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Biomedicine has changed drastically in recent decades

modern biomedical data

» volume of data ...

> diversity of data sources
(clinical, genomic, biomarkers, health records, imaging, ...)

» complexity of experimental pipelines
(confounders, batch effects, variability between centres, ...)

> dimensionality of measurements

clinical images (~ 10°), transcriptome/proteome (~10°),
DNA and methylation (~10'), ...
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Personalized medicine: tailored treatments

Medicine of the present: one treatment fits all  Medicine of the future: more personalized diagnostics
@
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generating ‘big data’ is not enough ... IQ

~

> ‘right drug, right dose, at the right time ...

need predictive models p(y|z),

z: individual’'s makeup (DNA, gene expr, metabolism, environment, ...)
y: response to treatment

> regression:
find parameters 0 of model p(y|z, @) from historic data

curse of dimensionality ...
pre-genome medicine: N~ 10° data points, dim(8)~ 102
post-genome medicine: N~ 10* data points, dim(6)~10"

> simpler question: predict patient’s individual risk
(target aggressive treatments wisely)

cancer, heart disease, diabetes, ...:
relevant outcome is often a duration t,
OS (overall survival), or PFS (progression-free survival)

predictive model: p(t|z, 8)
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Statistics in medicine is tricky
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Statistics in medicine:
tricky business ...

www.VADLO.com

“I can prove it or disprove it! What do you want me to do?”
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why is statistics tricky?
Monty Hall problem

‘Let’s Make a Deal’
(USA gameshow, 1963-1977)

standard quiz show,
winner has to choose prize at the end,
three doors: one with big prize, two with goats ...

e winner selects one door randomly

e Monty opens one door with a goat
(two doors left ...)

e Monty gives winner the chance
to change selection at last minute

would it matter?
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The main pitfalls in statistics

» accidental conditioning

(Monty Hall problem, share statistics,
shop opening hours consultation, ...)

extra knowledge:

posterior
reduces possibilities —N
— p P(AIB) = P(A, B)

— affects probabilities

» often counterintuitive

(Monty Hall problem, gambling,
human inability to generate random numbers, ...)

| have just thrown 10 successive sixes!
Prob ~ 16.5.10°8

how likely am I to throw yet another six?
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» how many data do we need to be sure of something?

Is a genetic mutation harmless, or dangerous?
Is a given dice fair, or loaded?

Bls o=

fair dice loaded dice
00 L L L L 00 L L L L
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
nr of throws

nr of throws

typical data sets in cancer research:
n = 500 patients, at 2K£ each ...
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what can we say
after 500 throws?

nr of throws
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400 600
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> ‘probability’ can mean different things ...
our ignorance of %

(a) something that cannot be known
(Russian roulette, we will spin the cylinder)

(b) something that is known, but not by us
(Russian roulette, cylinder has already been spun)

relevant in medicine?

suppose we find survival function S(t) = e/~

explanation I:  homogeneous cohort, random death times,
each individual i has hazard rate 1/7

explanation Il: heterogeneous cohort, deterministic death times t;,
distributed according to p(t) = 7 'e V"

4 s
(potential for stratification!) & \r‘ e
>
1
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z-scores Selective reporting

reported in PLoS Medicine (aka cheating)
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All Trials Registered | All Results Reported

Home Find out more Get involved Supporters News Sign the petition Donate Q

! .
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Results from half of all clinical trials are hidden.
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> missing values in data sets. ...
red herrings or white sharks?

CX:
— =g Sk CX Missing:

Z}IS?I : S?M z158 = 0: Si(M
---------- z157 = —10: SKM z158 = 1: SKM

1.0 T T = T =
0 i 0.0 ‘
0 1000 2000 0 1000 2000
t t

always check for
informative missingness!
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» correlation/association is not
the same as causality!

imagine Z
is nr of hospital visits ...

result: positive correlation
between Z and risk!

B > 0, ergo hospital visits dangerous?

or:

Z=1,0: given strong chemotherapy yes/no
but treatment not given if patient too weak ...

result: positive association between Z and health!

protective effect reported, even if chemotherapy ineffective!
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two chemotherapies, A and B,
data on response rates from 880 patients

Q: which treatment is better?

] | CHEMO A | cCHEMO B \
[ response rate | 25% (76/300) | 28% (162/580) |
so treatment B is better,

now we zoom in ...

] | CHEMO A | cCHEMO B \

medical centre 1 40% (40/100)
medical centre 2 18% (36/200)

30% (150/500)
15% (12/80)

| response rate | 25% (76/300)

[ 28% (162/580)

|

still sure that B is better?

Simpson’s paradox
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The formalism of survival analysis
Terminology and objectives
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Terminology and objectives

» Data available D={(z1,n,t),...,(2Zn, Iy, tn)}

N samples/individuals (z, r;, t;),
drawn independently from p(t, r, z) (the population)

the ‘covariates’:

Zc R’ p characteristics, measured at t=0

uncontrolled : e.g. gender, genome, ...
controlled : e.g. medical treatment, ...
modifiable :  e.g. smoking, BMI, nutrition, ...

the ‘clinical outcome’:

teRY: failure time
e.g. death, onset/recurrence of disease, ...

re{0,1,...,R}: risk type that triggered failure

r=1...R: true risks/diseases
r=0: end of observation (‘censoring’)
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x

> Objective

find and quantify patterns that relate
covariates z to clinical outcomes (r, t), in order to:

>
>
>

predict clinical outcome for individuals
discover disease mechanisms
design interventions (modifiable covariates)

» Complications

>

‘noise’ caused by censoring

» we only know the earliest event

(different risks prevent each other from happening)

» correlations between risks

heterogeneity in patient cohorts
overfitting danger, when p is large relative to N
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The formalism of survival analysis

Survival probability and cause-specific hazard rates
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Survival probability and cause-specific hazard rates

» Joint event time statistics

imaginary situation: all events can be observed,
f;: time at which event r occurs,
event time distributiion: P(f, .. ., tr)

normalisation: // dty...dts P(lo, ... tg) = 1
0 0

> Integrated event time distribution

S(fo,...,tn) = // dSo...dSRP(So,...7SR)
f

tr
meaning: probability that event 0 occurs later than t,
and event 1 occurs later than t;, and . ..

S(O,,O) = / / dSo..‘dSRP(So,...,SF;)Z‘I
0 0

» Survival function S(t)
probability that all events happen later than time t:

S(t) = // dSo...dSRP(So,...,SR)ZS(t,t,...,t)
t t
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» Cause-specific hazard rates h;(t)
how do individual risks impact on survival?

h(t) = [glogsao,...,,q)

ty=t for all k
work out, using 26(z) = 6(2):

|:88t, fooo. ..fOOOdSo ...dsgr P(So, .. .,SF;) Hk 9(Sk—fk):|

he(t) = S(t, ..., tr)

te=t Vk

fooo. .. fooodSo ...dsp P(So, . SH)(S(Sr*tr) Hk#, Q(Skftk)
S(to, ..., tr)
te=t Vk

e ..ft"o(H,#dsr)P(so, ey Su—t1, 1,841, .., SR)
B S(1)

h:(t)dt: probability that event r happens in time interval [t, t + dt),
given that no event has happened yet prior to t

h(t)dt = Prob(tr € [t, t4dt)| no events yet at time t) (dt]0)

27/56



The formalism of survival analysis

Data likelihood in terms of cause specific hazard rates
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Data likelihood in terms of cause specific hazard rates

most of the relevant quantities in survival analysis
can be written in terms of the cause specific hazard rates

» Survival function

d d
alogS(t) = d—logS(t, t,..., 1)

o
- [aTr log S(to, . . ., tR)] .

Hence, using S(0) = 1,

R t
log S(t) = logS(0) — /dsz he(s —Z/ ds h(s)
r=0 70

result:

S(t) = e Trolsds i
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» Data likelihood

p(t, r)dt: likelihood to observe first event being of type r,
and occurring in time interval [t, t 4+ dt) (with df | 0)

To observe the above, the following statements must be true:

time of the eventis in [t, t + df),

type of the event is r, 0t —)0(t+dt—t;) [ ot —1t) = 1
no events occurred prior to f k#r
hence
1
p(t.r) = lim Prob( (t—1)0(t+dt—t,) L[re(tk—t = 1)

_ duodt/ /dto Pt .., ta)0(t— 1)0(t+dt—t) [T 0(t—1)

k#r
// dty...tg P(t,..., tg I|mh -0 ]ot—-1
0 0

k+#r

-1

h.(z) = € '0(2)0(e—2) = { 8

for z € [0, €]
elsewhere
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note: limeyo he(z) =4d(2), s

p(t,r) = / /dto ta P(t,. .. tg)llmh -0 [Jot-1

k#r

/oo.../oodto...tg P(ti, ... ta)s(t—t) [T 0(t—1)

k#r

= P(OS() = m(t)e S0l h

» Further relation

R R
_ R t
p(t) = Zp(t,r) = (th(t))e >R, Jdds h(s)
r=0 —o
= e Tl s

» Cause-specific hazard rates in terms of data probabilities

t oo
St = SO+ / at sy = 1 [at piey = [Taspis

substitute into hi(t) = p(t,r)
formula for p(t, r): ’ YA, [Zds p(s,r)
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The formalism of survival analysis

Pitfalls and misconceptions
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Pitfalls and misconceptions

cause specific hazard rates can be tricky ...

s(t) _ He— folds hr(s)

» Survival function formula factorizes over risks,
does this imply that the risks are uncorrelated?
No. All risks k # r can contribute to each h;(t) via the conditioning, i.e.
the likelihood that nothing has happened yet prior to t. Risks may well
interact strongly with each other, but we can no longer see this after we
have calculated the rates {h,(t)} and forget about the times (f, . . ., tg).

> Do we get the survival function for the situation where risk . is disabled
(e.g. a disease removed from the world) by setting h,.(t) to zero?

S(t) — e~ Tz Jo ds 1r(s)

No. We would have h,(t) = 0 for all ¢, but that is not all. Disabling risk
can change also all hazard rates h,(t) with r # p, due to correlations
among the different risks in combination with the conditioning.
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Special cases
» Time-independent hazard rates

hr(t) = h: S(t) — e—fz:ﬁzo hr p(t7 r) = h,e_tzﬁ’:o hyr

> A single risk, R=1

One risk, : .
hazard rate h(f):  S(t) = B8 p(t) = h(t)e fo 4"

» Most probable event time distribution for R=1

Suppose we know only average event time (t) = [;°dt to(t),
most probable p(t): maximize Shannon entropy
H = —[;7dt p(t) log p(t), subject to [;dt p(t)=1and [~dt to(t)=((t)

Lagrange’s method:

s [Tasplsyioapts) = 5 Do [Taspts) 4 x [ s pisys)

1+1logp(t) = Ao+ Mt so  p(t) =ero !
use constraints: p(t) = <t>—1e—t/<t>

35/56



Event time correlations and identifiability
Independently distributed event times
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Independently R
distributed event times P(to,....ta) = [Pt

> Integrated event time distr

e} oo R R
S(ty,....t) = /t/t dso...dsa [[P(t) = [[S(t)
0 R r=0

r=0
Si(t) = /, " ds Py(s)

» Cause specific hazard rates

R
0 d
hy = |45 [ r' \tr! =——I r
0 [8& ﬂgo 0g S (t )] tx=t for all k dt 0g S:(1)
hence S,(t) —e 1L ds hi(s)

joint event time distr now follows from the cause-specific hazard rates

Pt) =~ 80 = dt RS _ py(f)e I 4o 1S

r=
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Event time correlations and identifiability

The identifiability problem
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The identifiability problem (Tsiatis)

» Observable from data: p(t,r),
equivalently: {ho(t), ..., hg(t)}, since

_ — 3R Jdds h(s) _ p(t.r)
p(t,r) = h(t)e™ Zr=0Jodshr(9) - p(f) = a>
Sono [ ds p(s, 1)

> Forany {ho(t), ..., hr(t)}, even those corresponding to statistically
dependent event times, there exists a distribution for independent event
times that will give exactly the same cause-specifc hazard rates, namely

R

P(t07~-~,tR):H

r=0r

=

[(t)e 8 00

Il
o

Hence, survival data alone do not generally permit us to identify the
underlying joint distribution of event times — in particular, we cannot infer
whether or not the event times of the different risks are independent.

a serious problem ...
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» The Bayesian view
on the identifiability problem

— multiple hypotheses H may explain our data
— but not all are equally probable ...
— calculate each Prob(H|D) from Bayes’ formula

» [llustration

true data:

o) = 2 {Wifh prob e: b=t+7
2) — )

with prob1—e:  draw t; from p(t;) = be™2"

explanation assuming
risk independence:

plt) = @™, p(t) = —(e+(1=c)e™™ ) log (e+(1-c)e™")

with prob e: event 1 never happens

implausible if e.g. risk 2 is cancer, risk 1 is death ...
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Proportional hazards regression
Definitions and assumptions
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Proportional hazards regression (Cox)
definitions and assumptions

» Survival analysis with covariates
Add z as conditions to definitions and identities
S(t) — S(tlz),  he(t) = he(tlz), p(t,r)— p(t,rlz)

S(t|z):/{ /t dsp...dsg P(so, ..., Sr|2)

S(t|z) = e~ Zro i MlSIZ) it rZ) = hy(tz)e” Sr=o Ji i b (si2)

» Cox model
Parametrized form for the hazard rates:
P 14
h(12) = (0P 2 B =88, Bz=Y Bz
p=1

Ar(t): ‘base hazard rate’ of risk r
(covariate-independent contribution to risk)

B":  ‘association parameters’ of risk r
(impact of covariate values on risk)
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» Main features of Cox’s choice

>

‘Proportional hazards’

due to exponential form, effect of each covariate is multiplicative:

r r
he(t) = M(t)x 1% x ... xe®
N~ N——
base hazard rate ‘proportional hazards’
Effects of covariates on risk independent of time

There exists a hyper-plane in covariate space that
separates high risk individuals from low risk individuals

‘high risk individuals’ : Bizi+ ...+ Bpzp large
‘low risk individuals’ B1zi + ...+ Bpzp small

One can quantify risk impact of each individual covariate p
in a single time-independent number: the ‘hazard ratio’

he(t12)]z,=1 )\r(l‘)e%j*zv?uﬁ;’zl’ B

Bf
= —eln
hr(t|2)|z,=0 )\r(t)eﬁﬁ‘wsz B2y

HR,, =

If no impact onrisk: 8, =0, HR], = 1.
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Proportional hazards regression

Parameter estimation from data
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Detour: parameter estimation from data

givendata D = {x1,..., Xn},

and a model p(x|0) to explain these data,

what can we say about the parameters 67
> Bayesian parameter inference

assume the {x;} were indeed drawn
randomly & independently from p(x|6),

p(D]6) = H p(x;|0)
Bayes’ identity:

p(D10)p(6) _  p(D|6)p(6) .
0|D) = , 0): prior
PO =20y = Jao polep@) PO P
> Simp lifications minus log—likelihood  regularizer
—t—
MAP - 6™ = argmax p(0|D) = argmin[ —logp(D|6) — log p(B)]

ML: 9 = argmin[ — log p(93|9)] i.e. p(8) = constant
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» Maximimum Likelihood

(ML) regression 6" = argmin[— log p(D|6)]

, . . 1 &
e omeee P = 3 )
note:
—llogp(ﬂle) = —llogﬁp(xf\e) N EN log p(xi|6)
N N TN =

i=1

- _/dxb(x)logp(XW)

— [axpr0tog [ PU9] — [ax pix)tog pix)

~ Dllog) + HIP)
N—— ~~

KL distance Shannon entropy

hence: ML finds the parameter vector 8 that minimizes
the KL distance between p(x) and p(x|0)
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» Beyond most probable parameters:
error bars

return to full posterior distribution

e—Q(B,’D)

T [de e 20'D)’ Q(6,D) = —log p(D|0) — log p(6)

p(6|D)

expand  around minimum 6*:
1

5(0-0") - A(8—6") + O(|(6-6")]")

Q0,D) = Q(0°,D)+

truncate after quadratic term:

detA 12 _1.0-0).A0-_0" . N _
p(OID) = [ ] e KO ODACED o000 = (A7)

hence, error bars for
MAP/ML estimators:

* - &
0 =05+ (A )iy A = 90.00. [— log p(D|6) — log p(O)] 0
I v
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Proportional hazards regression

ML parameters of Cox’s model
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ML parameters of Cox’s model

0={\,81}:

p(t,112.0) = hi(tz,0)e” =009 P 1Z0) - p (117 0) = A (1)eP 2

» ML inference

0* = argming [ —log p(®|0)]

N
= argming [ - Z log p(t;, ri|zi, 9)]

i=1

N N R ,
= argmin@[_Z'Oghri(fi|zi,9)+22/ dt Ar( 'B‘Z/‘]
' i=1 r=0
= argning| - Z'OQM(& Zﬂ" z,+ZZ/ dt Ao

i=1 r=0

= argming ZO [725,,,/ log Ar(ti) — 25,7”/@'.21. + E/Oidt )\,(t)eﬁ
r= 1= 1= 1=

r‘zf]
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To minimize

R

N N
W[\, B = Z[—/dt 109 A() Y 8r8(t=1) = B> br2)

r=0 i=1

+ / dt A,(t)izl_v;e(t,-t)eﬁ"zf]

> Minimize over functions \(t) first

1 N ﬁ’.z. N :|
0 dt 0(t—1) M (e % — [dt log A (1) S 6, 0(t—1)| =0
sl %/ / 2

(functional differentiation)

N
ZG(t/ft)eﬁ Z; %(t) Zé,,n(;(fft/) =0
: =1

iy brnd(t=1)
SN 0(t—t)el 2

Ar(t) = Breslow's estimator

> Insert into W, then minimize over {3}
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» To minimize
R

vigy = o[- [atiog DR Gl )Zw(t f)

r=0 2719(5_03’@

_ ﬁr.; SrnZi+ / at ;a,,r,a(r—r,)]
i f’"zf)ia S(t—1)
[/dt log (;0(1‘, t)e 2. i f

N

_ g'.z 5,7,,.2,-] + terms independent of {3"}

i=1

I
MI

Il
o

r

= Vv, (B") + terms independent of {3}
with
N N N
Vi(B) =D drglog (Do 0(t—1)eP %) = B3 602
j=1 i=1 i=1
hence

8™ = argminB\II,(,B)
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» Each risk r, find minima of W,:

9 N N IBAZ[ N
25, v® = a—m[gs,,,,|og(ze(t,4,)e )fﬁ.;g,,,jz,.]

E 1 Zip0(ti—
0 = Or,r, 2]
Z It Z e(tlfi))eﬁz Z nisin

so B is solution of:

N .Z;
S5 r[ZfL 2,0t =) % 721_4 _0
= S, 0(ti—t)eP 2

p coupled nonlinear equations, for each risk

Final protocol:
1. Solve {3} from above egns (numerically)
2. Calculate {)\'(t)} (from Breslow’s formula)

3. Predict outcomes via p(r, t|z) for new patients
(using Cox’s model, with ML parameters)
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Proportional hazards regression

Unigueness, error bars, and and p-values
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Uniqueness, error bars, and and p-values

Curvature of W,(5):
Pu(8) 2, ; 20— b)e i
9B.8, 0B, [Z v 0(t—t)eBZ Z& r,Z/u}

- Zérr[zuzu ~ (z)i(z))

with N ot l‘,)e .z

(f(2)); = gw(”j)f(z,-), w(ilf) = Z, ot _tj)eﬁz

properties, consequences:

» Convexity
curvature matrix is positive definite, i.e. W,(3) convex, since

p 2 N
eR: 3 T = S (2 - xe2)]

w,v=1
2
Zé,,/[ (x-z—(x-2);) ),-] >0
» Uniqueness of 3™
since W, (3) convex, can have only one minimum
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» Error bars for association parameters

Neglect fluctuations in {A/(t)}, focus on AB;*:

N
A r = 3 0n (2020 = (2,012,
j=1

L ! o : S Q(t,_z;)eﬁ‘zf
i ; N > YT

Then r rx r r —1
By =By £opu, o, = (A(r)

> p-values of inferred 3,

definition: the probability to find a value 5;; (or one further away
from zero) due to fluctuations, when the true value is zero

approx: assume above error bar is correct, disregard correlations,

2 1851 4
p—value = Prob(\ﬁu\ 2|5;|) = 17m/0 " 4B e 28
'V

1 —Erf(|ﬂ;|/aux/§), By/ou: z—score
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Explanation for Simson’s paradox

] | CHEMO A | cHEMO B \
medical centre 1 40% (40/100) 30% (150/500)
medical centre 2 18% (36/200) 15% (12/80)

| response rate | 25% (76/300) | 28% (162/580) |

P(response|chemo) = Z P(response|chemo, centre) P(centre|chemo)

centres

40 100, 36 200
100 300 200 300
30 500 15 80

_ SuUoW 1o ou _ 0
P(resplB) = {05580 * 100580 — 22%

P(resp|A) = = 25%

if chemo choice indep of centre:

40 1 36 1
P(resp|B) = 30 1 151 _ 22.5%

1002 ' 1002
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