
Statistical physics of tailored random graphs:
entropies, processes, and generation

Lecture I. Common tools and tricks
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The δ-distribution

intuitive definition of δ(x):

prob distribution for a ‘random’ variable x
that is always zero

〈f 〉 =

∫ ∞
−∞

dx f (x)δ(x) = f (0) for any f

for instance

δ(x) = lim
σ→0

1
σ
√

2π
e−x2/2σ2

0

1

2

3

-3 -2 -1 0 1 2 3

not a function: δ(x 6= 0) = 0, δ(0) =∞

status of δ(x):

δ(x) only has a meaning when appearing inside an integration,
one takes the limit σ↓0 after performing the integration∫ ∞
−∞

dx f (x)δ(x) = lim
σ↓0

∫ ∞
−∞

dx f (x)
e−x2/2σ2

σ
√

2π
= lim
σ↓0

∫ ∞
−∞

dx f (xσ)
e−x2/2

√
2π

= f (0)
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differentiation of δ(x):∫ ∞
−∞

dx f (x)δ′(x) =

∫ ∞
−∞

dx
{ d

dx

(
f (x)δ(x)

)
− f ′(x)δ(x)

}
= lim

σ↓0

[
f (x)

e−x2/2σ2

σ
√

2π

]x=∞

x=−∞
− f ′(0) = −f ′(0)

generalization:∫ ∞
−∞

dx f (x)
dn

dxn δ(x) = (−1)n lim
x→0

dn

dxn f (x) (n = 0, 1, 2, . . .)

integration of δ(x): δ(x) =
d

dx
θ(x)

θ(x<0) = 0
θ(x>0) = 1

Proof: both sides have same effect in integrals∫
dx
{
δ(x)− d

dx
θ(x)

}
f (x) = f (0)− lim

ε↓0

∫ ε

−ε
dx
{

d

dx

(
θ(x)f (x)

)
− f ′(x)θ(x)

}
= f (0)− lim

ε↓0
[f (ε)− 0] + lim

ε↓0

∫ ε

0
dx f ′(x) = 0

generalization
to vector arguments: x ∈ IRN : δ(x) =

N∏
i=1

δ(xi )
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Integral representation of δ(x)

use defns of Fourier transforms and their inverse:

f̂ (k) =
∫∞
−∞dx e−2πikx f (x)

f (x) =
∫∞
−∞dk e2πikx f̂ (k)

⇒ f (x) =

∫ ∞
−∞

dk e2πikx
∫ ∞
−∞

dy e−2πiky f (y)

apply to δ(x): δ(x) =

∫ ∞
−∞

dk e2πikx =

∫ ∞
−∞

dk
2π

eikx

invertible functions of x
as arguments: δ [g(x)− g(a)] =

δ(x − a)

|g′(a)|

Proof: both sides have same effect in integrals∫ ∞
−∞

dx f (x)

{
δ [g(x)−g(a)]− δ(x−a)

|g′(a)|

}
=

∫ ∞
−∞

dx g′(x)
f (x)

g′(x)
δ [g(x)−g(a)]− f (a)

|g′(a)|

=

∫ g(∞)

g(−∞)

dk
f (ginv(k))

g′(ginv(k))
δ [k−g(a)]− f (a)

|g′(a)|

= sgn[g′(a)]

∫ ∞
−∞

dk
f (ginv(k))

g′(ginv(k))
δ [k−g(a)]− f (a)

|g′(a)|

= sgn[g′(a)]
f (a)

g′(a)
− f (a)

|g′(a)| = 0
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Gaussian integrals

one-dimensional:∫
dx

σ
√

2π
e−

1
2 x2/σ2

= 1,
∫

dx
σ
√

2π
x e−

1
2 x2/σ2

= 0,
∫

dx
σ
√

2π
x2e−

1
2 x2/σ2

= σ2

∫
dx√
2π

ekx− 1
2 x2

= e
1
2 k2

(k ∈ |C)

N-dimensional:∫
dx√

(2π)NdetC
e−

1
2 x·C−1x = 1,

∫
dx√

(2π)NdetC
xie−

1
2 x·C−1x = 0,

∫
dx√

(2π)NdetC
xixje−

1
2 x·C−1x = Cij

multivariate
Gaussian
distribution:

p(x) =
1√

(2π)NdetC
e−

1
2 x·C−1x

∫
dx p(x)xixj = Cij ,

∫
dx p(x)eik·x = e−

1
2 k·Ck
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Steepest descent integration

Objective of steepest descent
(or ‘saddle-point’) integration:
large N behavior of integrals of the type IN =

∫
IRp

dx g(x) e−Nf (x)

f (x) real-valued, smooth, bounded from below,
and with unique minimum at x?

expand f around minimum:

f (x) = f (x?) +
1
2

p∑
ij=1

Aij (xi−x?i )(xj−x?j ) +O(|x−x?|3) Aij =
∂2f
∂xi∂xj

∣∣∣∣
x?

Insert into integral,
transform x = x?+y/

√
N:

IN = e−Nf (x?)
∫
IRp

dx g(x)e−
1
2 N

∑
ij (xi−x?i )Aij (xj−x?j )+O(N|x−x?|3)

= N−
p
2 e−Nf (x?)

∫
IRp

dy g
(

x?+
y√
N

)
e−

1
2
∑

ij yi Aij yj+O(|y|3/
√

N)
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∫
IRp

dx g(x) e−Nf (x) = N−
p
2 e−Nf (x?)

∫
IRp

dy g
(

x?+
y√
N

)
e−

1
2
∑

ij yi Aij yj+O(|y|3/
√

N)

first result, for p � N/ log N:

− lim
N→∞

1
N

log
∫
IRp

dx e−Nf (x)

= f (x?) + lim
N→∞

[
p log N

2N
− 1

N
log
∫
IRp

dy e−
1
2
∑

ij yi Aij yj+O(|y|3/
√

N)

]
= f (x?) + lim

N→∞

[
p log N

2N
− 1

2N
log
( (2π)p

det A

)
− 1

N
log
(

1+O(
p3/2

√
N

)
)]

= f (x?) + lim
N→∞

[
p log N

2N
+O(

p
N

) +O(
p3/2

N3/2 )

]
= f (x?)

second result, for p �
√

N:

lim
N→∞

∫
dx g(x)e−Nf (x)∫
dx e−Nf (x) = lim

N→∞

[∫
IRpdy g(x?+y/

√
N) e−

1
2
∑

ij yi Aij yj+O(|y|3/
√

N)∫
IRpdy e−

1
2
∑

ij yi Aij yj+O(|y|3/
√

N)

]

=
g(x?)

(
1 +O( p2

N )
)√

(2π)p
det A

(
1+O( p3/2

√
N

)
)

√
(2π)p
det A

(
1+O( p3/2

√
N

)
) = g(x?)
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f (x) complex-valued:

– deform integration path in complex plane, using Cauchy’s theorem, such that
along deformed path the imaginary part of f (x) is constant, and preferably zero

– proceed using Laplace’s argument, and find the leading order in N by
extremization of the real part of f (x)

similar fomulae,
but with (possibly complex) extrema
that need no longer be maxima:

− lim
N→∞

1
N

log
∫
IRp

dx e−Nf (x) = extrx∈IRp f (x)

lim
N→∞

∫
IRpdx g(x)e−Nf (x)∫

IRpdx e−Nf (x) = g
(
arg extrx∈IRp f (x)

)

stuff never mentioned in papers ...

– in practice we can often not trace the contour deformation in detail
– often we can choose the scaling with N of terms in the exponent,

what to do? (check Curie-Weiss magnet, very instructive!)
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Exponential distributions
Often we study stochastic processes for x ∈ X ⊆ IRN ,
that evolve to a stationary state, with prob distribution p(x)
many are of the following form:

stationary state is minimally informative,
subject to a number of constraints∑

x∈X

p(x)ω1(x) = Ω1 . . . . . .
∑
x∈X

p(x)ωL(x) = ΩL

This is enough to calculate p(x):

information content of x: Shannon entropy
hence

maximize S = −
∑
x∈X

p(x) log p(x)

subject to :

{
p(x) ≥ 0 ∀x,

∑
x∈X p(x) = 1∑

x∈X p(x)ω`(x) = Ω` for all ` = 1 . . . L
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solution using Lagrange’s method:

∂

∂p(x)

{
λ0

∑
x′∈X

p(x′) +
L∑
`=1

λ`
∑
x′∈X

p(x′)ω`(x′)−
∑
x′∈X

p(x′) log p(x′)
}

= 0

λ0 +
L∑
`=1

λ`ω`(x)− 1− log p(x) = 0 ⇒ p(x) = eλ0−1+
∑L
`=1 λ`ω`(x)

(p(x) ≥ 0 automatically satisfied)

‘exponential distribution’:

p(x) =
e
∑L
`=1 λ`ω`(x)

Z (λ)
, Z (λ) =

∑
x∈X

e
∑L
`=1 λ`ω`(x)

λ = (λ1, . . . , λL) : solved from
∑
x∈X

p(x)ω`(x) = Ω` (` = 1 . . . L)

example:
physical systems in thermal equilibrium
L = 1, ω(x) = E(x) (energy), λ = −1/kBT

p(x) =
e−E(x)/kBT

Z (T )
, Z (T ) =

∑
x∈X

e−E(x)/kBT
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Generating functions

p(x) =
e
∑L
`=1 λ`ω`(x)

Z (λ)
, Z (λ) =

∑
x∈X

e
∑L
`=1 λ`ω`(x), 〈f 〉 =

∑
x∈X

p(x)f (x)

Idea behind generating functions:
reduce nr of state averages to be calculated ...

define
F (λ) = log Z (λ) ∂F (λ)

∂λk
=

∑
x∈X ωk (x)e

∑L
`=1 λ`ω`(x)∑

x∈X e
∑L
`=1 λ`ω`(x)

= 〈ωk (x)〉

how to calculate
arbitrary state average 〈ψ〉?

F (λ, µ) = log
[∑

x∈X

eµψ(x)+
∑
` λ`ω`(x)

]
〈ψ〉 = lim

µ→0

∂F (λ, µ)

∂µ
, 〈ω`〉 = lim

µ→0

∂F (λ, µ)

∂λ`
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The replica method

replica method
A clever trick that enables the analytical calculation of averages
that are normally impossible to do, except numerically.

is particularly useful for
Complex heterogeneous systems composed of many interacting variables,
and with many parameters on which we have only statistical information.
(too large for numerical averages to be computationally feasible)

gives us
Analytical predictions for the behaviour of macroscopic quantities
in typical realisations of the systems under study.

first appearance: Marc Kac 1968
first in physics: Sherrington & Kirkpatrick 1975

first in biology: Amit, Gutfreund & Sompolinksy 1985
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Consider processes with many
fixed (pseudo-)random parameters ξ,
distributed according to P(ξ)

p(x|ξ) =
e
∑L
`=1 λ`ω`(x,ξ)

Z (λ, ξ)
, Z (λ, ξ) =

∑
x∈X

e
∑L
`=1 λ`ω`(x,ξ)

– calculating state averages 〈f 〉ξ for each realisation of ξ is usually impossible

– we are mostly interested in typical values of state averages
– for N→∞ macroscopic averages will not depend on ξ, only on P(ξ),

‘self-averaging’: limN→∞〈f 〉ξ indep of ξ

so focus on

〈f 〉ξ =
∑
ξ

P(ξ)〈f 〉ξ =
∑
ξ

P(ξ)
{∑

x∈X

p(x|ξ)f (x, ξ)
}
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new generating function:

F (λ, µ) =
∑
ξ

P(ξ) log Z (λ, µ, ξ), Z (λ, µ, ξ) =
∑
x∈X

eµψ(x,ξ)+
∑
` λ`ω`(x,ξ)

lim
µ→0

∂

∂µ
F (λ, µ) = lim

µ→0

∑
ξ

P(ξ)

{∑
x∈X ψ(x, ξ)eµψ(x,ξ)+

∑
` λ`ω`(x,ξ)∑

x∈X eµψ(x,ξ)+
∑
` λ`ω`(x,ξ)

}

=
∑
ξ

P(ξ)

{∑
x∈X ψ(x, ξ)e

∑
` λ`ω`(x,ξ)∑

x∈X e
∑
` λ`ω`(x,ξ)

}
= 〈ψ〉ξ

main obstacle in calculating F :
the logarithm ...

replica identity : log Z = lim
n→0

1
n

log Z n

proof:

lim
n→0

1
n

log Z n = lim
n→0

1
n

log [en log Z ] = lim
n→0

1
n

log [1 + n log Z +O(n2)]

= lim
n→0

1
n

log[1 + nlog Z +O(n2)] = log Z
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apply log Z = limn→0
1
n log Z n

(simplest case L = 1)

F (λ) =
∑
ξ

P(ξ) log
[∑

x∈X

eλω(x,ξ)
]

= lim
n→0

1
n

log
∑
ξ

P(ξ)
[∑

x∈X

eλω(x,ξ)
]n

= lim
n→0

1
n

log
∑
ξ

P(ξ)
[ ∑

x1∈X

. . .
∑
xn∈X

eλ
∑n
α=1 ω(x

α,ξ)
]

= lim
n→0

1
n

log
[ ∑

x1∈X

. . .
∑
xn∈X

∑
ξ

P(ξ)eλ
∑n
α=1 ω(x

α,ξ)
]

notes:

– impossible ξ-average converted into simpler one ...
– calculation involves n ‘replicas’ xα of original system
– but n→ 0 at the end ... ?
– penultimate step true only for integer n,

so limit requires analytical continuation ...

since then: alternative (more tedious) routes,
these confirmed correctness of the replica method!
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Alternative forms of the replica identity

suppose we need averages, but for
a p(x|ξ) that is not of an exponential form?

or we need to average quantities that we
don’t want in the exponent of Z (λξ)?

p(x|ξ) =
W (x, ξ)∑

x′∈X W (x′, ξ)
, 〈f 〉ξ =

∑
x∈X

p(x|ξ)f (x, ξ)

main obstacle here:
the fraction ...

〈f 〉ξ =
[∑

x∈X W (x, ξ)f (x, ξ)∑
x∈X W (x, ξ)

]
=
[∑

x∈X

W (x, ξ)f (x, ξ)
][∑

x∈X

W (x, ξ)
]−1

= lim
n→0

[∑
x∈X

W (x, ξ)f (x, ξ)
][∑

x∈X

W (x, ξ)
]n−1

= lim
n→0

∑
x1∈X

. . .
∑
xn∈X

f (x1, ξ)W (x1, ξ) . . .W (xn, ξ)

(again: used integer n, but n→ 0 ...)
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equivalence between two forms
of replica identity, if W (x, ξ) = e

∑
` λ`φ`(x,ξ)

proof:

〈f 〉ξ = lim
n→0

∑
x1∈X

. . .
∑
xn∈X

f (x1, ξ)W (x1, ξ) . . .W (xn, ξ)

= lim
n→0

∑
x1∈X

. . .
∑
xn∈X

f (x1, ξ) e
∑n
α=1

∑
` λ`φ`(xα,ξ)

= lim
n→0

1
n

∑
x1∈X

. . .
∑
xn∈X

[ n∑
α=1

f (xα, ξ)
]
e
∑n
α=1

∑
` λ`φ`(xα,ξ)

= lim
n→0

1
n

lim
µ→0

∂

∂µ

∑
x1∈X

. . .
∑
xn∈X

e
∑n
α=1

∑
` λ`φ`(xα,ξ)+µ

∑n
α=1 f (xα,ξ)

= lim
µ→0

∂

∂µ
lim
n→0

1
n

∑
x1∈X

. . .
∑
xn∈X

e
∑n
α=1

[∑
` λ`φ`(xα,ξ)+µf (xα,ξ)

]
= lim

µ→0

∂

∂µ
lim
n→0

1
n

Z n(λ, µ, ξ), Z (λ, µ, ξ) =
∑
x∈X

e
∑
` λ`φ`(x,ξ)+µf (x,ξ)
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stat mech of complex systems
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stat mech of complex systems

N→∞
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nothing← → in business
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stat mech of complex systems

N→∞

solution of order
parameter eqns
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