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Abstract
The Cox proportional hazards model is ubiquitous in the analysis of time-to-
event data. However, when the data dimension p  is comparable to the sample 
size N, maximum likelihood estimates for its regression parameters are known 
to be biased or break down entirely due to overfitting. This prompted the 
introduction of the so-called regularized Cox model. In this paper we use the 
replica method from statistical physics to investigate the relationship between 
the true and inferred regression parameters in regularized multivariate Cox 
regression with L2 regularization, in the regime where both p  and N are 
large but with ζ = p/N ∼ O(1). We thereby generalize a recent study from 
maximum likelihood to maximum a posteriori inference. We also establish a 
relationship between the optimal regularization parameter and ζ, allowing for 
straightforward overfitting corrections in time-to-event analysis.

Keywords: Cox proportional hazards model, survival analysis, overfitting, 
replica method

(Some figures may appear in colour only in the online journal)

1. Introduction

Inference of parameters for generalized linear models using the maximum likelihood (ML) 
protocol becomes increasingly biased due to overfitting as the ratio ζ = p/N  increases, where 
p  is the number of covariates and N the number of training data. Overfitting occurs when 
model parameters seek to explain not only the ‘signal’ but also the ‘noise’ in training data, 
and is characterized by a difference in outcome prediction accuracy between training and vali-
dation samples. See e.g. [1, 3–5] for examples from logistic regression, gamma distributions 
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and Cox models [1]. Hence, standard statistical significance tests for regression coefficients, 
being usually based on asymptotic results derived for fixed p , become increasingly inaccurate 
[6]. Unfortunately, in post-genome medicine, having large ratios ζ is the rule rather than the 
exception. This prompted epidemiologists to formulate heuristic rules for avoiding overfit-
ting, such as limits on the number of events per variable [7–11]. The Cox proportional hazards 
model [2], commonly used in epidemiological studies and clinical trials, predicts the continu-
ous time-to-event random variable by combining an unspecified baseline hazard rate with a 
function of patient covariates. The canonical form for the covariate-dependent hazard rate of 
this model is λ(t) = λ0(t)eβ.z. It was originally developed for use with life-tables where N is 
large (population-wide data) and the number of covariates p  is small. Maximizing a likelihood 
function is a valid inference method in this regime. Approximate recipes for correcting ML 
estimates were developed in e.g. [12, 13]. Alternative methods of addressing the overfitting 
problem include feature selection and regularization. In feature selection one seeks to identify 
a subset of covariates that are informative of outcomes [14–16]. Its advantages include reduc-
tion in the required computational resources, and increased interpretability. In regularization 
one adds a penalty term to the objective function of ML inference (which can alternatively be 
derived from a prior in Bayesian inference) to suppress the number or magnitude of the model 
parameters [17, 18]. Application of regularization to survival analysis with high-dimensional 
covariates is studied widely, see e.g. [19, 20] and references therein.

A recent study [1] provided a new approach to overfitting in survival analysis. It showed 
how the replica method from statistical physics can be used to model ML inference analyti-
cally as the zero noise limit of a suitably defined stochastic minimization, starting from an 
information-theoretic measure of overfitting. The theory predicted the quantitative relation 
between ML-inferred and true parameters in the Cox model [1], and a phase transition at 
ζ = 1.

Let us denote the set of model parameters as ϑ, and the data as D. The observation that 
ML inference is equivalent to minimization of the Kullback–Leibler divergence between the 
empirical data distribution P̂D and the parametrized distribution Pϑ assumed as a model of 
the data, suggests [1] using E(ϑ,D) ≡ D(P̂D∥Pϑ)− D(P̂D∥Pϑ⋆) as a measure of overfit-
ting4, in which ϑ⋆ are the true (but a priori unknown) parameter values. Perfect regression 
implies E  =  0, underfitting implies E  >  0, and overfitting implies E  <  0. To gain more intui-
tion for this measure, we generate synthetic data from a simple logistic regression model, find 
the ML estimators of its parameters, and calculate E. Here the parameters are {βµ}

p
µ=0, the 

data are D = {(t1, z1), . . . , (tN , zN)}, with zi ∈ R p+1 and ti ∈ {0, 1}, and we use the short-
hand β · z =

∑ p
µ=0 βµzµ (with the convention z0  =  1). The outcome likelihood Pβ(t|z) and 

the measure E are given by

Pβ(t|z) =
( 1

1 + e−β·z

)t( 1
1 + eβ·z

)1−t
 (1.1)

E(β⋆,D) =
1
N

N∑

i=1

{
ti log

( 1 + e−β·zi

1 + e−β⋆·zi

)
+ (1 − ti) log

( 1 + eβ·zi

1 + eβ⋆·zi

)}
. (1.2)

Results are shown in figure 1. When ζ = 0.025, E converges towards zero during the mini-
mization, indicating perfect parameter recovery. As the number of samples in the data set is 
reduced, giving ζ = 0.25 and ζ = 2.5, E converges to increasingly negative values. Since 

4 A similar idea for comparing estimators of probability distributions was used in [22], using the Lévy distance 
rather than the KL divergence. Other measures of overfitting can be found in e.g. [20, 23].
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there is no model mismatch (the data were generated from a logistic model), the negative 
values of E indicate overfitting.

Switching from maximum likelihood to maximum a posteriori estimators implies adding 
a penalty term to the likelihood: D(P̂D∥Pϑ) → D(P̂D∥Pϑ)− log p(ϑ) where p(ϑ) represents 
a parameter prior, giving

E(ϑ⋆,D) ≡ min
ϑ

{
D(P̂D∥Pϑ)− log p(ϑ)

}
−
{

D(P̂D∥Pϑ⋆)− log p(ϑ⋆)

}

= min
ϑ

{
1
N

N∑

i=1

log
p(ti|zi,ϑ⋆) p(ϑ⋆)

p(ti|zi,ϑ) p(ϑ)

}
.

 

(1.3)

MAP regression is equivalent to minimizing the quantity (1.3). This minimization should in 
principle be over all ϑ, but may in practice be constrained to simplify the calculation (see e.g. 
[24–26]). For generalized linear models, commonly used priors are p(β) ∝ exp[−η

∑ p
µ=1 |βµ|] 

(giving L1 regularization5, or ‘LASSO’ regression [18]) and p(β) ∝ exp[−η
∑ p

µ=1 β
2
µ] (giv-

ing L2 regularization, or ‘ridge’ regression).
In the present paper we generalize the replica analysis of [1] from ML to MAP inference, 

upon adding an L2 regularization term to the log-likelihood function. This term suppresses 
overfitting effects, and removes the ML phase transition of the Cox model [1] at ζ = 1; see 
e.g. figure  2. In the presence of an L2 regularizer, correlations between covariates can no 
longer be transformed away, as was done in [1], leading to the appearance in the theory of the 
population covariance matrix A of the covariates. Under mild restrictions on the eigenvalue 

Figure 1. Synthetic data with dimension p=25 and N = {10, 100, 1000} are generated 
using the logistic regression model. The ML estimate of model parameters is found 
numerically using the Nelder–Mead algorithm. The overfitting measure E is plotted 
after each iteration. The starting value model parameters β in the minimization search 
is the zero vector, giving a positive value of E (implying an underfitted model).

5 This choice promotes sparsity in the regression coefficient vector β, which would result in a horizontal line seg-
ment passing through the origin in figure 2. Since our theory aims to predict the slope of the data clouds in figure 2, 
we will not pursue L1 regularizers in this paper.
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spectrum of this matrix, we show how an accurate theory of overfitting for the regularized 
Cox proportional hazards model can be developed, in spite of such additional mathematical 
complications, including for the previously inaccessible regime ζ > 1. We find, as in [1], that 
the replica symmetric version of the theory is sufficient to explain accurately the behaviour 
of interest. The resulting equations can also be used to predict the amount of regularization 
needed for unbiased regression, expressed in term of spectrum of A and the ratio ζ.

2. Replica analysis of regularized Cox regression

2.1. Generalized replica formalism to include priors

Following [1], we interpret minimization of (1.3) as computing the ground state energy of 
a statistical mechanical system with degrees of freedom ϑ and Hamiltonian H(ϑ|ϑ⋆,D), at 
inverse temperature γ , where D = {(t1, z1), . . . , (tN , zN)} and

H(ϑ|ϑ⋆,D) = log
N∏

i=1

[p(ti|zi,ϑ⋆) p(ϑ⋆)

p(ti|zi,ϑ) p(ϑ)

]
. (2.1)

We define the associated free energy, which we average over the disorder (the microscopic 
realization of D), and can compute the disorder-averaged ground state energy as the γ → ∞ 
limit of the disorder-averaged energy density Eγ(ϑ

⋆), where

Eγ(ϑ
⋆) = − 1

N
∂

∂γ

〈
log

∫
dϑ

N∏

i=1

[
p(ti|zi,ϑ) p(ϑ)

p(ti|zi,ϑ⋆) p(ϑ⋆)

]γ〉

D
. (2.2)

Figure 2. Comparison of true and inferred regression coefficients for the Cox 
proportional hazards model. A systematic bias is found for non-zero values of ζ, which 
can be corrected with regularization. Synthetic survival data were generated [21] 
using Gaussian covariates (p = 500, N = 833, ζ = 0.6). The regression coefficients 
are inferred [17] using ML (no regularization) or maximum a posteriori probability 
regression (MAP, with regularization). Data points on the diagonal imply perfect 
inference.
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The replica identity ⟨log Z⟩ = limn→0 n−1 log⟨Zn⟩ is subsequently used to simplify the average 
of the logarithm (see [1] for details and references), giving in the present case

Eγ(ϑ
⋆) = − ∂

∂γ
lim
n→0

1
Nn

log

〈{∫
dϑ

N∏

i=1

[
p(ti|zi,ϑ) p(ϑ)

p(ti|zi,ϑ⋆) p(ϑ⋆)

]γ}n〉

D

= − ∂

∂γ
lim
n→0

1
Nn

log

∫ { n∏

α=1

dϑα
[p(ϑα)

p(ϑ⋆)

]γ}〈 N∏

i=1

n∏

α=1

[p(ti|zi,ϑα)

p(ti|zi,ϑ⋆)

]γ〉

D

= − ∂

∂γ
lim
n→0

1
Nn

log

∫ { n∏

α=1

dϑα
[p(ϑα)

p(ϑ⋆)

]γ}

×
{∫

dzdt p(z) p(t|z,ϑ⋆)
n∏

α=1

[p(t|z,ϑα)

p(t|z,ϑ⋆)

]γ}N
.

 

(2.3)

Equation (2.3) is applicable to any parametric model p(t|z,ϑ) and any prior p(ϑ). See also 
[27] for alternative results on the use of the replica method in statistical inference. We will 
now make a specific choice for p(t|z,ϑ), and use (2.3) to develop a theory for regression and 
overfitting in regularized Cox models with Gaussian priors.

2.2. Application to the regularized Cox proportional hazards model

Cox’s proportional hazards model originally described in [2] assumes a parametrization of 
the form6

p(t|z,ϑ) = λ(t)eβ·z−exp(β·z)
∫ t

0 dt′ λ(t′) (2.4)

where the random variable t ∈ R+ represents the time-to-event/failure for the sample. Its 
parameters are the coefficients β ∈ R p, and a base hazard rate λ(t) (a nonnegative function 
defined for 0 ! t < ∞). For practical use, the focus is often on the so-called hazard ratios 
which compare the values of the factors exp(βµzµ) for different covariate values. In this case, 
no assumptions are required for the unknown λ(t) beyond λ(t) ! 0. For our replica analysis, 
we make a variational approximation described in section 3.5. Substituting ϑ = {β,λ} trans-
lates (2.3) into

Eγ(β
⋆,λ⋆) = − ∂

∂γ
lim
n→0

1
Nn

log

∫
{dλ1. . . dλn}

∫
dβ1. . . dβn

{ n∏

α=1

[p(βα)

p(β⋆)

]γ}

×
{∫

dzdt p(z) p(t|z,β⋆,λ⋆)
n∏

α=1

[p(t|z,βα,λα)

p(t|z,β⋆,λ⋆)

]γ}N
.

 

(2.5)

Functional integrals are written as 
∫
{dλ}, the true parameters responsible for the data are 

written as {β⋆,λ⋆}, and we follow the standard convention for regularized Cox models of 
only including a prior for the association parameters (equivalently, assuming an improper, or 
‘flat’, prior for the base hazard rate). Our L2 prior is p(β) ∝ exp(−pηβ2), and we will find 
in our analysis that this form indeed gives the appropriate scaling with p . To proceed with 
the analytical treatment, we assume that the covariate vectors zi are drawn independently 
from a population distribution with zero mean and covariance matrix A. The introduction of 

6 The Cox proportional hazards model can be writen in terms of the probability density function for t, the survival 
function and the cumulative hazard rates. Deriviations of the relationships between these functions can be found in 
e.g. [32].
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regularization means that the regression equations for correlated covariates can no longer be 
transformed to those corresponding to uncorrelated ones. This leads to a more complex theory 
than [1], and ultimately to conditions on the eigenvalue spectrum of A.

Our analysis is carried out in the regime where both N, p → ∞ but with fixed ratio 
ζ = p/N ∼ O(1). To retain non-zero event times, even for p → ∞, we must rescale the regres-
sion coefficients according to β → β/

√p, resulting in β · z ∼ O(1). Without this rescaling 
we would have event time distributions with all weight concentrated on t → 0 and t → ∞. We 
also replace β⋆ by β0, to allow for more compact notation. Following [1] we next introduce

p(y|β0, . . . ,βn) =

∫
dz p(z)

n∏

α=0

δ
[
yα − βα · z

√p

]
 (2.6)

where y = {y0, y1, . . . , yn}∈Rn+1. The magnitude of eβ·z represents the relative risk of fail-
ure, compared to that of an ‘average’ individual (with z = 0). Therefore y can be considered 
a vector of risk scores. Our energy density then becomes

Eγ(β
⋆,λ⋆) = − ∂

∂γ
lim
n→0

1
Nn

log

∫
{dλ1. . . dλn}

∫
dβ1. . . dβn

n∏

α=1

[p(βα)

p(β0)

]γ

×
{∫

dy p(y|β0, . . . ,βn)

∫
dt p(t|y0,λ0)

n∏

α=1

[p(t|yα,λα)

p(t|y0,λ0)

]γ}N

 (2.7)
in which now

p(t|y,λ) = λ(t)ey−exp(y)
∫ t

0 dt′ λ(t′). (2.8)

To proceed we assume that p(y|β0, . . . ,βn) is Gaussian. This holds for any N and p  as soon 
as p(z) is Gaussian, and for non-Gaussian covariate statistics it will generally hold due to the 
Central Limit Theorem if the correlations among the covariates are weak, and N and p  are 
large. Since we assumed 

∫
dz p(z)z = 0, the risk score distribution is now given by

p(y|β0, . . . ,βn) =
e− 1

2 y·C−1[{β}]y
√
(2π)n+1 detC[{β}]

. (2.9)

It is determined in full by the (n+1)×(n+1) covariance matrix C[{β}], with entries

Cαρ[{β}] =
∫

dz p(z)
(βα · z

√p

)(βρ · z
√p

)
=

1
p
βα · Aβρ. (2.10)

The entries of A are given by Aµν =
∫

dz p(z)zµzν. The {Cαρ[{β}]} measure the similarity 
between the p -dimensional vectors formed by the regression parameters in different replicas. 
For each replica pair (α, ρ) we use the integral representation of the Dirac delta function, and 
rescale the conjugate integration parameter by p ,

1 =

∫
dCαρ δ

[
Cαρ−

1
p
βα · Aβρ] =

∫
dCαρdĈαρ

2π/p
eipĈαρ(Cαρ− 1

p β
α·Aβρ) (2.11)

in order to simplify expression (2.7) to

M Sheikh and A C C Coolen J. Phys. A: Math. Theor. 52 (2019) 384002
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Eγ(β
⋆,λ⋆) = − ∂

∂γ
lim
n→0

1
Nn

log

∫
{dλ1. . . dλn}

∫
dC dĈ

eip
∑n

α,ρ=0 Ĉαρ Cαρ

(2π/p)(n+1)2

×
[∫

dy e− 1
2 yT C−1y

√
(2π)n+1 detC

∫
dt p(t|y0,λ0)

n∏

α=1

[p(t|yα,λα)

p(t|y0,λ0)

]γ
]N

×
∫

dβ1. . . dβn e−ηγ
∑n

α=1[(β
α)2−(β0)2]−i

∑n
α,ρ=0 Ĉαρβ

α·Aβρ

.

 (2.12)
The quadratic nature of the exponent in the β integral, a consequence of having chosen L2 
regularization, allows for a closed form solution. Changing the penalty term to L1 or Lq with 
q>2 would significantly complicate the integrals.

2.3. Conversion into a saddle point problem

With a modest amount of foresight we transform Ĉ = − 1
2 iD, and introduce the short-hand 

β̃ ≡ A
1
2 β. To evaluate the Gaussian β integral in (2.12) we define the np × np matrix Ξ and 

the np-dimensional vector ξ, with entries

Ξαµ;βν = 2ηγδαβ(A−1)µν + δµνDαβ , ξαµ = −D0αβ̃
0
µ. (2.13)

With these definitions we may write the Gaussian integral in (2.12) as
∫ ( n∏

α=1

dβ̃
α

e−ηγβ̃
α·A−1β̃

α
)

e−
1
2
∑n

α,ρ=1 Dαρβ̃
α·β̃ρ−

∑n
ρ=1 D0ρβ̃

0·β̃ρ

= e
1
2 ξ·Ξ

−1ξ

∫
dβ̃ e−

1
2 (β̃−Ξ−1ξ)·Ξ(β̃−Ξ−1ξ) =

(2π)
np
2

√
detΞ

e
1
2 ξ·Ξ

−1ξ.

 

(2.14)

Let {aµ} and {bα} denote the eigenvalues of A and D, respectively. The two terms P  and Q 
of the matrix Ξ, with components Pαµ,βν = 2ηγδαβ(A−1)µν and Qαµ,βν = δµνDαβ , clearly 
commute. The complete set of eigenvectors of Ξ can therefore be written as {ûµα}, with 
comp onents ûµα

νρ = uαρ vµν, and where 
∑

ρ!n Dλρuαρ = bαuλρ  and 
∑

ν!p Aλνvµ
ν = aµvµλ, and 

where both are normalised according to 
∑

ρ!n(u
α
ρ )

2 =
∑

ν!p(v
µ
ν )

2 = 1. The eigenvalues of 
Ξ are then ξµα = 2ηγ/aµ + bα, and

detΞ =
p∏

µ=1

n∏

α=1

(2ηγ
aµ

+bα

)
, (Ξ−1)αµ,α′µ′ =

n∑

β=1

p∑

ν=1

uβ
αvνµuβα′vν

µ′

2ηγ/aν + bβ
. (2.15)

Hence the integral (2.14) can be written as

(2π)
np
2

√
detΞ

e
1
2 ξ·Ξ

−1ξ = e
1
2 np log(2π)− 1

2 np
〈
log(2ηγ/a+b)

〉
+ 1

2 np
〈
(ξ·û)2(2ηγ/a+b)−1

〉

 (2.16)
where the averages in the exponents are over the eigenvalues and orthonormal eigenvectors of 
Ξ, i.e. ⟨ f (a, b, û)⟩ = (np)−1 ∑ p

µ=1
∑n

α=1 f (aµ, bα, ûµα). Since p = ζN  with ζ>0, the int-
egrals over C, Ĉ and the base hazard rates in (2.12) can for N → ∞ be evaluated by steepest 
descent, provided the limits n→0 and N→∞ commute. Expression (2.16) then enables us to 
write the result as

M Sheikh and A C C Coolen J. Phys. A: Math. Theor. 52 (2019) 384002
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lim
N→∞

Eγ(β
⋆,λ⋆) =

∂

∂γ
lim
n→0

1
n

extrΨ(C, D,λ1 . . .λn) (2.17)

in which

Ψ(C, D,λ1. . .λn) = −1
2
ζ

[ n∑

α,ρ=0

DαρCαρ −
1
p

D00(β̃
0
)2
]
+

1
2
(n+1−nζ) log(2π)

+
1
2
log detC − nηζγS2 +

1
2

nζ
〈
log

(2ηγ
a

+b
)〉

− 1
2

nζ
〈 (ξ · û)2

2ηγ/a+b

〉

− log

∫
dy e−

1
2 y·C−1y

∫
dt p(t|y0,λ0)

n∏

α=1

[p(t|yα,λα)

p(t|y0,λ0)

]γ

 

(2.18)

where we have defined S2 = limp→∞ p−1(β0)2. Differentiating Ψ with respect to D00 removes 
D00 from the problem, and gives C00 = p−1β0 · Aβ0 ≡ S̃2.

3. Replica symmetric theory

3.1. Replica symmetric saddle points

To proceed, we make the replica symmetric ansatz, which implies assuming ergodicity of the 
stochastic regression process, and translates into invariance of all order parameters under all 
permutations of the replicas {1, . . . , n}. Now, for all 1 ! α, ρ ! n:

λα(t) = λ(t),
C0α = c0

D0α = d0
,

Cαρ = Cδαρ + c(1 − δαρ)

Dαρ = Dδαρ + d(1 − δαρ)
. (3.1)

Both C and D are positive definite, so C  >  c and D  >  d. We may now write

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

C00 c0 . . . . . . c0

c0 C c . . . c
... c C . . . c
...

...
...

. . .
...

c0 c c . . . C

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, C−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

B00 b0 . . . . . . b0

b0 B b . . . b
... b B . . . b
...

...
...

. . .
...

b0 b b . . . B

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues and eigenvectors of C, C−1 and D are found in [1]. C has two nondegener-
ate eigenvalues λ± with λ+λ− = [C + (n−1)c]C00 − nc2

0, and a further n−1 fold degenerate 
eigenvalue λ0 = C − c. Hence

log detC = log
(
[C + (n−1)c]C00 − nc2

0

)
+ (n−1) log(C−c)

= logC00 + n log(C−c) +
n
(
c−c2

0/C00
)

C − c
+O(n2).

 (3.2)

The entries of C−1 are found to be

B00 =
C + (n − 1)c

C00[C + (n − 1)c]− nc2
0

, b0 = − c0

C00[C + (n − 1)c]− nc2
0

 (3.3)

M Sheikh and A C C Coolen J. Phys. A: Math. Theor. 52 (2019) 384002
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B = b +
1

C − c
, b =

c2
0 − cC00

(C00[C + (n − 1)c]− nc2
0)(C − c)

. (3.4)

Hence

y · C−1y = B00(y0)2 + (B−b)
n∑

α=1

(yα)2 + b
( n∑

α=1

yα
)2

+ 2b0y0
n∑

α=1

yα. (3.5)

Next we turn to terms in (2.18) that involve the spectrum of D. This matrix has one eigenvalue 
D+(n−1)d with eigenvector v = (1, . . . , 1), and the n−1 fold degenerate eigenvalue D  −  d 
with eigenspace 

∑n
i=1 vi = 0. Hence

〈
log

(2ηγ
a

+b
)〉

=
1

np

p∑

µ=1

[
(n−1) log

(2ηγ
aµ

+D−d
)
+ log

(2ηγ
aµ

+D−d+nd
)]

=
〈
log

(2ηγ
a

+D−d
)〉

+
〈 da

2ηγ+(D−d)a

〉
+O(n).

 
(3.6)

Similarly, using the RS form of ξαµ = −d0(A
1
2 β0)µ, we may write

〈 (ξ · û)2

2ηγ/a+b

〉
=

1
np

p∑

µ=1

( p∑

ν=1

n∑

ρ=1

(A
1
2 β0)νvµν

1√
n

)2 d2
0

2ηγ/aµ+D+(n−1)d

=
1
p

p∑

µ=1

(β0 ·vµ)2 d2
0aµ

2ηγ/aµ+D−d
+O(n)

= d2
0

〈 a2(β0 ·v)2

2ηγ+(D−d)a

〉
+O(n).

 (3.7)
The averages in (3.6) and (3.7) are now over the joint distribution of eigenvalues and eigenvec-
tors of A only. Inserting the above RS expressions into (2.18), and using C00 = S̃2, then gives 
us, with the short-hand Dz = (2π)− 1

2 e− 1
2 z2

dz,

1
n
ΨRS(. . .) = − 1

2
ζ(2d0c0 + DC − dc) +

1
2
(1−ζ) log(2π)− ηζγS2 +O(n)

+
1
2

[
log(C−c) +

c−c2
0/C00

C−c

]
− 1

2
ζd2

0

〈 a2(β0 ·v)2

2ηγ+(D−d)a

〉

+
1
2
ζ
〈
log

(2ηγ
a

+D−d
)〉

+
1
2
ζ
〈 da

2ηγ+(D−d)a

〉
+

1
n
log S̃

− 1
n
log

∫
Dz

∫
dy0√

2π
e−

1
2 B00y2

0

∫
dt p(t|y0,λ0)

×
[ ∫

dy e−
1
2 (B−b)y2+y(iz

√
b−b0y0) pγ(t|y,λ)

pγ(t|y0,λ0)

]n

M Sheikh and A C C Coolen J. Phys. A: Math. Theor. 52 (2019) 384002



10

= − 1
2
ζ(2d0c0 + DC − dc) +

1
2
(1−ζ) log(2π)− ηζγS2 +O(n)

+
1
2

[
log(C−c) +

c−c2
0/S̃2

C−c

]
− 1

2
ζd2

0

〈 a2(β0 ·v)2

2ηγ+(D−d)a

〉

+
1
2
ζ
〈
log

(2ηγ
a

+D−d
)〉

+
1
2
ζ
〈 da

2ηγ+(D−d)a

〉
+

1
2n

log(S̃2B00)

− 1
n
log

∫
DzDy0

∫
dt p(t|y0/

√
B00,λ0)

×
[ ∫

dy e−
1
2 (B−b)y2+y(iz

√
b−b0y0/

√
B00) pγ(t|y,λ)

pγ(t|y0/
√

B00,λ0)

]n
.

 

(3.8)

We note that

B−1
00 = S̃2 − nc2

0/(C−c) +O(n2), B − b = 1/(C−c) (3.9)

b0 = −c0/S̃2(C−c) +O(n), b =
c2

0 − cS̃2

S̃2(C−c)2
+O(n) (3.10)

and these identities enable us, after some simple rearrangements, to write the limit 
ΨRS(. . .) = limn→0 n−1ΨRS(. . .) in the much simpler form

ΨRS(. . .) = − 1
2
ζ

{
2d0c0 + DC − dc + log(2π) + 2ηγS2

+ d2
0

〈 a2(β0 ·v)2

2ηγ+(D−d)a

〉
−
〈
log

(2ηγ
a

+D−d
)〉

−
〈 da

2ηγ+(D−d)a

〉}

−
∫

DzDy0

∫
dt p(t|S̃y0,λ0) log

∫
Dy

pγ(t|y
√

C−c +z(c−c2
0/S̃2)

1
2 +y0c0/S̃,λ)

pγ(t|S̃y0,λ0)
.

 

(3.11)

3.2. Simplification of the theory and interpretation of order parameters

Expression (3.11) can readily be extremized over d0, which removes a further order parameter 
from our theory, and we carry out a suitable transformation of the remaining order parameters,

u =
√

C−c, v =
√

c−(c0/S̃)2, w = c0/S̃, f = d, g = D−d (3.12)

with u, v, w ∈ [0,∞) and with the inverse transformations

c0 = S̃w, c = v2+w2, C = u2+v2+w2. (3.13)

These steps result after some simple rearrangements, and upon removing the term in ΨRS that 
will vanish upon differentiation with respect to γ , in

lim
N→∞

Eγ(β
⋆,λ⋆) =

∂

∂γ
extru,v,w,f ,g,λΨRS(u, v, w, f , g,λ) (3.14)

in which
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ΨRS(. . .) =− 1
2
ζ(g+f )u2 − 1

2
ζg(v2+w2)− ζηγS2

+
1
2
ζ

{
S̃2w2

〈a2(β0 ·v)2

2ηγ+ga

〉−1
+
〈
log

(2ηγ+ga
a

)〉
+ f

〈 a
2ηγ+ga

〉}

−
∫

DzDy0

∫
dt p(t|S̃y0,λ0) log

∫
Dy

pγ(t|uy+wy0+vz,λ)
pγ(t|S̃y0,λ0)

.

 

(3.15)

In principle we could also extremise over f , leading to a simple expression with which to remove 
not just f  but also either u or g. The true association parameters β0 are seen to enter the asymp-
totic theory only in two places: in S̃2 = limp→∞ p−1β0 · Aβ0 and in ⟨a2(β0 · v)2/(2ηγ + ga)⟩. 
Both are quadratic functions of β0. In appendix we show that, if the true associations {β0

µ} 
are drawn randomly and independently from a zero-average distribution, and under mild con-
ditions on the spectrum ϱ(a) of the covariate correlation matrix A, both terms will be self-
averaging with respect to the realization of β0. Consequently, with S2 = limp→∞ p−1(β0)2 
we may then write

S̃2 = S2⟨a⟩,
〈a2(β0 · v)2

2ηγ+ga

〉
= ⟨ S2a2

2ηγ+ga
⟩ (3.16)

(where we used the fact that the eigenvectors v of A were defined to be normalized). Our rep-
lica symmetric theory thereby becomes

lim
N→∞

Eγ(β
0,λ0) =

∫
Dy0

∫
dt p(t|S⟨a⟩ 1

2 y0,λ0) log p(t|S⟨a⟩ 1
2 y0,λ0)− ζηS2

+ ηζ

{
w2⟨a⟩

〈 a2

2ηγ+ga

〉−2〈 a2

(2ηγ+ga)2

〉
+

〈 1
2ηγ+ga

〉
− f

〈 a
(2ηγ+ga)2

〉}

−
∫

DzDy0

∫
dt p(t|S⟨a⟩ 1

2 y0,λ0)

∫
Dy pγ(t|uy+wy0+vz,λ) log p(t|uy+wy0+vz,λ)∫

Dy pγ(t|uy+wy0+vz,λ)
.

 (3.17)
The scalar order parameters (u, v, w, f , g} and the function λ(t) are computed by extremization 
of the following function, from which we removed any constant terms:

ΨRS(. . .) = − 1
2
ζ(g+f )u2 − 1

2
ζg(v2+w2)

+
1
2
ζ

{
w2⟨a⟩

〈 a2

2ηγ+ga

〉−1
+
〈
log(2ηγ+ga)

〉
+ f

〈 a
2ηγ+ga

〉}

−
∫

DzDy0

∫
dt p(t|S⟨a⟩ 1

2 y0,λ0) log

∫
Dy pγ(t|uy+wy0+vz,λ).

 

(3.18)

The physical meaning of the RS order parameters can be inferred by adapting the route fol-
lowed in [1]. Upon defining averages over the stochastic MAP minimisation process as ⟨. . .⟩ 
and those over the realisations of the data set as ⟨. . .⟩D, this results in

C = lim
p→∞

1
p
⟨⟨β ·Aβ⟩⟩D, c = lim

p→∞

1
p
⟨⟨β⟩·A⟨β⟩⟩D, c0 = lim

p→∞

1
p
β0 ·A⟨⟨β⟩⟩D.

 (3.19)
These order parameters can be used to predict the slope and width of the association param-
eter cloud in figure 2. A plausible model for this cloud is ⟨β⟩ = κβ0 + ω, in which ω denotes 
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a zero-average inference noise contribution that depends on the data set D. The entries 
Ωµν = ⟨ωµων⟩D of the p × p noise covariance matrix Ω have the same dimension as those 
of A−1, which prompt us to postulate that Ω = σ2A−1. Inserting the above expression for ⟨β⟩ 
into (3.19) leads to the following identities:

c = κ2S̃2 + σ2, c0 = κS̃2 (3.20)

u2 = lim
p→∞

1
p

p∑

µν=1

Aµν⟨⟨βµβν⟩−⟨βµ⟩⟨βν⟩⟩D. (3.21)

Using the transformations (3.12) we then obtain the following simple expressions for the two 
dominant characteristics κ and σ of the simulation data clouds:

κ = w/S̃, σ = v. (3.22)

3.3. Scaling of order parameters with γ

We will only be interested in the limit γ → ∞, where the stochastic process becomes deter-
ministic MAP inference. Following [1], and with a modest amount of foresight regarding 
the behaviour of the new order parameters that did not feature in [1], we make the following 
ansatz for the scaling with γ  of the scalar order parameters:

u = ũ/
√
γ, v, w = O(1), g = g̃γ, f = f̃γ2. (3.23)

Insertion into (3.18), followed by taking the limit γ → ∞, gives

lim
γ→∞

1
γ
ΨRS(. . .) =

1
2
ζ

{
w2⟨a⟩

〈 a2

2η+g̃a

〉−1
+ f̃

[〈 a
2η+g̃a

〉
− ũ2

]
− g̃(v2+w2)

}

−
∫

DzDy0

∫
dt p(t|S⟨a⟩ 1

2 y0,λ0) lim
γ→∞

1
γ
log

∫
dy eγ

[
log p(t|ũy+wy0+vz,λ)− 1

2 y2
]

=
1
2
ζ

{
w2⟨a⟩

〈 a2

2η+g̃a

〉−1
+ f̃

[〈 a
2η+g̃a

〉
− ũ2

]
− g̃(v2+w2)

}

−
∫

DzDy0

∫
dt p(t|S⟨a⟩ 1

2 y0,λ0)maxy

[
log p(t|ũy+wy0+vz,λ)− 1

2
y2
]
.

 (3.24)
The maximization over y  proceeds as in [1], giving

argmaxy

[
log p(t|ũy+wy0+vz,λ)− 1

2
y2
]
= ũ − 1

ũ
W
(

ũ2eũ2+wy0+vzΛ(t)
)

 (3.25)

maxy

[
log p(t|ũy+wy0+vz,λ)− 1

2
y2
]
=

1
2
(ũ2+ũ−2) + wy0 + vz

+ log λ(t)− 1
2ũ2

[
W
(

ũ2eũ2+wy0+vzΛ(t)
)
+1

]2 
(3.26)

in which W(x) denotes Lambert’s W-function, i.e. the inverse of f (x) = xex. This then results 
in
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lim
γ→∞

1
γ
ΨRS(. . .) =

1
2
ζ
[
w2⟨a⟩

〈 a2

2η+g̃a

〉−1
+ f̃

[〈 a
2η+g̃a

〉
− ũ2

]
− g̃(v2+w2)

]

+
1

2ũ2

∫
DzDy0

∫
dt p(t|S⟨a⟩ 1

2 y0,λ0)
[
W
(

ũ2eũ2+wy0+vzΛ(t)
)
+1

]2

− 1
2
(ũ2+ũ−2)−

∫
Dy0

∫
dt p(t|S⟨a⟩ 1

2 y0,λ0) log λ(t).

 

(3.27)

Similarly, working out (3.17) in the limit γ → ∞ gives

lim
N→∞

E∞(β0,λ0) =

∫
Dy0

∫
dt p(t|S⟨a⟩ 1

2 y0,λ0)
[
log p(t|S⟨a⟩ 1

2 y0,λ0)− log λ(t)
]

− ũ2 − ζηS2 + ηζ
[
w2⟨a⟩

〈 a2

2η+g̃a

〉−2〈 a2

(2η+g̃a)2

〉
− f̃

〈 a
(2η+g̃a)2

〉]

+ (1+ũ−2)

∫
DzDy0

∫
dt p(t|S⟨a⟩ 1

2 y0,λ0)W
(

ũ2eũ2+wy0+vzΛ(t)
)

.

 

(3.28)

What remains in our RS analysis is to determine the order parameters {ũ, v, w, f̃ , g̃,λ} by 
extremization of (3.27), and to substitute the result into (3.28).

3.4. Scalar saddle point equations

Partial differentiation of (3.27) with respect to the five scalar order parameters {ũ, v, w, f̃ , g̃} is 
now straightforward and gives, upon using identities such as W ′(z) = W(z)/z[1 + W(z)] and 
after manipulations similar to those used in [1]:

ζ f̃ ũ4 = −
∫

DzDy0

∫
dt p(t|S⟨a⟩ 1

2 y0,λ0)
[
W
(

ũ2eũ2+wy0+vzΛ(t)
)
−ũ2

]2
 (3.29)

ζg̃ũ2 =

∫
DzDy0

∫
dt p(t|S⟨a⟩ 1

2 y0,λ0)
W
(
ũ2eũ2+wy0+vzΛ(t)

)

1+W
(
ũ2eũ2+wy0+vzΛ(t)

) (3.30)

0 = ζw
[
⟨a⟩

〈 a2

2η+g̃a

〉−1
− g̃

]

+
1
ũ2

∫
DzDy0 y0

∫
dt p(t|S⟨a⟩ 1

2 y0,λ0)W
(

ũ2eũ2+wy0+vzΛ(t)
) 

(3.31)

ũ2 =
〈 a

2η+g̃a

〉
 (3.32)

v2 = w2
[
⟨a⟩

〈 a2

2η+g̃a

〉−2〈 a3

(2η+g̃a)2

〉
− 1

]
− f̃

〈 a2

(2η+g̃a)2

〉
. (3.33)

Compared to the simpler scenario of [1], the present RS theory involves two additional order 
parameters, f̃  and g̃. As a simple test we can set η = 0, i.e. remove the priors for association 
parameters. This reduces the last two of the above saddle point equations  to g̃ = 1/ũ2 and 
f̃ = −v2/ũ4, removes all dependencies of the theory on the spectrum ϱ(a) of the covariate 
correlation matrix (other than via ⟨a⟩), and simplifies the remaining three scalar order param-
eter equations correctly to those derived in [1].
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3.5. Functional saddle point equation

The equation from which to solve the functional order parameter λ(t) is derived by functional 
differentiation of (3.27). Upon using the short-hand p(t) =

∫
Dy0

∫
dt p(t|S⟨a⟩ 1

2 y0,λ0) for the 
typical distribution of the event times in the data, this equation takes the form

p(t)
λ(t)

=

∫
DzDy0

∫ ∞

t

dt′

ũ2Λ(t′)
p(t′|S⟨a⟩ 1

2 y0,λ0)W
(

ũ2eũ2+wy0+vzΛ(t′)
)

. (3.34)

It differs only minimally from the one in [1], and is hence equally difficult to solve analyti-
cally. Following [1] we will therefore follow a variational approach, motivated by the asymp-
totic form of the solution for large times (see [1] for details), and choose the functional ansatz 
Λ(t) = k[Λ0(t)]ρ, leaving two variational parameters (k, ρ) to be solved, instead of a function. 
Inserting this ansatz into (3.27), followed by partial differentiation with respect to k and ρ  then 
leads to the following two equations:

ũ2 =

∫
DzDy0

∫
dt p(t|S⟨a⟩ 1

2 y0,λ0)W
(

kũ2eũ2+wy0+vz[Λ0(t)]ρ
)

 (3.35)

0 =
1
ũ2

∫
DzDy0

∫
dt p(t|S⟨a⟩ 1

2 y0,λ0)W
(

kũ2eũ2+wy0+vz[Λ0(t)]ρ
)
logΛ0(t)

− 1
ρ
−
∫

Dy0

∫
dt p(t|S⟨a⟩ 1

2 y0,λ0) logΛ0(t).

 

(3.36)

These have to be solved numerically alongside (3.29)–(3.33). We will compactify our equa-
tions by using instead of k the variable q = kũ2 exp(ũ2). As a further benefit of our variational 
ansatz, the time integrations in the saddle point equations can be simplified significantly upon 
switching to the new integration variable s = exp[− exp(S⟨a⟩ 1

2 y0)Λ0(t)] ∈ [0, 1], which gives 
ds = −p(t|S⟨a⟩ 1

2 y0,λ0)dt. After this transformation we can also combine the Gaussian vari-
ables into a single one, giving

ζ f̃ ũ4 = −
∫

Dx
∫ 1

0
ds

[
W
(
qeσx logρ(1/s)

)
−ũ2

]2
 (3.37)

ζg̃ũ2 =

∫
Dx

∫ 1

0
ds

W
(
qeσx logρ(1/s)

)

1+W
(
qeσx logρ(1/s)

) (3.38)

w =
g̃ρS
⟨a⟩ 1

2

〈 a2

2η+g̃a

〉
 (3.39)

ũ2 =
〈 a

2η+g̃a

〉
 (3.40)

v2 = w2
[
⟨a⟩

〈 a2

2η+g̃a

〉−2〈 a3

(2η+g̃a)2

〉
− 1

]
− f̃

〈 a2

(2η+g̃a)2

〉
 (3.41)

ũ2 =

∫
Dx

∫ 1

0
ds W

(
qeσx logρ(1/s)

)
 (3.42)
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ũ2

ρ
=

∫
Dx

∫ 1

0
ds W

(
qeσx logρ(

1
s
)
)
log log(

1
s
)− ζg̃ũ2S⟨a⟩ 1

2 (w−ρS⟨a⟩ 1
2 ) + ũ2CE

 (3.43)

in which σ2 = (w − ρS⟨a⟩ 1
2 )2 + v2, CE denotes Euler’s constant, and where we used the int-

egral 
∫ 1

0 ds log log(1/s) =
∫∞

0 dx e−x log x = −CE.

3.6. The limits η → 0, ζ → 0 and ζ → ∞

Here we investigate the order parameter behaviour in the small and large ζ limits, to confirm 
the shape of the order parameter plots, both analytically and by numerical analysis in the 
next section. In particular, since the order parameters v and w increase with ζ for small ζ and 
tend to zero for large ζ, we conclude that there must be a stationary point between these two 
extremes. This analytical argument is validated by numerical solutions of (3.37)–(3.43) (see 
figure 3) and by synthetic data studies (figure 4). An explanation of this phenomenon in terms 
of model complexity and the emergence of statistical constraints can be constructed [33]. In 
the limit η → 0, describing a fully flat prior for association parameters, the regression changes 
from MAP to ML, and our RS equations should therefore reduce to those of [1]. Upon setting 
η → 0 in equations (3.37)–(3.43), we immediately find that

w = ρS⟨a⟩ 1
2 , g̃ = 1/ũ2, f̃ = −v2/ũ4. (3.44)

From the first of these it follows that σ = v, and that the remaining RS scalar order parameter 
equations from which to solve {v, ρ, ũ, q} hence simplify to

ζv2 =

∫
Dx

∫ 1

0
ds

[
W
(
qevx logρ(1/s)

)
−ũ2

]2
 (3.45)

ζ =

∫
Dx

∫ 1

0
ds

W
(
qevx logρ(1/s)

)

1+W
(
qevx logρ(1/s)

) (3.46)

ũ2 =

∫
Dx

∫ 1

0
ds W

(
qevx logρ(1/s)

)
 (3.47)

ũ2

ρ
=

∫
Dx

∫ 1

0
ds W

(
qevx logρ(

1
s
)
)
log log(

1
s
) + ũ2CE. (3.48)

We observe that, as a consequence of having modified our present derivation compared to the 
one in [1] (we changed the order of integral transformations and partial differentiations), the 
above expressions provide the proof for the simplifying identity w = ρS  (which holds for the 
case where ⟨a⟩ = 1), that was suggested by numerical analysis but not yet proven in [1]. For 
η → 0 we can thus retrieve from our present results in an even more satisfactory manner the 
variational RS theory of [1].

For ζ → 0 (no overfitting) we expect to find v → 0 and w, ρ, k → 1. In analogy with [1] 
we now make the ansätze that ũ, v = O(

√
ζ) and ρ = 1 +O(ζ) for ζ → 0, and expand our 

equations (3.37)–(3.43) in leading order for small ζ, using W(z)  =  z  +  O(z2) for z → 0. After 
expanding the various integrals, whose leading orders in ζ can all be done analytically, this 
results in

ũ2/ζ = 1 +O(ζ), ζg̃ = 1 +O(ζ), w = S⟨a⟩ 1
2 +O(ζ), (3.49)
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f̃ ζ = −1 +O(ζ), k = 1 +O(ζ), v2/ζ = 1 +O(ζ), (3.50)

which confirms that in the absence of overfitting we indeed recover the correct values of the 
order parameters from our RS equations.

Finally we inspect the behaviour of the RS equations (3.37)–(3.43) in the limit ζ → ∞ of 
a diverging imbalance between the number of covariates and the number of samples. Note 
that in [1] (i.e. for η = 0) this limit was inaccessible, due to a phase transition at ζ = 1, 
where v, w → ∞. In the present theory, describing the regularized version of the Cox model, 
this phase transition is suppressed by the Bayesian prior, provided we choose η > 0. We 
now make the ansatz that g̃ → 0 for ζ → ∞, giving ũ2 → ⟨a⟩/2η , v → 0, w → 0, f̃ → 0, 

Figure 3. Predicted and measured values of the order parameters w and v (solid 
lines and markers, respectively), for A = Ip, S  =  1 and p   =  2000, shown versus 
ζ = p/N ∈ (0, 2]. Measurements are determined via MAP regression, with regularization 
parameter η = 0.025. Simulations are repeated 50 times with independent data sets 
(generated according to [28], with constant hazard rates), and results shown as averages 
with error bars indicating one standard deviation. Note that for these settings, slope and 
the width of the association parameter cloud equal w and v, respectively.

Figure 4. Predicted values of the order parameters w (left) and v (right), shown versus 
ζ = p/N . They are obtained by solving numerically the RS equations (3.37)–(3.43) for 
A = Ip and S  =  1, with the variational approximation for λ(t), and different choices of 
the regularization parameter η.
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σ2 → ρ2S2⟨a⟩, and upon introducing Q = limζ→∞ ζg̃ũ2, the remaining trio {Q, q, ρ} is for 
ζ → ∞ to be solved from the remaining three coupled equations

Q =

∫
Dx

∫ 1

0
ds

W
(
qeρS⟨a⟩

1
2 x logρ(1/s)

)

1+W
(
qeσx logρ(1/s)

) (3.51)

⟨a⟩
2η

=

∫
Dx

∫ 1

0
ds W

(
qeρS⟨a⟩

1
2 x logρ(1/s)

)
 (3.52)

⟨a⟩
2ηρ

=

∫
Dx

∫ 1

0
ds W

(
qeρS⟨a⟩

1
2 x logρ(

1
s
)
)
log log(

1
s
) + QS2⟨a⟩ρ+ ⟨a⟩

2η
CE.

 (3.53)
For ζ → ∞ we thus expect to find, as a consequence of limζ→∞ v = limζ→∞ w = 0, vanish-
ing inferred association parameters in the present regularized Cox model, with the assumed 
scaling of the width of the prior.

3.7. Expression for the overfitting measure

Finally, using the variational approximation for the cumulative hazard rate, the simple 
manipulations applied to the RS saddle point equations, and the actual order parameter equa-
tions themselves, the overfitting measure (3.28) can be simplified to the transparent form

lim
N→∞

E∞(β0,λ0) = ηζ
[
w2⟨a⟩

〈 a2

2η+g̃a

〉−2〈 a2

(2η+g̃a)2

〉
− f̃

〈 a
(2η+g̃a)2

〉]

+

∫
dt p(t) log

(λ0(t)
λ(t)

)
− ζηS2

 

(3.54)

with the short-hand p(t) =
∫

Dy0 p(t|S⟨a⟩ 1
2 y0,λ0). Our variational ansatz Λ(t) = k[Λ0(t)]ρ 

implies that λ(t) = kρλ0(t)[Λ0(t)]ρ−1, hence
∫

dt p(t) log
(λ0(t)
λ(t)

)
= − log k − log ρ− (ρ−1)

∫
dt p(t) logΛ0(t)

= − log k − log ρ− (ρ−1)
∫

Dy0

∫ 1

0
ds
[
e−S⟨a⟩

1
2 y0 log(

1
s
)
]

= − log k − log ρ− (ρ−1)
∫ ∞

0
dx e−x log x

= − log k − log ρ+ (ρ−1)CE.
 

(3.55)

Our final result for the asymptotic overfitting measure E(S) = limN→∞ E∞(β0,λ0) is 
therefore

E(S) = ηζ
[
w2⟨a⟩

〈 a2

2η+g̃a

〉−2〈 a2

(2η+g̃a)2

〉
− f̃

〈 a
(2η+g̃a)2

〉]

− log k − log ρ+ (ρ−1)CE − ζηS2.
 

(3.56)

We observe that, as was the case in [1] (without regularization), both the RS order param-
eter equations and the overfitting measure have within the variational approximation become  
completely independent of the true base hazard rate λ0(t).
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4. Numerical experiments

4.1. Numerical solution of order parameter equations

Numerical solution of the RS saddle point equations (3.37)–(3.43), with the variational approx-
imation for the base hazard rate, results in data as shown in figure 3. This figure corresponds to 
A = Ip, i.e. uncorrelated and normalized covariates, and S  =  1. The phase transition at ζ = 1 
of [1] (corresponding to ML regression) is for η > 0 no longer present, due to the regulariza-
tion incorporated into MAP regression. As η increases, we find the slope κ (which for the 
present parameter settings is identical to w) and the variance v of the data cloud decreasing. 

To test the above predictions, we generated synthetic time-to-event data using zero mean 
covariate vectors z with covariance matrix A, and Gaussian random and zero-average associa-
tion vectors β0, for different values of N and p . Base hazard rates were chosen to be constant. 
Event times were generated from the Cox proportional hazards model following [28], and 
from the simulated data we then extracted estimates of the association parameters via penal-
ized Cox regression (using the R package, glmnet [17]). Upon solving our RS order parameter 
equations (3.37)–(3.43) for the chosen values of ζ = p/N  and S2 = p−1(β0)2, we compared 
the solution with the regression outcomes via (3.19), under various conditions. By construc-
tion, there is no model mismatch, since the data are generated from the model assumed in 
parameter inference. Our theoretical predictions for the slope and variance agree remarkably 
well with the simulations; see figure 3.

The effect of covariate collinearity on the inferred regression coefficients [29] was 
investigated with two non-diagonal covariance matrices A, both with limp→∞⟨a⟩ = 1 and 
limp→∞⟨a2⟩ = 1 + ϵ2 (hence with spectra of finite width), and ϵ ∼ O(1). This ensures that 
the requirements for self-averaging of the RS theory on the eigenvalue spectrum ϱ(a) of A are 
fulfilled. Our first choice was Aµν = δµν + (1−δµν)ϵ/

√p, with eigenvalues 1−ϵ/
√p  (multi-

plicity p−1) and 1+( p−1)ϵ/√p (multiplicity 1). Upon working out the spectrum-dependent 
quantities in the RS equations, we find that for this matrix choice they are independent of ϵ. 
Hence the order parameters are predicted to be identical to those for data with uncorrelated 
covariates. Simulations (not shown here) confirm that this is indeed the case, modulo finite size 
fluctuations. Our second choice for A had again Aµµ = 1 for all µ, but now covariates are cor-
related in ordered pairs: Aµ,µ+1 = Aµ+1,µ = ϵ for all µ odd, with Aµν = 0 for all other µ ̸= ν  
(with 0 ! ϵ ! 1). This is a block diagonal matrix with ϱ(a) = 1

2δ(a−1−ϵ) + 1
2δ(a−1+ϵ), 

and the RS order parameters will depend on the strength ϵ of the covariate correlations. In 
figure 5, we show the values of the order parameters v and w, as solved from the RS equa-
tions, for S  =  1, η = 0.025 and different values of the correlation parameter ϵ, as functions of 
ζ. Here we again have κ = w. In the same figure we show the results of numerical simulations 
carried out for ϵ = {0.0, 0.5, 1.0} and Np = 400 000. The error bars of approximately ±10% 
were not displayed for clarity. The covariates were generated according to: zi

µ = yiµ for µ odd, 
and zi

µ = ϵyiµ−1 +
√

1−ϵ2yiµ, in which all {yiµ} are independent Gaussian random variables, 
with ⟨yiµ⟩ = 0 and ⟨y2

iµ⟩ = 1. This choice generates the above covariate correlations Aµν . The 
markers each represent averages over 32 regressions with distinct covariate and association 
realizations. The agreement between theory and simulations is seen to be quite satisfactory. 
We observe that the effect of covariate correlations on the overfitting noise is always a reduc-
tion (v decreases with ϵ).

Covariates of real survival data can obviously be distributed in many different ways. The 
assumption in (2.9) of Gaussian distributed risk scores is a direct consequence of working in 
the limit p → ∞, in combination with the Central Limit Theorem. More specifically, there is no 
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need to assume Gaussian covariate statistics. To verify the validity of Gaussian risk score sta-
tistics, we carried out simulations with four common covariate distributions, all with identical 
first two moments: normal, p(zi) = N (0, 1), Rademacher, p(zi) =

1
2δ(zi − 1) + 1

2δ(zi + 1), 
uniform, zi ∼ U(−

√
3,
√

3) and the student t-distribution, zi ∼ t−dist(ν)/
√

ν/(ν−2) (with 
degrees of freedom ν = 5). The deviations between predictions using Gaussian covariates 
and the above distributions were indeed small (<1% for w and  <0.5% for v) validating our 
asymptotic assumption that our theory admits a range of covariates distributions.

In MAP analyses the regularization parameter η is usually determined by k-fold cross-val-
idation, or via the Generalized Cross Validation (GCV) estimator [30]. A fraction of the data 
is set aside for this purpose, leaving fewer samples available for inference of model param-
eters. This has a detrimental effect on inference accuracy. Our present theory, in contrast, sug-
gests a more data efficient method of estimating the amount of regularization needed, without 
the need to sacrifice any samples. By fixing the slope parameter to unbiased recovery of the 
regression coefficients, i.e. w/S̃ = 1, and solving the order parameter equations (3.37)–(3.43) 
with η as a parameter to be determined (instead of w), the optimal values of η can be estimated 
without any cross-validation; see figure 6. The optimal values in figure 6 are seen to match 
those (ζ, η) pairs in figure 3 where w/S̃ = 1, as they should. For example, when ζ = 1, the 
required amount of regularization to compensate for high covariate dimensionality can be read 
off from figure 6 to be η ≈ 0.05. In interpreting this figure, however, we should note our res-
caling of our association parameters, prompted by the observation that β2 ∼ O(1) is required 
to avoid non-finite event times for large p . This implied that our L2 prior in MAP inference is 
of the form p(β) ∝ exp(−ηpβ2).

The upward sloping region of figure 6, for small ζ, matches our intuition of requiring an 
increasing amount of regularization for an increasing ζ (up to ζ ≈ 0.01). However, as ζ is 
increased further, we see that optimal regularization now requires a decreasing value of η. To 

Figure 5. Predicted values of the order parameters w (left) and v (right), shown versus 
ζ = p/N . They are obtained by solving numerically the RS equations (3.37)–(3.43) for 
η = 0.025 and S  =  1, with the variational approximation for λ(t). Here the covariates 
are pairwise correlated according to Aµ,µ+1 = Aµ+1,µ = ϵ for all µ odd, with Aµν = 0 
for all other µ ̸= ν , with ϵ ∈ [0, 1]. Note that for these settings, w and v are the slope and 
the width of the association data cloud. For the left w plot, only mean simulation values 
are shown since including the errors bars of approximately ±10% led to cluttered plots. 
Error bars can be displayed clearly for all values of ϵ on the right v plot. The markers 
each represent averages over 32 regressions with distinct covariate and association 
realizations and we fix the value of Np = 400 000.
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test this less intuitive prediction, we chose four larger values of ζ, read off the required values 
of η for unbiased inference from figure 6, and calculated the slope of the association parameter 
cloud from 100 simulations. These predictions were made with p   =  250 suggesting our theory 
is valid for relatively low values of p  and N. The results show that the slope of the association 
parameter cloud is indeed unity, i.e. for the η values proposed by the RS theory, the overfitting-
induced inference bias is indeed suppressed as predicted; see the table below:

ζ Required η
Corre sponding 
glmnet λ Mean slope ± 1 s.d

0.110 0.165 0.036 1.007 ± 0.028
0.552 0.100 0.110 1.009 ± 0.081
1.055 0.062 0.131 1.013 ± 0.094
2.001 0.031 0.124 0.956 ± 0.139

Note that figure 6, together with our confirmation in regression simulations that the pre-
dicted optimal values of η indeed induce unbiased MAP estimators for regression coefficients 
(i.e. slopes κ = 1 in the association parameter clouds), confirm a posteriori the correctness 
of the chosen scaling with p  of our L2 prior p(β) ∝ exp(−ηpβ2). In those situations where 
the conditions for our theory to apply are not met, other properties may of course affect the 
optimal value of η. For instance, our simulated data are generated from the Cox model where 
the ground truth association vector β⋆ is not sparse. Equally, the data could be generated 
from a model with fewer nonzero associations, including choices for which the Central Limit 
Theorem no longer guarantees that the risk scores β⋆ · z have Gaussian statistics.

5. Discussion

Failure to correct multivariate ML or MAP regression results for overfitting can lead to serious 
inference errors. The inferred regression coefficients of the multivariate Cox model are known 
to be increasingly biased as the ratio of data dimension p  to the sample size N increases. For 
medical time-to-event analysis, where it is possible to obtain (and common to have) large 
numbers of measurements per patient, such as genomic, epigenetic and imaging covariates, 
this bias is quite problematic. It induces false positive associations, which will inevitably turn 
out to be non-reproducible. This leads to a preventable waste of time and health funds, and 
frustrates the translation of the significant progress made in recent decades in medical data 
acquisition into effective data-driven personalized medicine. In this paper, which builds on the 
recent study [1], we have built successfully a theory to predict this bias for the multivariate 
Cox model in the presence of ridge regularization, when the data dimension scales as p ∼ N . 
This paves the way further for effective overfitting corrections in multivariate MAP inference. 
Alternatively, our analysis allows for a straightforward analytical determination of the optimal 
regularization needed to correct the overfitting bias, without having to sacrifice valuable train-
ing data to cross-validation. In addition to overfitting-induced inference bias, there is a further 
effect of overfitting on inferred error bars. To determine the statistical significance of inferred 
regression coefficients, p-values are typically used. These rely on asymptotic results which do 
not hold in the regime where both p  and N are large with ζ = p/N ∼ O(1) [4, 6], leading to 
incorrect rejections of the null hypothesis. Our theory shows that the variance of the inferred 
regression coefficients around the true value is a function of p /N, necessitating an adjustment 
to traditional test statistics used in p-value calculations.
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The aim of our theory is to provide epidemiologists and clinical trials practitioners with 
a means of analysing data where p ∼ O(N). This paper considers a student-teacher learn-
ing problem where we assume the data-generating model is known. A practical overfitting 
correction protocol for multivariate MAP regression on high-dimensional time-to-event data, 
based on our present theory, requires knowledge of the values of S (the magnitude |β0| of the 
true association parameter vector) and of the eigenvalue spectrum of the covariate correlation 
matrix A. For synthetic data, these are available by assumption. For real data, S can be com-
puted from the inferred regression parameters β̂, alongside the RS order parameters, using 
(3.19), from which one infers the relation v2+w2 = β̂ · Aβ̂  (in non-rescaled notation). The 
value of β̂ is available in practice as it is the outcome of the regression. We typically only have 
access to the empirical covariance matrix from which to infer the covariate correlation matrix 
A. A possible solution for this problem is to use the link between the empirical and population 
level eigenvalue distributions in the Marchenko–Pastur equation [31]. The population spec-
trum can be estimated from its empirical counterpart in [22], by applying convex optimisation 
to the inverted Marchenko–Pastur equation. This method is an improvement on naively using 
the sample eigenvalue spectrum as an estimator of its population counterpart when p   >  N.

There are many directions for extension of the present line of research. For instance, time-
to-event data, whether from observational studies or clinical trials, are typically censored. 
Censoring may reflect the impact of competing risks, patients withdrawing from studies, 
or finite study durations. The incorporation of censoring into our theory is an obvious next 
research target, together with investigation of regimes where the risk score are no longer 
Gaussian distributed. Finally, the overfitting measure in (2.3) is quite general, and can be 
applied to many other survival analysis models [32]. Equally, the theory developed in this 
paper is directly applicable to time-to-event studies outside medical data such as credit risk 
analysis.

Figure 6. The present theory allows for the analytical identification of the optimally 
adjusted MAP regularization parameter for Cox regression, by solving the RS order 
parameter equations  (3.37)–(3.43) upon demanding unbiased recovery of regression 
coefficients, κ = 1, with η as parameter to be solved instead of w. Here we show the result 
versus ζ = p/N . It is not straightforward to solve the order parameter equations close 
to ζ = 0, but we know that the curve should tend to the origin for ζ = 0 (where ML 
inference is asymptotically exact).
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Appendix. Self-averaging with respect to true associations

Here we investigate properties of random variables of the form R = p−1β0 · Pβ0 in the limit 
p → ∞, where the true association vectors β0 = {β0

µ} are drawn randomly from some distri-
bution p(β0) and P is a fixed symmetric positive definite p × p matrix, which is independent 
of β0. In particular, we wish to determine under which conditions R will be self-averaging, 
i.e. limp→∞⟨R⟩ > 0 exists, and limp→∞[⟨R2⟩ − ⟨R⟩2] = 0. Brackets will in this appendix 
denote averaging over p(β0), and we will write the eigenvalue distribution of P as ϱ(λ). We 
make the following assumptions7:

 (i)  The {β0
µ} are independent and identically distributed, i.e. p(β0) =

∏ p
µ=1 p(β0

µ).
 (ii)  p(β0

µ) is symmetric in β0
µ, with finite second and fourth order moments.

In view of our earlier definition S2 = limp→∞ p−1(β0)2, we must identify ⟨(β0
µ)

2⟩ = S2. We 
will write Σ = ⟨(β0

µ)
4⟩. It then follows that

lim
p→∞

⟨R⟩ = lim
p→∞

1
p

p∑

µν=1

⟨β0
µβ

0
ν⟩Pµν = S2 lim

p→∞

∫
dλ ϱ(λ)λ (A.1)

lim
p→∞

⟨R2⟩ = lim
p→∞

1
p2

p∑

µνκτ=1

〈
β0
µβ

0
νβ

0
κβ

0
τ

〉
PµνPκτ

= lim
p→∞

1
p2

{
S4Tr2(P) + 2S4Tr(P2) + (Σ−3S4)

p∑

µ=1

(Pµµ)
2
}

!
(

lim
p→∞

⟨R⟩
)2

+ lim
p→∞

1
p
(Σ−S4)

∫
dλ ϱ(λ)λ2.

 

(A.2)

We conclude that R will be self-averaging in the limit p → ∞ if limp→∞
∫

dλ ϱ(λ)λ exists 
and limp→∞ p−1 ∫ dλ ϱ(λ)λ2 = 0. Equivalently,

lim
p→∞

1
p

p∑

µ=1

Pµµ ∈ ℜ and lim
p→∞

1
p2

p∑

µν=1

P2
µν = 0. (A.3)

The two relevant quadratic expression for which we seek to demonstrate self-averaging are 
the following:

 •  Application to P = A tells us that if limp→∞⟨a⟩ ∈ ℜ and limp→∞ p−1⟨a2⟩ = 0 (i.e. the 
covariate correlations are not excessive), then

7 Assuming distinct variances for each β0
µ complicates various equations but ultimately leads to similar final  

conditions on the eigenvalue spectrum of A.
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S̃2 = lim
p→∞

1
p
β0 · Aβ0 = S2⟨a⟩. (A.4)

 •  Our second application is to the following matrix, in which the vectors {vµ} are the 
orthogonal and normalised eigenvectors of A, with eigenvalues aµ:

Pµν =
p∑

ρ=1

a2
ρvρµvρ

ν

2ηγ + gaρ
. (A.5)

Here we find, anticipating that g  >  0 and using ηγ > 0,

1
p

p∑

µ=1

Pµµ =
1
p

p∑

ρ=1

a2
ρ

2ηγ+gaρ
! ⟨a⟩

g (A.6)

1
p2

p∑

µν=1

P2
µν =

1
p2

p∑

ρρ′µν=1

a2
ρa2

ρ′vρµvρνvρ
′

µ vρ
′

ν

(2ηγ+gaρ)(2ηγ+gaρ′)

=
1
p2

p∑

ρ=1

a4
ρ

(2ηγ+gaρ)2 ! ⟨a2⟩
pg

.

 

(A.7)

We conclude, provided g  >  0, that the same two conditions on A that guarantee self-
averaging of S̃2 for p → ∞ will also imply self-averaging here:

lim
p→∞

1
p

p∑

ρ=1

a2
ρ(β

0 · vρ)2

2ηγ + gaρ
=

〈 S2a2

2ηγ+ga

〉
. (A.8)

Thus, for our RS theory to be self-averaging with respect to the realisation of the true associa-
tion vector β0 (given our mild assumptions on the distribution from which β0 is drawn), it is 
sufficient that average and width of the eigenvalue distribution ϱ(a) of the covariate correla-
tion matrix A remain finite in the limit p → ∞.
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