical and asymptotic solution of RS equations

Solving the coupled order parameter equations (66) and (68)–(70) analytically seems for 
now too ambitious; solving them numerically is nontrivial, and requires some preparation. 
To cast the equation for w into a form similar to the others, we need to do partial integra-
tion over y0:

0 = w
∫

DzDy0

∫
dt p(t|Sy0,λ0)

W
(
ũ2eũ2+wy0+vzΛ(t)

)

1 + W
(
ũ2eũ2+wy0+vzΛ(t)

)

+ S
∫

DzDy0

∫
dt p(t|Sy0,λ0)W

(
ũ2eũ2+wy0+vzΛ(t)

)[
1 − eSy0Λ0(t)

]
.

 

(74)
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We also rewrite the functional equation in a form that involves Λ(t) only:

Λ(t) =
∫ t

0
dt′ p(t′)

{∫
DzDy0

∫ ∞

t′
dt′′ p(t′′|Sy0,λ0)

W
(
ũ2eũ2+wy0+vzΛ(t′′)

)

ũ2Λ(t′′)

}−1
.

 

(75)

Numerical integration over t > 0 can be transformed into integration over the sur-
vival function s(t, y0) = exp[−eSy0Λ0(t)] ∈ [0, 1], using p(t|Sy0,λ0)dt = −ds and 
t(s, y0) = Λinv

0 (e−Sy0 log(1/s)). We also define the short-hand L(t) = ũ2eũ2
Λ(t). These defini-

tions transform our RS equations to:

ζv2 =

∫
Dy0Dz

∫ 1

0
ds

[
ũ2 − W

(
ewy0+vzL(t(s, y0))

)]2
 (76)

ζ =

∫
Dy0Dz

∫ 1

0
ds

⎧
⎨

⎩
W
(

ewy0+vzL(t(s, y0))
)

1 + W
(

ewy0+vzL(t(s, y0))
)

⎫
⎬

⎭ (77)

ζw
S

= −
∫

Dy0Dz
∫ 1

0
ds

[
1 + log(s)

]
W
(

ewy0+vzL(t(s, y0))
)

 (78)

L(t) = ũ2
∫ t

0
dt′ p(t′)

×
{∫

Dy0Dz
∫ 1

0
ds′

θ[t(s′, y0)− t′]
L(t(s′, y0))

W
(

ewy0+vzL(t(s′, y0))
)}−1

.
 

(79)

We next study the functional equation (79) in more detail. We first rewrite it by differentia-
tion with respect to time, and some simple rearrangements, into the more suitable form

ũ2 p(t)
d
dt L(t)

=

∫
Dy0Dz

∫ 1

0
ds

θ[t(s, y0)− t]
L(t(s, y0))

W
(

ewy0+vzL(t(s, y0))
)

 (80)

or, upon further differentiation:

−ũ2L(t)
d
dt

( p(t)
d
dt L(t)

)
=

∫
Dy0Dz W

(
ewy0+vzL(t)

)∫ 1

0
ds δ[t(s, y0)− t]. (81)

Using 
∫ 1

0 ds δ[t(s, y0)− t] = p(t|Sy0), and upon multiplying both sides by d
dt L(t)/p(t), this 

becomes

ũ2 d
dt

log
(dL(t)/dt

p(t)

)
=

d log L(t)
dt

∫
Dy0

p(t|Sy0)

p(t)

∫
Dz W

(
ewy0+vzL(t)

)
.

 

(82)

We write L(t) in the form L(t) = Φ(Λ0(t)), which is always possible since both L(t) and Λ0(t) 
are monotonic functions of time, and we write p(t) = λ0(t)g(Λ0(t)) with

g(x) =
∫

Dy0 eSy0−x exp(Sy0). (83)

Substitution of these conventions, and working out the various time derivatives, then leads to 
the following equation from which to solve Φ(x):
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ũ2g(x)
d logΦ(x)/dx

d
dx

log
(dΦ(x)/dx

g(x)

)
=

∫
Dy0 eSy0−x exp(Sy0)

×
∫

Dz W
(

ewy0+vzΦ(x)
)

.
 

(84)

We now proceed to calculate the solution Φ(x) of the above equation, which gives us the form 
of the inferred integrated base hazard rates Λ(t) as shown in figure 3, for large times, i.e. in 
the regime where x → ∞ and Φ(x) → ∞. Here we can use use the asymptotic form of the 
Lambert W-function [35]: W(z) = log z − log(log z) +O(log(log z)/ log z) (for z → ∞), to 
obtain

ũ2g(x)
d logΦ(x)/dx

d
dx

log
(dΦ(x)/dx

g(x)

)
= g(x) log

( Φ(x)
logΦ(x)

)
+ w

∫
Dy0 y0eSy0−x exp(Sy0)

+

∫
Dy0 eSy0−x exp(Sy0)O

( y0

logΦ(x)
,
log logΦ(x)
logΦ(x)

)
.

 (85)
We can do the remaining integral over y0 via integration by parts, giving

∫
Dy0 y0eSy0−x exp(Sy0) = S[g(x) + x

d
dx

g(x)]. (86)

Hence

ũ2Φ

dΦ/dx
d
dx

[
log

(dΦ
dx

)
− log g

]
= log

( Φ

logΦ

)
+ wS

(
1 + x

d
dx

log g
)

+O
(x d log g/dx

logΦ
,
log logΦ

logΦ

)
.

 
(87)

To proceed we need the leading orders of g(x). These are derived in appendix D:

log g(x) = − 1
2S2 (log x)2 +

1
S2 log x. log(log x) +O(log x) (x → ∞). (88)

Our asymptotic equation for Φ(x) thereby becomes

ũ2Φ

dΦ/dx

[ d
dx

log
(dΦ

dx

)
+

log x
xS2 − log log x

xS2 +O(
1
x
)
]
= log

( Φ

logΦ

)

+
w
S

(
log log x − log x

)
+ O

(
1,

log x
logΦ

,
log logΦ

logΦ
,

Φ

xdΦ/dx

)
.

 

(89)

Inspection of this equation shows that the leading orders of the solution are

Φ(x) = ρ log x + (1 − ρ) log log x + o(log log x) (90)

ρ =
w
2S

(
1 +

√
1 + 4ũ2/w2

)
 (91)

or

t ≫ 1 : logΛ(t) = ρ logΛ0(t) + (1 − ρ) log(logΛ0(t)) + . . . . (92)

This remarkably simple expression, linking the true and the inferred integrated base hazard 
rates Λ(t) and Λ0(t), predicts that the relation between the two should approach a straight 

A C C Coolen et alJ. Phys. A: Math. Theor. 50 (2017) 375001



21

line when shown in a log-log plot. It is not only confirmed by simulations for large times (for 
which it was derived from our theory) but is in fact found to be quite accurate for all times. 
This is shown in figure 4, and forms the basis of our variational approximations below.

4.3. Variational approximation

The main complexity of the RS theory is in solving the functional order parameter equa-
tion (82). This is the motivation for investigating variational approximations for Λ(t). Since 
our equations were obtained by solving an extremization problem, variational approaches are 
in the present context both natural and conceptually straightforward. The simulation data in 
figure 4 suggest writing the functional order parameter in the form Λ(t) = kΛρ

0(t). To compute 
the new scalar order parameters k and ρ we substitute this expression for Λ(t) into the quantity 
(39) to be extremized. As before we then put u = ũ/√γ  and take the limit γ → ∞, and find 
that we need to extremize the following quantity over (ũ, v, w, k, ρ):

Ψ(ũ, v, w, k, ρ) =
ζv2

2ũ2 + log k + log ρ+

∫
dt p(t) log

[
λ0(t)Λ

ρ−1
0 (t)

]

+

∫
DzDy0

∫
dt p(t|Sy0,λ0)

× lim
γ→∞

1
γ
log

∫
dy eγ[ũy+wy0+vz−keũy+wy0+vzΛρ

0 (t)− 1
2 y2]

=
ζv2

2ũ2 + log k + log ρ+

∫
dt p(t) log

[
λ0(t)Λ

ρ−1
0 (t)

]

+

∫
DzDy0

∫
dt p(t|Sy0,λ0)

× maxy

[
ũy + wy0 + vz − keũy+wy0+vzΛρ

0(t)−
1
2

y2
]

=
ζv2

2ũ2 + log k + log ρ+

∫
dt p(t) log

[
λ0(t)Λ

ρ−1
0 (t)

]

+

∫
DzDy0

∫
dt p(t|Sy0,λ0)

[
ũϕ(wy0 + vz, t) + wy0 + vz

− keũϕ(wy0+vz,t)+wy0+vzΛρ
0(t)−

1
2
ϕ2(wy0 + vz, t)

]

 

(93)

in which

ϕ(η, t) = ũ − 1
ũ

W
(

kũ2eũ2+ηΛρ
0(t)

)
. (94)

It is now easy to derive our order parameter equations, since all contributions to partial 
derivatives that involve ϕ(wy0 + vz, t) vanish, by virtue of ϕ(wy0 + vz, t) maximising the fac-
tor between the square brackets. Extremizing (93) over (ũ, v, w) recovers our earlier equa-
tions (76)–(78), with L(t) = kũ2eũ2

Λρ
0(t), as expected. Extremizing (93) over the new order 

parameters k and ρ gives:

1
k
=

∫
Dy0Dz

∫
dt p(t|Sy0,λ0)Λ

ρ
0(t)e

ũ2+wy0+vz−W
(

kũ2eũ2+wy0+vzΛρ
0 (t)

)
 (95)
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1
ρ
= k

∫
DzDy0

∫
dt p(t|Sy0,λ0)Λ

ρ
0(t)e

ũ2+wy0+vz−W
(

kũ2eũ2+wy0+vzΛρ
0 (t)

)
logΛ0(t)

−
∫

dt p(t) logΛ0(t).

 

(96)

Using W(z) exp[W(z)] = z and our definition of L(t), these two equations can be rewritten as

ũ2 =

∫
Dy0Dz

∫ 1

0
ds W

(
ewy0+vzL(t(s, y0))

)
 (97)

ũ2

ρ
=

∫
DzDy0

∫ 1

0
ds W

(
ewy0+vzL(t(s, y0))

)[
log log(1/s)− Sy0

]

− ũ2
∫

dt p(t) logΛ0(t).
 (98)

In the second equation we rewrite the term with the explicit factor y0, using
∫

DzDy0 y0

∫ 1

0
ds W

(
ewy0+vzL(t(s, y0))

)

=

∫
DzDy0

∫ 1

0
ds

∂

∂y0
W
(
ewy0+vzL(t(s, y0))

)

=

∫
DzDy0

∫ 1

0
ds

W
(
ewy0+vzL(t(s, y0))

)

1 + W
(
ewy0+vzL(t(s, y0))

) ∂

∂y0
log

(
ewy0+vzL(t(s, y0))

)

= (w − ρS)
∫

DzDy0

∫ 1

0
ds

W
(
ewy0+vzL(t(s, y0))

)

1 + W
(
ewy0+vzL(t(s, y0))

) .

 

(99)

We thus arrive at five relatively simple closed equations from which to solve (ũ, v, w, k, ρ) in 
our variational approximation. Upon substituting the definition t(s, y0) = Λinv

0 (e−Sy0 log(1/s)) 
we can simplify the argument of Lambert’s W-function, which appears in all equations, fur-
ther to

W
(

ewy0+vzL(t(s, y0))
)
= W

(
kũ2eũ2+(w−ρS)y0+vz logρ(1/s)

)
. (100)

This enables us to combine the two Gaussian integrals appearing in each order parameter 
equation by a single zero-average Gaussian integral, with width

σ(v, w) =
√
(w − ρS)2 + v2. (101)

We finally transform the variational order parameter k to q = kũ2eũ2
, and evaluate ∫

dt p(t) logΛ0(t) =
∫∞

0 dx e−x log x = −CE [38], which involves Euler’s constant 
CE = 0.577 215 664 9015 . . .. We then obtain

ζv2 =

∫
Dx

∫ 1

0
ds

[
ũ2 − W

(
qexσ(v,w,ρ) logρ(1/s)

)]2
 (102)

ζ =

∫
Dx

∫ 1

0
ds

W
(

qexσ(v,w,ρ) logρ(1/s)
)

1 + W
(

qexσ(v,w,ρ) logρ(1/s)
) (103)
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ζw
S

= −
∫

Dx
∫ 1

0
ds

[
1 + log(s)

]
W
(

qexσ(v,w,ρ) logρ(1/s)
)

 (104)

ũ2 =

∫
Dx

∫ 1

0
ds W

(
qexσ(v,w,ρ) logρ(1/s)

)
 (105)

ũ2

ρ
=

∫
Dx

∫ 1

0
ds W

(
qexσ(v,w,ρ) logρ(1/s)

)
log log(1/s)

− S(w − ρS)ζ + ũ2CE.
 (106)

In the same way we can work out the value of E(S,λ0) for the variational solution, and find:

E(S,λ0) =

∫
dt p(t) log

[λ0(t)
λ(t)

]
= −

∫
dt p(t) log

[
kρΛρ−1

0 (t)
]

= − log k − log ρ− (ρ− 1)
∫

dt p(t) logΛ0(t)

= − log k − log ρ− (ρ− 1)
∫ ∞

0
dx e−x log x

= − log k − log ρ+ (ρ− 1)CE.

 

(107)

For q → 0 we may replace W(qeσx logρ(1/s)) ≈ qeσx logρ(1/s) and use the integral ∫ 1
0 ds log(1/s) log log(1/s) = 1 − CE, to recover after some simple expansions the correct 
ζ → 0 solution: limζ→0 v = limζ→0 ũ = 0, limζ→0 w = S, limζ→0 ρ = limζ→0 k = 1, and 
limζ→0 E(S,λ0) = 0.

We observe that our above closed variational equations (102)–(106) are completely inde-
pendent of the true base hazard rate λ0(t). Hence they predict that the key quantities required 

Figure 4. Here we show the simulation data of figure 3 alternatively by drawing the 
inferred integrated base hazard rates Λ̂(t) versus the true values Λ0(t) in log-log plots. 
We observe that the curves for different values of ζ = p/N  thereby become linear, with 
high accuracy, for both time-independent (left panel) and time-dependent base hazard 
rates (right panel). This suggests that Λ̂(t) ≈ kΛρ

0(t), with time-independent parameters 
k and ρ that depend on ζ. The power ρ and the prefactor k both increase with ζ.
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for overfitting correction in the Cox model (the slope of the data cloud, and the deformation 
parameters of the base hazard rate) are independent of the true shape of the base hazard rate.

The easiest protocol for solving our equations numerically is to regard q as an independent 
parameter, and compute (ζ, v, w, ũ, ρ) for each q by iterative mapping. Upon doing so (see 
figure 5), one finds that the solution always exhibits ρ = w/S , within numerical accuracy limi-
tations. We have not yet been able to confirm this analytically, as that would require proving 
that the solution of our equation obeys

∫
Dx

∫ 1

0
ds W

(
qexv logρ(1/s)

)[
log log(1/s) + CE − 1

ρ

]
= 0 (108)

but it is for small ζ in agreement with (91) (as it should be). If ρ = w/S  is indeed generally 
true for the solution of our variational equations, it implies that ρ is identical to the slope of the 
data clouds in figure 2, and that the values of (v, ρ, q) (hence also of the slope and the width 
of the data clouds in figure 2) are not only independent of λ0(t) but also independent of S. It 
would also allow us to obtain a more compact closed theory in terms of just three scalar order 
parameters, as we will show now. Upon making directly the variational ansatz Λ(t) = kΛρ

0(t) 
with w = ρS , we need to extremize

Ψ(ũ, v, k, ρ) =
ζv2

2ũ2 + log k + log ρ+

∫
dt p(t) log

[
λ0(t)Λ

ρ−1
0 (t)

]

+

∫
DzDy0

∫
dt p(t|Sy0,λ0)

[
ũϕ(ρSy0 + vz, t) + ρSy0 + vz

− keũϕ(ρSy0+vz,t)+ρSy0+vzΛρ
0(t)−

1
2
ϕ2(ρSy0 + vz, t)

]

 
(109)

in which again ϕ(η, t) = ũ − ũ−1W(kũ2eũ2+ηΛρ
0(t)). Following similar manipulations as 

used for the first variational analysis, and with the previous short-hand q = kũ2eũ2
, we find 

upon extremization of Ψ(ũ, v, k, ρ) and after elimination of ũ the following three closed equa-
tions for (v, k, ρ):

ζv2 =

∫
Dx

∫ 1

0
ds

[
ũ2 − W

(
qevx logρ(1/s)

)]2
 (110)

ζ =

∫
Dx

∫ 1

0
ds

W
(

qevx logρ(1/s)
)

1 + W
(

qevx logρ(1/s)
) (111)

ζρ =− 1
S2

∫
Dx

∫ 1

0
ds W

(
qevx logρ(1/s)

)
log log(1/s)

−
∫

Dx
∫ 1

0
ds

[
1 + log(s) + (CE − 1

ρ
)/S2

]
W
(

qevx logρ(1/s)
)

.
 

(112)

Upon solving the trio (110)–(112), the values of ũ, w and k then follow via

ũ2 =

∫
Dx

∫ 1

0
ds W

(
qevx logρ(1/s)

)
, k =

q
ũ2 e−ũ2

, w = ρS. (113)

Finally we note that all our equations in this section can also be written in a form that involves 
only integrations over the interval [0, 1], using the general identity
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∫
Dx f (x) =

∫ 1

0
ds

f
(√

2 log(1/s)
)
+ f

(
−
√

2 log(1/s)
)

2
√
π log(1/s)

. (114)

It is instructive at this stage to test the predictions of the above simple variational equa-
tions  (110)–(112) against numerical simulations of Cox regression on synthetic data. 
According to (41)–(43), we must expect to find in our simulations that v = limr,N→∞ v(r, N) 
and w = limr,N→∞ w(r, N), where

v(r, N) =
1
ζN

[ ζN∑

µ=1

⟨β̂2
µ⟩D − 1

|β⋆|2
( ζN∑

µ=1

β⋆
µ⟨β̂µ⟩D

)2]
 (115)

w(r, N) =
1
ζN

ζN∑

µ=1

β⋆
µ · ⟨β̂µ⟩D
|β⋆| . (116)

Here {β̂µ} denotes the inferred values of the (rescaled) regression parameters, and the aver-
ages ⟨. . .⟩D are over r randomly generated data sets. The results of measuring v(r, N) and 
w(r, N) in numerical simulations are shown in figure 6 together with the variational predic-
tions. In spite of the modest values in our simulations of N = 200 and the finite number of 
training sets over which inferred parameters are averaged in evaluating (115) and (116) (which 
one expects to generate excess variability), the agreement between the variational predictions 
and the simulations is seen to be surprisingly good.

Figure 5. Result of solving numerically the variational equations  (110)–(112). The 
values of v, k, ρ = w/S  and E are independent of the strength S of the true associations 
and independent of the true base hazard rate λ0(t). For ζ = 0 we recover the overfitting-
free state w = S and v = E = 0. At ζ = 1 a phase transition occurs, marked by 
divergence of v and w.
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5. Tests and applications

We will now test the variational RS theory (110)–(112) further against numerical simulations, 
focusing on the the dependence on the ratio ζ of the main characteristics of the regression 
parameter data clouds of figure  2 (i.e. their slope κ and their width σ), and of the inte-
grated base hazard rates as shown e.g. in figure  3. We know (46) that the theory predicts 
κ = ρ  and σ = v/√p (for the standard scaling convention of the Cox model [5], i.e. for 
p(t|z) = − d

dt exp[− exp(β · z)Λ(y)]), and these predictions are plotted in figure  7 as solid 
lines, together with the values obtained in regression simulations of the Cox model on synth-
etic data (markers), for N = 200 and N = 400, and for two distinct choices for the true base 
hazard rate λ0(t). Modulo finite size effects, which increase as we approach the phase trans-
ition point ζ = 1, there is again good agreement between theory and simulations. The data 
confirm also the prediction of the variational theory that both κ and σ are independent of the 
true base hazard rate λ0(t).

In figure 8 we compare the inferred integrated base hazard rates Λ̂(t), obtained for synthetic 
data with N = 400, with the predictions of the variational RS theory (110)–(112), for two 
choices of the base hazard rate. The agreement is satisfactory for times of the order of the 
typical event times in the data. For larger times (where the theory has to extrapolate to times 
where available data are at best sparse) one observes increasing deviations, with the vari-
ational theory underestimating the impact of overfitting; this is indeed consistent with (92), 
since the variational approximation captures only the first (leading) term of the exact expan-
sion (92). We can in principle obtain more accurate integrated base hazard rate predictions 
within the current framework, but this requires that we either solve (numerically) the full RS 
equations (76)–(79), or develop a more refined variational ansatz for the function L(t).

We found in our simulations that as the ratio ζ = p/N  increases, higher numerical pre-
cision is required in solving Cox’s equations. For values N ∼ 102–103 and ζ > 0.4, using 
conventional C-code compiled with gcc at double floating point precision (data type ‘double’) 
will occasional lead to degeneracies in the equations that cause the association parameters β̂ 
to be ill-defined. Upon switching to quadruple floating point precision (data type ‘long dou-
ble’) these degeneracies disappeared.

Figure 6. Test of the predictions of the variational equations  (110)–(112) against 
numerical simulations of Cox regression, with N = 200, λ0(t) = 1, and either S = 0.5 
(circles) or S = 1.0 (squares). Left: order parameter v (solid line) versus v(r, N), see 
equation  (115). Middle: order parameter w (solid line: S = 0.5; dashed: S = 1.0) 
versus w(r, N), see equation (116). Right: the corresponding values of w/S. In all cases 
r = 104. The simulations confirm the predictions of the theory that both v and w/S are 
independent of S.
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The present RS theory has so far been tested only for ‘normal’ regimes for the parameter 
S, which represents the typical width of the sum 

∑
µ β

⋆
µzµ/

√p , and hence the typical scale 
of the covariate-conditioned hazard rates. It turns out that upon carrying out Cox regression 
for synthetic survival data with large values of ζ and very large values of S, we observe ergo-
dicity breaking: upon plotting true versus inferred association parameters, as in figure 3, for 
different simulation experiments with the same parameters N and p, we now find multiple 
data clouds with distinct slopes, as opposed to a single data cloud with unique reproducible 
characteristics. This suggest that the relevant saddle points in the replica calculation will no 

Figure 7. We show the slopes κ and the widths σ of the association parameter data 
clouds of figure  2, computed from regression simulations carried out on synthetic 
survival data via least squares fitting, for N = 200 (circles) and N = 400 (crosses). 
In all cases S = 0.5. Solid lines: predictions of the variational theory, viz. σ = v/√p 
and κ = ρ  (both of which are independent of λ0(t) and of S). Top row: widths σ, for 
constant (left) and time-dependent (right) base hazard rates, with a = exp(S2)/

√
2 

defined such that 
∫

dt p(t)t = 1. Bottom row: slopes κ, for constant (left) and time-
dependent (right) base hazard rates. Each marker is an average over r independent 
simulation experiments, such that the product pr is the same for all markers.
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longer be replica-symmetric. This phenomenology, of which examples are shown in figure 9, 
can be studied in a natural way within the replica formalism, but it requires so-called RSB 
(replica symmetry breaking) ansätze for the overlap matrix C. One anticipates that for suf-
ficiently large values of ζ there may be a critical value of S/

√p that marks an RSB transition, 
i.e. the onset of non-ergodicity; the preliminary data in figure 9 suggest that this critical value 
may also depend on the shape of the true base hazard rate. Computing these critical values of 
S from the replica formalism, in terms of the parameters ζ, S and λ(t), will be the subject of 
a future study.

6. Discussion

The Cox model has been by far the most popular and effective statistical tool for the analysis 
of time-to-event data in medicine, since its publication nearly half a century ago. However, 
the demands on statistical methods in 21st century medicine are changing. We can now take 
measurements on individual patients of unprecedented dimensionality p, such as gene expres-
sions and high-resolution imaging data, but the typical number of samples N in our medical 
data bases has not grown in proportion. As a result, the condition for maximum likelihood 
(ML) multivariate regression methods (including the model of Cox) to be applicable, being 
p/N ≪ 1 in order to avoid overfitting, is nowadays very often not met. Apart from a few early 
(and modest) simulation experiments, there appear not to have been any published studies 
aimed at modelling mathematically the mechanism of overfitting in Cox regression, which is 
a prerequisite for the development of methods to deal with the overfitting problem. When the 
dimensionality of the data, relative to the number of available samples, is too high to justify 
using the multivariate Cox model, medical statisticians and epidemiologists are presently left 
having to resort to poor alternatives for proper regression: they can either limit a priori the 
number of covariates used in regression (and thereby limit outcome prediction potential), or 
switch to univariate analysis (which is undesirable since we know that univariate estimates 
of association parameters correlate poorly with their multivariate counterparts), or work with 

Figure 8. Inferred integrated base hazard rates Λ̂(t) (solid curves, averaged over multiple 
experiments) for synthetic survival data, shown together with the predictions of the 
variational RS theory (dashed curves) for ζ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} (lower to upper 
curves). In all simulations N = 400, S = 0.5, and a is defined such that 

∫
dt p(t)t = 1.
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so-called ‘risk signatures’ (which tend to involve ad-hoc definitions, and ad-hoc recipes for 
interpretation). Thus, expensive and potentially informative high-dimensional clinical data 
remain under-utilised.

Our regression simulations with synthetic survival data show clearly that the mechanism 
of overfitting in Cox regression is surprisingly reproducible and consistent: it always leads 
to a clear bias, which reports association parameter values that are more extreme than their 
true values, underestimates base hazard rates for short times, and over-estimates base hazard 
rates for large times. This consistency suggests that it must in principle be possible to model 
overfitting mathematically, and that (if such modelling is successful) one should be able to 
correct the outcomes of Cox regression systematically for the impact of overfitting. This, in 
turn, would allow us to do multivariate regression reliably for significantly larger ratios of the 
number of covariates over the number of samples, and obtain more accurate and reproducible 
predictions of clinical outcomes.

In this paper we have presented such a theory, which is built on the mathematical methods 
of statistical mechanics and inspired by Gardner’s famous analysis of binary classifiers [22]. It 
assumes that N is large, but with p/N  finite, and it combines three ideas: (i) the formulation of 
an information-theoretic measure of overfitting in time-to-event regression, (ii) translating the 
calculation of this quantity into computing the ground state of a statistical mechanical system, 
and (iii) dealing with the heterogeneity in the problem (here: the realisation of the data set) with 
the replica method. Our modeling approach is generic. It is developed initially for arbitrary 
parametrised time-to-event regression models, but we devote most of our paper to the Cox 
model, in recognition of its importance and dominance in the medical statistics field. We show 
that by combining the above three ideas, it is possible to derive explicit macroscopic equations, 
exact in the asymptotic limit, with which to characterise the regression process for finite values 
of the ratio p/N . In this paper we assume that the regression process is ergodic, and make the 

Figure 9. Examples of non-ergodicity in Cox regression, for large values of ζ and 
S, signalled by the breaking up of the single linear data cloud found for small S into 
multiple linear clouds, each with distinct slopes (that depend on the realisation of the 
data set). As in figure 2, we show true versus inferred association coefficients. In all 
cases N = 500, ζ = 0.4 and S/√p ∈ {3, 4, 5, 6}, and all plots show data from 10 
independent simulations (where each simulation is given a different colour). Top row: 
λ0(t) = 1; bottom row: λ(t) = a/

√
t , with a such that 

∫
dt p(t)t = 1.
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so-called replica symmetric (RS) ansatz for the solution of our equations; this assumption is 
supported by numerical simulations, provided the true association parameters are not too large.

For the Cox model, the order parameters of the RS theory contain all the relevant information 
required to quantify the impact of overfitting, but since one of them is a function (the inferred 
integrated base hazard rate), we introduced a suitable variational approximation, which resulted 
in a much simpler three-parameter theory. The simplified theory makes various qualitative pre-
dictions that are confirmed by regression simulations with synthetic data: that the ‘inflation’ of 
inferred association parameters is independent of the amplitude of the true association param-
eters and of the true base hazard rate, that there is a phase transition when p/N → 1, that the 
base hazard rate is underestimated for short times and over-estimated for large times, and that 
the relation between inferred and true integrated base hazard rate is for large times of the form 
log Λ̂(t) ∼ ρ logΛ0(t), with a parameter ρ that increases with the ratio ζ = p/N . The quantita-
tive agreement between our variational theory and regression simulations with synthetic data is 
generally very good, modulo finite size fluctuations, including the predicted overfitting-induced 
bias in association parameters. The only exception is the integrated base rate at large times, 
where available data are sparse, and where the variational ansatz (which incorporates only the 
leading order time dependence) under-estimates the impact of overfitting. Upon increasing the 
values of ζ and S, we observe new phenomenology, such as ergodicity breaking in the regression 
process (which requires order parameters with broken replica symmetry, or RSB). The calcul-
ation of the RSB transition line will be the subject of a subsequent paper.

The present study represents only a first step. It demonstrates that it is possible to model 
overfitting in Cox regression mathematically, using the replica formalism. We envisage many 
direct extensions, such as increasing the precision of our predictions by constructing full non-
variational solutions to our RS order parameter equations (analytically or numerically), the 
incorporation of censoring, and the addition of MAP-type regulariser terms. More technical 
potential follow-up studies could investigate RSB phenomena, including the calculation of the 
ergodicity breaking transition line, or the impact of having covariate distributions for which 
the sums 

∑
µ βµzµ no longer have Gaussian statistics. Casting the net somewhat wider, and 

given our more general initial formulation of the theory, we expect that there will be other 
survival analysis models for which a similar overfitting analysis can be done.

Last but certainly not least, we would now like to explore the potential of our methodology to 
provide practical tools with which to correct multivariate Cox regression analyses of real time-
to-event data in medicine for the impact of overfitting. Such tools could be used retrospectively, 
to determine objectively which past results in the medical literature that were obtained with the 
Cox method can be trusted, and which perhaps cannot. They should hopefully also lead to more 
accurate clinical outcome predictions in the future, by allowing medical statisticians to include 
more covariates in multivariate regression by default, without overfitting danger, and enable the 
construction of sample size tables for multivariate regression that allow overfitting effects to 
be taken into account in the design of clinical trials. The results presented in this paper suggest 
that in the near future, with proper overfitting corrections, reliable multivariate regression for 
time-to-event data at ratios of up to p/N ≈ 0.5 or higher will be quite feasible.
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Appendix A. Covariate correlations in Cox regression

In the absence of censoring, the equations from which to compute the inferred base hazard rate 
λ̂(t) and the inferred association parameters β̂ ∈ IR p in Cox regression are the following [5]:

λ̂(t) =
∑N

i=1 δ(t − ti)∑N
i=1 θ(ti − t)eβ̂·zi

 
(A.1)

β̂ = argmaxβ
N∑

i=1

{
β · zi − log

[ N∑

j=1

θ(tj − ti)eβ·zj

]}
. (A.2)

Let us define the average values and correlations of the covariates as ⟨z⟩ = z̄ and 
⟨(zµ − z̄µ)(zν − z̄ν)⟩ = Aµν , with ⟨f (z)⟩ = N−1 ∑N

i=1 f (zi). We can then simply write the 
original {zi} in terms of zero-average and uncorrelated covariate vectors {z̃i}, by writing 
zi = z̄ + A

1
2 z̃i. The equation for the regression parameters thereby becomes

β̂ = argmaxβ
N∑

i=1

{
β · z̄ + β · A

1
2 z̃i − log

[ N∑

j=1

θ(tj − ti)eβ·̄z+β·A
1
2 z̃j

]}

= argmaxβ
N∑

i=1

{
(A

1
2 β) · z̃i − log

[ N∑

j=1

θ(tj − ti)e(A
1
2 β)·̃zj

]}
.

 

(A.3)

Hence β̂ = A− 1
2 β̃, in which β̃ is the regression outcome of the Cox method applied to the 

zero-average, uncorrelated and normalized covariates {z̃i}, i.e.

β̃ = argmaxβ
N∑

i=1

{
β · z̃i − log

[ N∑

j=1

θ(tj − ti)eβ·̃zj

]}
. (A.4)

Similarly, for the base hazard rate we find:

λ̂(t) =
∑N

i=1 δ(t − ti)
∑N

i=1 θ(ti − t)eβ̂·̄z+β̂·A
1
2 z̃i

= e−β̂·̄z
∑N

i=1 δ(t − ti)∑N
i=1 θ(ti − t)eβ̃·zi

.
 

(A.5)

Hence λ̂(t) = λ̃(t) exp(−β̃ · A− 1
2 z̄), in which λ̃(t) is given by Breslow’s formula (the regres-

sion outcome for the base hazard rate of the Cox method) applied once more to the zero-
average uncorrelated and normalised covariates {z̃i}, i.e.

λ̃(t) =
∑N

i=1 δ(t − ti)∑N
i=1 θ(ti − t)eβ̃·̃zi

.
 

(A.6)

We conclude that for the Cox model one can always express the regression outcomes for any 
choice of covariate vectors in terms of the regression outcomes for zero-average, normalized 
and uncorrelated covariates, where ⟨zµ⟩ = 0 and ⟨zµzν⟩ = δµν.
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Appendix B. Deriviation of the replica symmetric equations

Assuming replica symmetry to hold converts our problem into calculating

Eγ(S,λ0) =
∂

∂γ
extrC,c,c0;λΨRS[C, c, c0;λ] (B.1)

ΨRS[C, c, c0;λ] = lim
n→0

1
n

{1
2
logDetC − 1

2
ζ logDetC′

− log

∫
dy√
2π

e−
1
2 y·C−1y

∫
dt p(t|y0,λ0)

n∏

α=1

[ p(t|yα,λ)
p(t|y0,λ0)

]γ}
.

 

(B.2)

To proceed we need the determinant and inverse of the (n + 1)× (n + 1) covariance matrix C, 
and the determinant of the n × n matrix C′. Both C and C−1 will inherit the assumed replica-
symmetric (RS) structure of the saddle-point. Hence they must have the respective forms

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

S2 c0 · · · · · · c0

c0 C c · · · c
... c C · · · c
...

...
...

. . .
...

c0 c · · · c C

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

C−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

d00 d0 · · · · · · d0

d0 D d · · · d
... d D · · · d
...

...
...

. . .
...

d0 d · · · d D

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

 

(B.3)

The RS eigenvectors x and eigenvalues µ of C are calculated easily:

x = (u, v, . . . , v) : µ± =
1
2

{
C + (n − 1)c + S2 ±

√
[C + (n − 1)c − S2]2 + 4nc2

0

}

 (B.4)

x = (0, v1, . . . , vn) :
n∑

α=1

vα = 0, µ = C − c (multiplicity n − 1). (B.5)

It follows that

logDetC = log[(C − c)n−1µ+µ−]

= log
[
S2(C − c)n−1

(
C − c + n(c − c2

0/S2)
)] 

(B.6)

= log S2 + n log(C − c) + n
c − c2

0/S2

C − c
+O(n2). (B.7)

We obtain the parameters (D, d, d00, d0) by multiplying the two matrices in (B.3) and demand-
ing that this gives the identity matrix. After some simple algebra this results in:

d00 =
C + (n − 1)c

S2(C + (n − 1)c)− nc2
0

, d0 = − c0

S2(C + (n − 1)c)− nc2
0

 (B.8)

d =
1

C − c
c2

0 − cS2

S2(C + (n − 1)c)− nc2
0

, D = d +
1

C − c
. (B.9)
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It is now a trivial matter to calculate also the quantity logDetC′, since the RS form of C 
implies that for α, ρ = 1 . . . n we have C′

αρ = δαρ(C − c) + c − (c0/S)2. It has one eigenvec-
tor (1, . . . , 1) with eigenvalue C − c − nc2

0/S2 + nc, and an (n − 1)-fold degenerate eigens-
pace with eigenvalue C − c. Hence

logDetC′ = (n − 1) log(C − c) + log
(

C − c + n[c − c2
0/S2]

)

= n log(C − c) + log
(

1 + n
c − c2

0/S2

C − c

)

= n
[
log(C − c) +

c − c2
0/S2

C − c

]
+O(n2).

 

(B.10)

Inserting these results into (B.2) gives, with the short-hand Dy = (2π)−1/2e− 1
2 y2

dy, and upon 
carrying out successive Taylor expansions for small n:

ΨRS[C, c, c0;λ] = lim
n→0

{1
2
(1 − ζ)

[
log(C − c) +

c − c2
0/S2

C − c

]
+

1
n
log S

− 1
n
log

∫
dy√
2π

e
− 1

2 d00y2
0− 1

2 (D−d)
n∑

α=1
y2
α− 1

2 d(
n∑

α=1
yα)2−d0y0

n∑
α=1

yα

×
∫

dt p(t|y0,λ0)
n∏

α=1

[ p(t|yα,λ)
p(t|y0,λ0)

]γ}

= lim
n→0

{1
2
(1 − ζ)

[
log(C − c) +

c − c2
0/S2

C − c

]
+

1
2n

log(S2d00)

− 1
n
log

∫
DzDy0

∫
dt p(t| y0√

d00
,λ0)

×
[ ∫

dy e−
1
2 (D−d)y2−y(d0y0/

√
d00+iz

√
d)
( p(t|y,λ)

p(t| y0√
d00

,λ0)

)γ]n}

=
1
2
(1 − ζ)

[
log(C − c) +

c − c2
0/S2

C − c

]

+ lim
n→0

1
2n

log
[ 1 + nc/(C − c)

1 + n[c − c2
0/S2]/(C − c)

]

− lim
n→0

∫
DzDy0

∫
dt p(t| y0√

d00
,λ0)

× log

∫
dy e−

1
2 y2/(C−c)−y(d0y0/

√
d00+iz

√
d)
( p(t|y,λ)

p(t| y0√
d00

,λ0)

)γ

=
1
2
(1 − ζ)

[
log(C − c) +

c − c2
0/S2

C − c

]
+

1
2

c2
0/S2

C − c
− 1

2
log(C − c)

− 1
2
log(2π)−

∫
DzDy0

∫
dt p(t|Sy0,λ0)

× log

∫
Dy ey[y0c0/S

√
C−c+z

√
(c−c2

0/S2)/(C−c)]
(p(t|y

√
C − c,λ)

p(t|Sy0,λ0)

)γ
.

 (B.11)
This expression takes a simpler form if we introduce the following transformation of the trio 
{C, c, c0} to new non-negative variables {u, v, w}:
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u =
√

C − c, v =
√

c − c2
0/S2, w = c0/S (B.12)

with inverse transformation

c0 = Sw, c = v2 + w2, C = u2 + v2 + w2. (B.13)

With these definitions, and upon removing terms that vanish upon differentiation by γ, we can 
summarise the current state of our RS calculations for the stochastic generalization of the Cox 
model, in the limit of large data sets, by the following compact expression:

Eγ(S,λ0) =
∂

∂γ
extru,v,w;λ

{1
2
(1 − ζ)v2/u2 +

1
2

w2/u2 − ζ log u

−
∫

DzDy0

∫
dt p(t|Sy0,λ0) log

∫
Dy ey(wy0+vz)/u

( p(t|uy,λ)
p(t|Sy0,λ0)

)γ}
.

 

(B.14)

If we transform y → y + (wy0 + vz)/u, we can write this result equivalently as

Eγ(S,λ0) =

∫
Dy0

∫
dt p(t|Sy0,λ0) log p(t|Sy0,λ0)

− ∂

∂γ
extru,v,w;λ

{
ζ
( v2

2u2 + log u
)

+

∫
DzDy0

∫
dt p(t|Sy0,λ0) log

∫
Dy pγ(t|uy + wy0 + vz,λ)

}
.

 
(B.15)

At the relevant saddle point, the order parameter derivative of the function that is being 
extremized will by definition be zero, so

Eγ(S,λ0) =

∫
Dy0

∫
dt p(t|Sy0,λ0) {log p(t|Sy0,λ0)

−
∫

Dz
[∫

Dy pγ(t|uy + wy0 + vz,λ) log p(t|uy + wy0 + vz,λ)∫
Dy pγ(t|uy + wy0 + vz,λ)

]}

 

(B.16)

in which the order parameters {u, v, w;λ} are to be evaluated at the saddle point of

ΨRS(u, v, w;λ) = ζ
( v2

2u2 + log u
)

+

∫
DzDy0

∫
dt p(t|Sy0,λ0) log

∫
Dy pγ(t|uy + wy0 + vz,λ).

 
(B.17)

Appendix C. The limits ζ → 0 and ζ → 1

For ζ → 0, the limit of no overfitting, we immediately find from (66) and (70) that ũ, v → 0. 
To find also w and λ(t) we need to go to the next order in ζ, using W(z) = z +O(z2). This 
results in

ζv2

ũ4 =

∫
DzDy0

∫
dt p(t|Sy0,λ0)

[
1 − ewy0+vzΛ(t)

]2
+O(ũ2) (C.1)
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ζ

ũ2 =

∫
DzDy0

∫
dt p(t|Sy0,λ0)ewy0+vzΛ(t) +O(ũ2) (C.2)

0 =

∫
DzDy0 y0

∫
dt p(t|Sy0,λ0)ewy0+vzΛ(t) +O(ũ2) (C.3)

p(t)
λ(t)

=

∫
DzDy0

∫ ∞

t
dt′ p(t′|Sy0,λ0)ewy0+vz +O(ũ2). (C.4)

It follows that v = O(ũ) and ũ = O(
√
ζ) for ζ → 0, and that limζ→0 w and limζ→0 λ(t) are to 

be solved from the following two coupled equations:

0 =

∫
Dy0 y0

∫
dt p(t|Sy0,λ0)ewy0Λ(t) (C.5)

p(t)
λ(t)

=

∫
Dy0

∫ ∞

t
dt′ p(t′|Sy0,λ0)ewy0 . (C.6)

After some simple rewriting and integration by parts over time, they take the alternative forms

0 =

∫
Dy0 y0e(w−S)y0

∫
dt p(t|Sy0,λ0)

λ(t)
λ0(t)

 (C.7)

p(t) =
∫

Dy0 e(w−S)y0 p(t|Sy0,λ0)
λ(t)
λ0(t)

ewy0 . (C.8)

From this we immediately confirm the correct solution limζ→0 w = S and limζ→0 λ(t) = λ0(t), 
which describes perfect inference, as expected for ζ → 0. From the pair (47) and (48) we also 
find the correct corresponding value for limζ→0 limγ→∞ Eγ(S,λ0):

lim
ζ→0

lim
γ→∞

Pγ(x, x′, t) =
∫

Dy0 p(t|Sy0,λ0)δ[x − Sy0]δ[x′ − Sy0] (C.9)

lim
ζ→0

lim
γ→∞

Eγ(S,λ0) = 0. (C.10)

Next we turn to the limit ζ → 1. Here it follows from (70) that ũ → ∞, and we need 
the expansion of W(z) for large arguments, i.e. W(z) = log z − log(log z) + . . .. With a 
modest amount of foresight we make the ansatz ũ = κ/

√
1 − ζ +O(log(1/(1 − ζ)) and 

v, w = O(log(1/(1 − ζ)) for ζ → 1. Using

W
(
ũ2eũ2+wy0+vzΛ(t)

)
=

κ2

1 − ζ
+O(log(

1
1 − ζ

)) (C.11)

our γ → ∞ order parameter equations then give

ζv2 =

∫
DzDy0

∫
dt p(t|Sy0,λ0)

[
O(log(

1
1 − ζ

))
]2

 (C.12)

ζ =

∫
DzDy0

∫
dt p(t|Sy0,λ0)[1 −O(1 − ζ)] (C.13)

0 =

∫
DzDy0 y0

∫
dt p(t|Sy0,λ0) O

(
(1 − ζ) log(

1
1 − ζ

)
)

 (C.14)
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p(t)
λ(t)

=

∫
DzDy0

∫ ∞

t
dt′ p(t′|Sy0,λ0)

1
Λ(t′)

×
[
1 +O

(
(1 − ζ) log(

1
1 − ζ

)
)]

.
 (C.15)

Our scaling ansatz is seen to be consistent with the three scalar order parameter equations. 
Hence ũ, v and w all diverge at a phase transition point ζ = 1, whereas for the functional order 
parameter equation we find in the limit ζ → 1:

p(t)
λ(t)

=

∫ ∞

t
dt′

p(t′)
Λ(t′)

. (C.16)

From this it follows after differentiation that d
dt [ p(t)Λ(t)/λ(t)] = 0, and after some further 

manipulations one arrives at the following degenerate solution for Λ(t):

lim
ζ↑1

lim
γ→∞

Λ(t) =

⎧
⎨

⎩

0 for t < τ

1 for t = τ

∞ for t > τ .
 (C.17)

Apparently, as one varies the ratio ζ of the number of covariates over the number of samples in 
the deterministic Cox model, the integrated inferred base hazard rate changes from the correct 
shape Λ0(t) at ζ = 0 to a step function at the phase transition point ζ = 1, with the discon-
tinuity at some time point τ that should follow from inspecting sub-leading orders in 1 − ζ. 
Moreover, at this transition (if not even earlier) one expects to find breaking of the assumed 
replica symmetry.

Appendix D. Asymptotic form of the event time distribution

Here we calculate the asymptotic form of the function g(x) =
∫

Dy eSy−x exp(Sy) for x → ∞, 
and derive expression (88). Working out the definition gives

log g(x) =
1
2

S2 + log

∫
dy√
2π

e−
1
2 y2−x exp(S2+Sy)

=
1
2

S2 + log

∫
dy√
2π

e−ϕ(y,eS2
x)

 (D.1)

with

ϕ(y, η) =
1
2

y2 + ηeSy. (D.2)

Differentiation shows that the function ϕ(y, η) is mimimal at y = −W(ηS2), where W(z) is 
Lambert’s W-function [35]. Expansion of ϕ(y, η) around its minimum gives:

ϕ(y, η) =
1

2S2

(
W(ηS2) + 1

)2
− 1

2S2 +
1
2

[
W(ηS2) + 1

](
y +

1
S

W(ηS2)
)2

+ O(
[
W(ηS2) + 1

](
y +

1
S

W(ηS2)
)3

.
 

(D.3)
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This leads to the following Gaussian approximation of the integral over y:

log

∫
dy√
2π

e−ϕ(y,η) =
1

2S2 − 1
2S2

(
W(ηS2) + 1

)2

+O
(
log

[
W(ηS2) + 1

])
.

 
(D.4)

Application to η = xeS2
 then gives:

log g(x) = − 1
2S2

[
W(xS2eS2

) + 1
]2 − 1

2
logW(xS2eS2

) +O(1). (D.5)

Finally, for x → ∞ we can use W(z) = log z − log log z +O(log log z/ log z) to obtain

log g(x) = − 1
2S2 (log x)2 +

1
S2 log x. log log x +O(log x). (D.6)
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