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Regression for time-to-event data
> Data D:{(217t13r1)7"’7(zN7tN7rN)}
z; =(z1,...,Z4): d covariates (measured at t = 0)

ti>0: first failure time (death, onset of disease, ...)
rr€{0,1,...,RY: failure type (or ‘risk")

p
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p
X

. X i=1

t=0

» Heterogeneity

visible: variability in the available covariates

latent: variability in host or disease, not visible in the covariates
(individuals with same covariates z are not clones ...)



Competing risks, identifiability
and interpretation

» Competing risks

Informative censoring, i.e. event times of risks
are statistically dependent. p(t,...,ts|z) # HL p(tr|z)

reported time: t = min{t,..., {r}

> Interpretation of crude hazard rates
Eliminating one risk can change hazard rate of others ...

if hazard rate for risk 1 is low:

(i) event 1 is intrinsically unlikely?
(i) or it is often preceded by event 2?

to disentangle risks: need p(t, ..., tz|2)

> Tsiatis’ identifiability problem (1975)

Joint event time distribution p(t, ..., ta|2)
cannot be inferred from survival data alone ...



Conventional methods

for analysing time-to-event data Kaplan-Meier estimators

> not designed to handle disease/host
heterogeneity, beyond variability in covariates

> to allow interpretation:

have to assume different risks are uncorrelated,
dangerous when many censoring events ...

random effects models, frailty models,
latent class models

» usually constructed for primary risk only,
so still cannot handle correlated risks

» do not exploit the link between latent heterogeneity
and competing risks ...

Cox regression



Consequences and fingerprints
of latent heterogeneity

» Violation of proportional hazards assumption

> Interpretation of time dependencies tricky

even if all individual hazard rates h;
are time-independent, cohort hazard
rate will be time-dependent:

> Interpreting cause-specific survival curves
(KM, Cox) no longer possible ...

primary risk only

o .
time

o .
time



If in interpreting our data we assume

censoring risks uncorrelated with primary risk

censoring by competing risks
can give nonsensical results ... i

— harmful drugs look beneficial
— beneficial drugs look harmful

— false protectivity of covariates |

(ULSAM prostate cancer data)

Ex smoker

would we have spotted this
problem if the covariate represented
the expression of a specific gene?




Link between cohort
heterogeneity
and informative censoring

Say 1000 people,
two risks, hazard rates h, and hg

» homogeneous cohort:
all individuals have (ha, hg)

> heterogeneous cohort,
but non-informative censoring
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Heterogeneity and
informative censoring

Say 1000 people,
two risks, hazard rates hs and hg

» homogeneous cohort:
all individuals have (ha, hg)

> heterogeneous cohort,
informative cohort filtering

result:
underestimation of ha
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Heterogeneity and
informative censoring

Say 28 people,
binary covariate: z=0,1

associations risk A: (4
associations risk B: g
(B: competing risk, strong)

without risk B:

as many A deaths with
z=0asforz=1,

overall association 5,=0
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Heterogeneity and
informative censoring

Say 28 people,
binary covariate: z=0,1

associations risk A: 3,
associations risk B: g
(B: competing risk, strong)

Effect of risk B:

what will we now
observe for risk A?
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Bayesian latent class methods:
rationale and definition
» model all risks simultaneously

» individuals with same covariates can have
distinct associations and distinct base hazard rates

> risks are assumed independent only at the level of individuals
(this removes Tsiatis’ identifiability problem)

» competing risks, informative censoring:
reflect correlated association parameters of different risks

class 1
fraction: wy fraction:
for all risks r: for all risks r:
i 1 gzl 4. +p1dd i i
he(t) = A (t)elr % r hi(t) = e’ i

proportional hazards within classes == proportional hazards at cohort level
independent risks within classes =~ independent risks at cohort level



Personalised cause-specific hazard rate model variants

Heterogeneous frailties o
: g ; pop
M =1 Homogeneous associations hi(t) = Ap(t)ePr T BrE
Homogeneous base hazard rates

Heterogeneous frailties o i
o i [
M =2 Heterogeneous associations hi(t) = Ap(t)ePr T B
Homogeneous base hazard rates

Heterogeneous frailties " .
cos i [z
M =3 Heterogeneous associations Ri(6) = AL () 2, 8.0
Heterogeneous base hazard rates

» Bayesian analysis and model selection:
reliable error bars, and multiple classes only if data demand it

> reduces to standard Cox regression if no heterogeneity
(Occam’s Razor action of Bayesian model selection)

> non-primary events all contribute to latent class inference

» fully transparent interpretation,
unlike some other competing risk approaches ...

» formulae for survival curves decontaminated for informative censoring,
and retrospective class allocation of individuals

(Rowley et al, SIM, 2017)



Technicalities ...

> censoring
modelled as ‘risk’ r=0 with no associations

» data likelihood

e
p(t,r|2) Zweptr|z p(t.r(z,6) = N(1)eBr 20051y ew(Br 2 0

> base rates
spline construction for {\¥(1)}, with K spline points

» Bayesian model selection
K: baserate complexity
L: number of latent classes
M: heterogeneity complexity

» numerical implementation
curvature estimation near parameter boundaries ...
avoiding local minima in high-dim searches ...
CPU efficiency ...



Upon determining parameters and hyper-parameters
explicit formulae for e.g.

» covariate-conditioned survival curves
and hazard rates:

E[ We A (t)e = Zr’ exp(ﬂr’ Z)A ,/(f)

crude : he(t|z
r(t2) = S, Wee A en(Br 2L ()

)

>, W /\f(t)eﬁ 2—exp(B,- A (1)

decontaminated : he(tz) =
S, weeo exp(3; )\ (1)

> cause-specific
cumulative incidence function:

Ft) = [[a o 5w

> class membership wep(t, rlz, £)
robabilities: p(t,r,z) = —
P Zé’:1 Wf/p(t,r|zv el)




Tests on synthetic data 3 classes:

inference of classes and parameters red, blue, green
ool ge T o I S e L L] |*x£=1(True)
N =200 N = 2000 N = 20000 - £=1 (Bst.)
3. 0.0 7———E——— BF B SRR B [ e - e e —| - 3R e e sE= (True)
: x x - ¢=2 (Est.)
£=13 (True)
—2.0 _....‘... | ............. . - _....‘.. | ............. . - _....‘. o | ............. . - f—3 (Est.)
p=1 p=2 p=23 p=1 p=2 p=23 p=1 n=2 p=3

—— £ =1 (True)
------ £=1 (Est.)
—— £=2 (True)
------ £ =2 (Est.)
£ =23 (True)
£ =3 (Est.)




Tests on synthetic data
decontaminating survival curves for informative censoring

primary risk only  false protectivity false exposure
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SiM - Kaplan-Meier red dashed: true survival curves

S, crude survival curve Si: decontaminated curves
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1.0

0.0

Prostate cancer data
(ULSAM data base, n = 2047)

Cox regression:
smoking is protective against PC
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negative association with smoking only in
extremely frail subgroup of patients

red class: high overall frailty

low overall frailty (Rowley et al, SIM, 2017)




2.0

0.0

—-2.0

Breast cancer data
(AMORIS data base, N = 1798)

Cox regression finds no significant associations
(proportional hazards violated)
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red class: predominantly younger women

predominantly older women

(Wulaningsih et al,

BMC Cancer 2015)




Applications to
failed cancer trials dx

g

o

» failed clinical trials

often some drug benefit, but not enough in view of costs ...
(in the absence of a biomarker to select patients)

> two possibilities

1. there exist measurable differences between individuals that
explain response variation, we just don’t know what they are ...

subgroups with distinct quantitative characteristics,
cohort is in principle stratifiable

2. there are no measurable differences between individuals
to explain response variation: cohort not stratifiable
» Bayesian Latent class analysis

— rational method for determining whether cohort is stratifiable
— retrospective class assignment: tool for identifying latent classes



Addition of cetuximab to oxaliplatin-based first-line @+k
combination chemotherapy for treatment of advanced

colorectal cancer: results of the randomised phase 3
MRC COIN trial

Timothy S Maughan, Richard A Adams, Christopher G Smith, Angela M Meade, Matthew T Seymour, Richard H Wilson, Shelley Idziaszczyk,
Rebecca Harris, David Fisher, Sarah L Kenny, Edward Kay, JennaK Mitchell, Ayman Madi, Bharat Jasani, Michelle D James, John Bridgewater,
M John Kennedy, Bart Claes, Diether Lambrechts, RichardKaplan, Jeremy P Cheadle, on behalf of the MRC COIN Trial Investigators

Summary

Background In the Medical Research Council (MRC) COIN trial, the epidermal growth factor receptor (EGFR)-targeted  Lancet 2011;377:2103-14
antibody cetuximab was added to standard chemotherapy in first-line treatment of advanced colorectal cancer with  published Online

the aim of assessing effect on overall survival. June4, 2011

outcome:

Interpretation This trial has not confirmed a benefit of addition of cetuximab to oxaliplatin-based chemotherapy ir
first-line treatment of patients with advanced colorectal cancer. Cetuximab increases response rate, with no evidence
of benefit in progression-free or overall survival in KRAS wild-type patients or even in patients selected by additiona
mutational|analysis of their tumours. The use of cetuximab in combination with oxaliplatin and capecitabine in first
line chemotherapy in patients with widespread metastases cannot be recommended.



The COIN trial (colorectal cancer)

n =398
HR [95% CI] | 5(0) | FRET eff  Her2-Her3 Cetux KRASmut
Cox (M1L1K5), InZ=-2419.82
-1.89 | 0.9[0.7-1.0] 1.1[0.9-1.5] 0.8[0.7-0.9] 1.3 [1.1-1.7]
p=0.3 p=0.4 p=0.03  p=0.006
Model M2L2K4(R), InZ=-2418.064
class I, W=51% | -2.57 | 1.8[0.8-4.6] 08][0.41.7] 0.5][0.3-1.0] 1.5 [0.9-2.6]
allocfpr > 0.5]: N=59 p=0.2 p=0.6 p=0.05 p=0.2
class II, W=69% | -1.56 | 0.5[0.4-0.8] 1.4[0.9-21] 1.0[0.7-1.4] 1.3 [0.9-1.9]
allocfpz > 0.5]: N=359 p=0.006 p=0.1 p=0.8 p=0.1

» two sub-cohorts, with similar base hazard rates,
but distinct overall frailties and associations.

» method provides retrospective class assignment

> new tools to identify a priori the responders to Cetuximab?




The TOPICAL trial (lung cancer)

n= 1580
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Prospective latent class prediction

If any of the covariates 100
correlate with retrospective ]0
class membership: 60
(e.g- Amoris) age
40
. 4 — J—
20 O{(ti, z})|ri = 1,4; = 1}
{(ti, 2H)ri = 1,6, =2}
rep|ace 0.0 10.0 20.0

L
p(t.rlz) wap(t rz.0) - p(triz) =S wi(@) p(t, rlz, 0)
£=1

> suitable parametrisation w,(z)

» prospective class prediction,
i.e. objective data-driven stratification to rescue failed trials

> but increasingly complex models,
many parameters: danger of overfitting ...
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