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‘While it is never safe to affirm that the future of the Physical Sciences has no marvels
in store even more astonishing than those of the past, it seems probable that most of
the grand unifying principles have been firmly established and that further advances

are to be sought chiefly in the rigorous application of these principles to all the

phenomena which come under our notice’ .... ‘the future truths of Physical Science

are to be looked for in the sixth place of decimals’.
A.A. Michelson, Chicago, 1894
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1. Historical Background

1.1. Classical Physics Around 1900

1.1.1. Newtonian Mechanics

e Position and momentum: & = (z1,...,25), P = (p1,---,PN)
Hamilton’s equations:

N 2
D; dr; OH dp; oH
H = E _ : — = —
= 2m, +V(x) dt op; dt ox;

e Poisson brackets for functions A(x, p) and B(z, p):

N (0AOB 0AOB
= _PAIB YA VpB - VpA-VgB
(4, B) { Ox; Op;  Op; Ox; } x p p T

=1

Properties:
(A,B) =—(B,A) hence also (4,4) =0
(A, M B+ XM0) = M (A, B)+ (A, C)
(AB,C) = (A,C)B+ A(B,C)

Examples:

(Ii,ﬁj) =Vgz;-0-0-Vgz; =0
(pi»p;) =0-Vpp;—Vpp;-0=0
L

e Evolution of functions f(x, p,t) in terms of Poisson brackets:

a _ of
o2 _ 2 H
7= o T H)
Proof:
0 0
8_{+(f’H) = 8—{+me-VpH—fo-V;cH
_af dex dp df
= tVel Gt Vel =y
Examples:
pr (5, H) = Vgx; - VpH = o,
dpi _ _ OH
ar (pz,H) = —Vppz VgH = Ers
dH

—=(H,H)=0
dt (5 )
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1.1.2. Mazwell Theory

e Electric and magnetic fields on & € R?: E(x,t) and B(z,t) (both € IR?)
Electric charge density and current density (due to particles at x; with charge e;):

ple,t) = > edle —zi(t)] (€R)

J(x,t) = Zei%é[w —xz;(t)] (€ R?)

Maxwell equations:

10B
V><E+—8—:0 V.-B=0
c Ot
10E 4
vxp_ 0B _dr, V. E =drp
c Ot c
e Effects of electro-magnetic fields on charged particle at ; € R with momentum p, € R:
10A
E:—Vd)——a—, B=VxA
c Ot
V=V +eg(zi), P; = D — “A
c

with ¢(z,t) (€ R) and A(z,t) (€ R?)

1.1.3. Eaxtensions, Properties, Range of Verification
e Light: electro-magnetic waves with speed ¢, carried by an ‘ether’
e Laws for solids, liquids, gases: derived from above (‘statistical mechanics’)

Coordinates {x;, p;} can in principle have any real value

e First order differential equations and partial differential equations:
the present in principle determines the future, to unlimited accuracy

e Distance scales (experimentally accessible in 1900: *):
103 m size of the solar system -
10° m diameter of Saturn —
106 m London — Rome -
10° m King’s — Trafalgar Square *
10° — 1072 m | macroscopic scale *
10~° m cells *
107 m large molecules (e.g. proteins) | —
107 m atoms —
10 m atomic nuclei -

e Two main scientific revolutions of 20th century:
relativity theory (1905), initially for large scales, later also small scales
quantum mechanics (1925), initially for small scales, later also large scales
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1.2. The Three Main Clouds on the Horizon

1.2.1. Black-body Radiation (1860, Kirchhof)

e Electro-magnetic radiation inside a cavity with a (partially) absorbing interior
(‘black-body surface’)

e Power distribution over radiation frequencies depends only on temperature T'; not on shape
or material of cavity

e (Classical theory: intensity must increase monotonically with frequency

(i.e. intensity 1 oc as wavelength | 0) ...

Intensity
e ———
)

NN

49 N
7SI
/ I~ A o717 T
0 1 2 3 4 5 6
x 10~ % em
Wavelength

Figure 1. Left: electro-magnetic radiation inside a cavity with a (partially) absorbing
interior (‘black-body surface’). Right: power emitted by a black-body radiator, for different

temperatures 7T'.
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1.2.2. The Photo-electric Effect (1887, Herz)

e When light is incident on a metal surface, electrons will be ejected

e The kinetic energy of these electrons is independent of the intensity of the light, but
increases linearly with its frequency ...

Incident light

Fleciions /2/

/ Photocathode

Collector

+ Volts

~Volts

%mu'a hv-P=PDe

4PD_dVolts _m__' b
dv dv Ixio® €

= 24x10
ﬁl (I-——ﬂm—r.,z,“ i pzxc”

&.‘L‘LL_LO_»QLI‘}-‘:S“IO

Joo

40x 10" 50 60 10 80 90 100 110 1.0
Frequency

Figure 2. Top: measurement of the energy of electrons ejected from the cathode material
due to incident light (the photo-electric effect). Bottom: resulting linear dependence on the
frequency of the incident light.
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1.2.3. The Problem of Atomic Stability (1911, Rutherford)

Let

Atom size: £1071% m. Scattering experiments: a very small, positively charged, nucleus,
surrounded by electrons. Size of nucleus and elctrons: < 107! m.

Solar-system picture of the atom, with electrons moving along ellipsoidal trajectories

2, similar to gravitational force).

around the nucleus (note: electric force proportional to r~

Emission and absorption by atoms of electro-magnetic radiation occurs only in terms of

discrete spectra. Balmer’s expression for frequencies of hydrogen atom:
fnm:R<%—%>, n,mé€ {1,2,3,...}

Why the spectral lines 7 Why do atoms have a specific size 7

Orbiting electrons are accelerating all the time (central force), so they emit radiation.

Hence they lose energy continuously. Why do they not therefore collapse to the nucleus ?

us inspect spherical orbits of a charged electron (charge -e, mass m) around a nucleus

(charge +Ze) located in the origin. We write its velocity as v = |dx/dt| and its distance from

the nucleus as r = |x|:

d? 27

Newton's law: m—x = ———=
dt? |z|?

1d> , d [ dm] B [dmr Px ldazr ¢z

sar® ~ @ T w| T ar| T aE T | a| wmie

Stable spherical orbits: dz?/dt = 0. Hence:
2_ &2

Ve =
mr

Angular velocity w: circumference = 277, so
v
w=-
r

Energy, E = imuv? — e?Z/r:

o leQZ B e*7 e?7

207 r 2r
Angular momentum: L = x X p = ma X (dx/dt)
Since x - (dx/dt) = 0: L = |L| = m|z||dz/dt|, so
L? = m2r262—Z =2 Zmr
mr
Expression of all characteristics in terms of L:
L? _ Ze? Z*me* 7% me*

= — — E - _
Zme? T YT T N

r

Angular momentum is conserved (spherically symmetric potential), and hence L is determined

purely by initial conditions and can take any value L € IR. Therefore, so can r.
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1.3. Quantum Mechanics: Revolution rather than Fvolution

1.3.1. Impact of QM

Quantization
Some observables (e.g. angular momentum) are quantized (can take only discrete values)

Probability
Quantum state specifies probabilities; the uncertainty is intrinsic, not due to incomplete
knowledge of the system

Uncertainty Principle
There is a limit to how well one can jointly localize both position and momentum of a
particle (so too for certain other observables)

Tunneling
Quantum mechanics allows particles to be found in locations that are absolutely forbidden
classically

Anti-matter
Relativistic quantum mechanics predicts the existence if nearly identical anti-particles
(electrons vs positrons), with opposite charge

Creation and Destruction of Matter
Allowed, predicted and described by quantum mechanics

1.3.2. Comparison with Relativity Theory
e Relativity: 1905 — 1916
Quantum Mechanics: 1925
e Quantum Mechanics: triggered mainly by experiments
Relativity: triggered mainly by thinking
e Relativity: mainly the solo project of Albert Einstein
Quantum Mechanics: collective enterprise
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1.3.3. Timing of the Revolution

1860: measurement of black-body radiation (Kirchhof)

1885: formula for spectral lines of hydrogen (Balmer)

1887: measurement of photo-electric effect (Herz)
Michelson-Morley experiment (ether ?)

1895: Lorentz transformations (problems with v ~ ¢ in Maxwell theory)
discovery of X-rays (Rontgen)

1896: discovery of radioactivity (Becqerel)

1897: discovery of the electron (Thomson)

1899: precise measurements of black-body radiation

1900: law of black-body radiation (Planck)

1905: light quantum explanation of photo-electric effect (Einstein)
special relativity theory (Einstein)

1911: discovery of the atomic nucleus (Rutherford)
precise measurement of electron charge (Millikan)

1913: Bohr’s atom theory

1916: general relativity theory (Einstein)

1919: solar eclipse validation of general relativity

1923: matter waves postulated (De Broglie)

1925: matrix mechanics (Heisenberg)
exclusion principle (Pauli)
1926: Schrodinger equation
probabilistic interpretation of QM (Born)
equivalence with matrix mechanics (Schrodinger, Pauli, Eckart)
1927: Quantum electro-dynamics (Dirac)
uncertainty principle (Heisenberg)
1928: relativistic electron equation (Dirac)
1931: prediction of anti-matter (Dirac), experimental verification



CM332C — Introductory Quantum Theory - April 2005 10

Albert Einstein Niels Bohr Werner Heisenberg Paul Dirac
1879-1955 1885-1962 1901-1976 1902-1984

Photo-electric effect Atom Theory Matrix Mechanics QED
1905 1913 1925 1927

‘Knaben-physik’ (‘Schoolboy-physics’)
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1.4. The Road Towards Quantum Theory

1727°¢c
]
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1.4.1. Ezplanation of Black-body Radiation (1900, Planck)

e Since black-body radiation independent of material of the wall:

choose wall of harmonic oscillators, V (z;) = $mw?z?, interacting with the EM radiation.

e Assume that the energy E of each oscillator can only take the discrete values E,, = nhf
with n € {0,1,2,3,...}, where f is the natural frequency of the oscillator (f = w/27).

e It then follows (via classical statistical mechanics) that:

87rhc> 1
N5 | ehe/ T _

where k is Boltzmann’s constant.
(for h — 0 one recovers the incorrect classical prediction)

WT) = (

e Perfect agreement with experiment, provided one chooses
h ~ 6.626 x 10727 erg.sec.

e Dimensions: kT = energy, A = length, ¢ = velocity, hc/ kT = dimensionless
m.kg.(m/s)?
m/s
Check angular momentum: dim L = dim rp = m.kg.(m/s) = m?.kg/sec

We conclude: h has dimension of angular momentum

e Alternative notation: h = h/2n, E, = nhw
Planck hoped and trusted that the quantization of energy would be a temporary fix ...

dim h = = m?kg/sec
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Incident light

R

Electrons -

/ Photocathode
Collector

1.4.2. Ezplanation of the Photo-electric Effect (1905, Einstein)

e Einstein took the quantization in Planck’s formula E, = nhw seriously. Assume that the
energy of the Planck oscillators can only change in units of hw, because electro-magnetic
waves come in quantized units (photons) with energy hw each.

e Fach photon with angular frequency w carries energy Eppoton = fiw.
Part of this energy, W, is needed to disconnect the electron from the atom.
The remainder will be carried away by the electron as kinetic energy:

hw < W nothing happens

1 1
hw > W hw:W+§mv2 SO imqﬂzhw—W

e No dependence on intensity !
Intensity determines only the number of electrons knocked out, hence

:_ﬁi%(r——‘mrrumu @ Llﬁ;g
k

6310
%4114 65

Frequency
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1.4.3. Bohr’s Atom Model (1913, Bohr)

Bohr also took Planck’s quantization seriously, but emphasized that h has the dimension
of angular momentum, so the key discrete physical quantity must be angular momentum:
L, =nh withn € {0,1,2,3,...}

Solar-system picture of the atom, with negatively charged electrons moving along ellipsoidal
trajectories around the positively charged nucleus.

Now combine the classical equations (circular orbits, for simplicity)

L? Ze? Z’me* Z’me*
Zme? L L3 2172
with L,, = nh:
n?h? 7Ze? Z?me* Z?me*
n = 2 Un = 2~ Wp = 23 n= T o979
Zme nh n3h 2n2h
Atom size:
for Hydrogen (Z = 1) on finds ry = n’;’—; ~ 0.529.10719 m !!
Spectral lines, Balmer’s formula:

Electrons can be made to switch between the allowed orbits r,, by EM radiation. Energy
is conserved, so the balance is carried away (if E, > E,,) or supplied (E, < E,;) by the
EM radiation:
2, 4
hw:En—Em:ZLf[i—i]
27 Im?  n?
atom stability:
Accept that electrons in atoms do not radiate continuously (reasons as yet unknown)
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2. The Schrodinger Equation

2.1. Matter Waves

2.1.1. De Broglie’s Proposal (1923)

e If light can exhibit particle behaviour (discrete energy quanta E = hw),
then perhaps particles can also have wave-like properties.

e Consider particle orbits in Bohr’s model (radius r, momentum p),
quantized according to L = nh:
27h

rp = nh & nA=2rr with A= —
p

The condition nA = 27r can be interpreted as describing standing waves
along the circular orbit of radius r, with A denoting the wavelength

e Wave associated with particle: A = 27h/p

e Experimental verification: interference patterns of diffracted electrons
(Davisson & Germer, 1927)

2.1.2. The Search for the Wave Equation (in 1 Dimension)
e Wave function: ¢(z,1)

e Require plane wave solutions to represent free particles,
obeying fiw = p*/2m (quantized energy) and p = 277i/\ (De Broglie wavelength):
. 2
U(x,t) = elthr=wt) p=2" (wavevector)

A
The two conditions lead to a relation between w and k (upon eliminating p):
1 47%h®  RPK? hk?

=— = SO W= —

2m N2 2m 2m
e Assume linearity (so superposition of solutions is allowed, as in Maxwell’s equations):

If 1o (x,t) and ¢p(x,t) solve the wave equation, then also ¢ (xz,t) = Cuthy(,t) + Cyihy(t)

(VCy, Cy € ©)

hw

o"P(x,t) 0"p(x,t)
e.g. Yo K e (u,v € IN)

Substitute plane wave into proposed wave equation:
(Vz,t € R): {(—iw)* — K(ik)'}e'ke=w) =0 = (—iw)* = K (ik)"
hik? th

(_Z%) = K(ik) hence: 2u=v, K= (%)

Simplest choice: u = 1, now K = ih/2m,

0U(a.t) _ ih (1)

ot 2m 022
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2 92
Equivalently : ihawg’ t) — _;—m%

2.1.3. Wave Packets in 38 Dimensions

e Generalize the wave equation to 3 dimensions:

(xz,k € R?)
B, 1) = kT g = 27” w= Z—';j
m%&@:,@ = —%V%/;(m,t) V2= aa; + aa;% + aa:§
e Use the linearity of the wave equation (superposition of plane wave solutions):
W)= [ o BTy =

dk ;
Y(x,0) = /1R3 )2 ¢(k:)eZk'a3 (Fourier transform)

If lim,_,0 ¢ € L?(IR?):
o(k) = / _de P(x O)e’ik""'3 (inverse Fourier transform)
R? (27)3/2 ’
Note:
L*(R?) denotes the vector space of functions f : IR® —  which are square integrable,
iLe. [psdz |f(z)]* <
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2.2. The Schrédinger Fquation and its Interpretation

2 (@,1) = — V2@, 1) + V(@) (=, 1)

The wave equation for a particle with mass m
moving in a potential V(z) € R

2.2.1. Mathematical Properties

We define the real-valued objects
ple,t) = |¢(w " =" (z, )i (x, 1)
jlx.t) = o— [1/)(33 Vi (x, 1) — " (x, 1) Vi (e, 1))

e pand j obey a Contlnulty equation, which implies that p(x, t) is the density of a conserved
quantity, and j(z,t) is the associated current density:

gt (x,t)+ V- -j(x,t)=0
Proof:
9 o (, 1) i OU(, 1)
g\l = Ty e ) (e )
-2 {—[—h—VQw(m, 1)+ V@)@, )] (. 1)

(0O V(e 6+ V (@000

= — 2 (VA (@ )l 1) — 0 (@ 0). V2,0

= Y [V (& ), )]~ Vi 1) Ve )
V[ (2, 8). V(1)) + V(1) - Vi (2, 1))

= () vl ) — 1) Vol 1)

= —V Jj(x,t)

e If the integral [dx p(x,t) exists, and the current j(a,t) vanishes sufficiently fast as
|&| — oo then [dzx p(x,t) is a conserved quantity.

9@ i plat) = [de S ptw,t) =~ [ V- j(a,1)

= — i dS n-j(x,t)=0
Rl—r>go |T|=R n_y(m )
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e Solution by separation of variables: insert ¢(x,t) = ¢(x)x(t) into SE:

hQ
iho(a) S x(1) = — (1) V6(z) + V (@)o(@)x (1)
Divide by ¥(x,):
0 o1
h—1 t)=———-V?
ihz log x(?) QmM@V¢@%H4@
LHS is a function of ¢ only, RHS is a function of & only, hence both are constants:
0 o1
h—1 t)=F 2 - F
ihz log x(?) 2mM)V¢@%H4@
. h
0 =xO [y o) - Bota)
This (the time-independent Schrédinger equation) is a so-called Sturm-Liouville eigenvalue
equation
h2
differential operator : — 2—V2 +V(x)
m
eigenfunction : o(x)
eigenvalue : E

General solution (superposition):
= Z Cne_iEnt/hqsn(m)
n

(or an integral, or a combination of integral and summation; depending on the spectrum
{E,} found for the operator).

2.2.2. Statistical Interpretation of Schrodinger Equation

e p(x,t) gives the probability density for finding the particle at position  at time ¢:
— Continuity equation %p(w, t) + V - j(x,t) = 0 expresses probability conservation
— Solutions of SE must be normalized according to [dax ¢*(x,t)(x,t) =1 forallt € R
(fdx p(x,t) is conserved, so we just need to ensure normalization at ¢t = 0)

e Physical (observable) quantities correspond to operators:

position : x [xy](x) = 1) ()

momentum : P [ ](a:) —ZhVT/)( )

kinetic energy : % [ Yl(x) = —h—2V21/)( )

force : F [ ](:n,t) = _VV( )Y ()

wergy:  H [Hol@.0) =~ V(@) + V(@)
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e Expectation values of physical quantities are defined as follows:
operator A : (A) = /da: ¥ (x,t) AY(x,t)

e The correspondence principle: the equations relating expectation values in QM must be
identical to the corresponding equations in classical mechanics, i.e.

Clay=mp), o) =(F), et

Note: sometimes (when there is a risk of ambiguity) operators are written as &, p, H, etc.

We are automatically led to the study of function spaces and operators on such spaces.
The natural function spaces in QM are found to be Hilbert spaces; see below.

2.2.8. Technical Subtleties

e We will generally assume ¢ to be twice continuously differentiable in x
(exception: potentials with §-distributions, see later)

e Boundary conditions in IR*: existence of integrals requires suitable behaviour for 1) as
|z| — co. We may assume

li d Hiz=1
A ) gyt V(1)

In polar coordinates (r, 0, ), where de — r?sin(0)drdfde, this gives

m 2w R
/da/ dqﬁ{lim/ dr 72 |¢|2}:1
0 0 R—o0 Jo

Hence lim, o 73[10[* = 0 (since [(°dr 7—' = oo). Equivalently: ¢ (x,t) = |z|%/?¢(x,t)
with lim‘m‘ﬁoo 6($, t) =0.

2, so limg|oeo[|®|?F (2, t)] = 0. This
immediately leads to our previously encountered condition for probability conservation

Implications for j(z,t): V -j = —|z|*Z|e(z,t)

li dS - j(z,t) =0
Rl—r>go |T|=R n _7(33 )

since [ig—rdS = O(R?) (surface of a sphere with radius R in R?)
e The J-function (for proper definitions and details see textbooks on distribution theory):
— Defn. 1: §[z] = 0 for z # 0, 6[0] = oo, [dz §(z)f(x) = f(0) for all well-behaved f
— Defn. 2: §(z) = lim_, G (z), with G.(z) = [ey/27]'e 22"/
— Defn. 3: 6(z) = (2m) L [* dk e*®
Note the property [ dz f(z)d[x —y] = f(y) for all well-behaved f.
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3. A More Formal Look at Quantum Theory

3.1. Function Spaces and Operators

3.1.1. Hilbert Spaces
Definition: A Hilbert space # is a vector space with the following properties:

(i) H is equipped with an inner product (|) : H x H —

(a) (Vug,ug,v € H) 1 (ur + uglv) = (u1|v) + (uq|v)

(b) (Vu,v € H)(Ve € C): (u|cv) = c(ulv)

(¢) (Vu,v € H): (ulv) = (v|u)*

(d) (Yu € H): (ulu) > 0, with equality if and only if u =0
(ii)) The metric on H is defined by the inner product: |u| = y/{(u|u)

(iii) H is complete, i.e. every Cauchy sequence {u,} in H converges in H:

Cauchy sequence : (Ve > 0)(IN € N) : |uy, — upy| <€ (Vn,m > N)
convergence in H : (GueH): lm |u, —ul=0

Why do we study Hilbert spaces in QM ?

e The SE is linear, so we are interested in linear combinations of complex functions
¢ : IR"™ — (, i.e. in vector spaces where the elements are functions

e We require [pndex 1p*(x)(x) = 1. This is the statement |¢)| = 1, if we use the conventional
(complex) inner product (f|g) = [gndx f*(x)g(x) in the function space L?(IR")

Thus the natural space within which to solve the SE is the Hilbert space L?(IR").

3.1.2. Definitions and Properties of Operators on Hilbert Spaces
e Definition: the commutator of two operators A and B is [A, B] = AB — BA

Properties:
[A, B] = —[B,A]  hence also [A, A] =0
[A, \iB + X\C| = M [A, Bl + A\o[A, C|
[AB,C]| =[A,C|B + A[B, (]

Examples:

[LEZ',LEJ‘]Z/) = IiiEj’QZ} — l‘jl',ﬂ,/) = (l‘iiEj — LEJLEZ)’QZ) = 0

0 Y L0 O, Py 0
o Oy o O 0 oy O |
[z, p|Y = xi] Zhaxj] [ Zhaxj](xzw)—zh{ xlaxj+xzaxj+1/)axj}—zhdm1/)
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Thus: )
s [xzaxj] - [p17pj] = O: [371,}7]] - Zhél]

(note similarity with classical relations for Poisson brackets, under (,) — (i2)7'[,] )
e Definition: the (Hermitian) adjoint AT of an operator A is defined by
(Yo, € H) = (9]AY) = (ATgly)
Properties (with A € €):
(ANY=4,  (A+B)=A1+ B!, (AB)'=BTAT  (\A)T =\ AT
e Definition: a self-adjoint (or ‘Hermitian’) operator obeys AT = A
Properties of Hermitian operators A : H — H:

(i) All eigenvalues of Hermitian operators are real-valued
Proof: let AT = A and let A¢ = a¢, with a € C and ¢ # 0

0= (9]Ag) — (Ag|¢) = (d|ag) — (ad|g) = a(d|d) — a*(g]¢) = (a — a*)|[*
(ii) Every A can be written as the sum of an Hermitian and an anti-Hermitian part:
A= %(A+AT) + %(A—AT)

since (A+ AN = A+ Al and (A—Af)T =—A—AT)
(iii) Eigenfunctions of Hermitian operators corresponding to different eigenvalues are
orthogonal: if Ap, = and, and Ady, = apmdm, then (dn|dm) = 0 if a, # ap,
Proof:
0 = (n|Adm) — (APn|bm) = (DnlamPm) — (@nn|dm) = (an — Am){Dn|dm)
Hence: if a,, —a,, # 0 it follows that (¢,|¢,) =0
(iv) The operator B = A'A is Hermitian, for any operator A,
and it can have only non-negative eigenvalues.
Proof: BT = (ATA)T = AT(AT)T = ATA = B.
Let Bp = b¢ with ¢ # 0: now
bo* = (g| Bo) = (¢| AT Ag) = (Ag|Ag) = [Ag|* > 0
(v) If an Hermitian operator has a complete set of orthogonal eigenfunctions {¢,}, i.e.
(Vi € H)(H e, € C}): ¥ =3, cndn (the sum could be an integral, or a combination
of both, dependent on eigenvalue spectrum), then the closure relation holds:

> bn(@)ey, (') = o[z —]

Proof: we normalize the eigenfunctions according to |¢,| = 1 (Vn), hence (¢, |pn) =
Onm- For every ¢ € H we may write ¢ =), ¢,¢,. Take the inner product with ¢,,:

<¢m|’¢}> = ch<¢m|¢n> =Cnm
0@) = T u(@)) = [ 12! [ (w05 0] v1a)

This must be true for every ¢ € H, so ¥, ¢n(x)d} (') = S|z —a']

Hence
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3.2. Operators in Quantum Mechanics

3.2.1. The Ehrenfest Theorem

If a QM system evolves according to the Schrodinger equation ih%@b = Hy, with H' = H,
then for any operator A one has

Ly =2 + (A1)

(note similarititwith classical relations for Poisson brackets, under (,) — (ih)"'[,])
Proof:
@) = Liwlaw) = (0120 + <1¢|A¢> +{plAS)
<%’f> (- HlAv) + (6l AB) = () + o (—{Hu|Av) + (6 AH )}
=<%—f>+ih{—<¢|HA¢> + @A) = (51 + (w4, Ho)
= (02 + (. 1))

3.2.2. QM Ezpectation Values of Hermitian Operators

We now interpret the expression for expectation values of operators describing a particle in space
V in terms of inner products in L2(V): (A) = [i,dx ¢* Ay = (| Ay). Note that normalization
of the wave-function implies (¢|¢)) = 1.

e Hermitian operators have real-valued expectation values: if AT = A then (A4) € IR.
Proof: (A) = (Y|A¢) = (Ag[y) = (Y|Ap)" = (4)*
o If AT = A, then also [A — (A)]' = A — (A). Hence [A — (A)]? has non-negative real-valued
expectation values. This allows us to define the uncertainty AA > 0 of observable A:
AA=,/(4 = \/(42) — (4)?
e AA =0 if and only if the system state ¢ is an eigenfunction of A.
Proof of the IF part, assume Ay = a:

(AA)? = (] A%)) — (Y| AY)* = a*(PlY) — (a(p|¥))® = a® —a® =0
Proof of the ONLY IF part, assume AA = 0:

0= ([A=(A)]*) = (WA= (D)) = ([A—(A)]|[A-(A)]y) = [[A=(A)]p*
Thus Ay — (A)y = 0, or, equivalently: Ay = (A))

e If A has a complete set of eigenfunctions {¢,} in #, with corresponding eigenvalues {a,}
and with (¢, |¢n) = dpmn, then

=3 [(dult) 2an, > [al)|” =
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Proof: first use closure relation
)= Xn: Pn{Pn|t))
Use this expression to calculate (A), using A¢, = a,Pp:
(4) = %<¢n|w><¢m|w>*<¢M|A¢n> = ;an|<¢n|¢>|2

Finally, use the expansion of 9 to re-write || = 1:

= Y {Dul ) (B|t0) (D] D) = Z|¢n|¢

nm
3.2.8. Position, Momentum and Energy

Let us check, in one spatial dimension, whether the main operators encountered so far (a)
are Hermitian, and (b) have a complete set of orthogonal eigenfunctions. We observe the
importance of boundary conditions. Let us assume x € [a,b], so the relevant Hilbert space is
I2(a,b) with (¢|¢)) = [Pdx ¢*(x)v(z), and use the notation convention Z, p etc for operators:

e Position operator: (2¢)(x) = z¢(x)

— Hermitian 7

b
(Play) = (2olv) = /a d [z¢* (r)(x) — ¢" (v)xip()] =
— Eigenfunctions ?
(Va € [a,b]) : zx(z) = Apa(x) (A denotes eigenvalue)
(Vo € [a,b]) = (x=A)oa(x) =
Apparently, ¢,(z) = 0 unless x = \. Hence: ¢,(z) = o[z — ]
— Eigenvalue spectrum: A € [a, b]; associated eigenfunctions: ¢, (z) = §[x—A]
— Orthogonality:
(alén) = [ dr dlo—Xole—X] = SA-N"

— Completeness:

(Vo (@b): fn) = [ dysla—ylis) = [ dr FO)hr()
e Momentum operator: (po)(z) = —ihe'(x)

— Hermitian ?

_ i [¢*($)¢($)]Z+/(lbdm (x) [—Zh Pz )]
= (pp|) — ih [¢* (x)(z)]]

Hermitian only if we impose boundary conditions such that ¢(b) = ¢(a)
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— Eigenfunctions:
(Va € [a,b]) : — ihaa—x%(:l?) = () (X denotes eigenvalue)
P\ (x) = (iA/h)px(x) = o (z) = ea/h

Impose acceptable boundary conditions (see above)
(more than one choice !):

PA(b) = dx(a) :  eAO=IM =1 5o

— Eigenvalue spectrum & associated eigenfunctions:

Ab—a)
h

=2mn (n € Z)

2mh ‘
d= T @) =, (e )
—a
— Orthogonality:
¢n|¢m / dr [e—anm/ ][ 2rimz [ (b—a / dr 627rz b—a)
m=n: (¢n|¢n>:/da:1:b—a
b—a i b
. - mi(m-n)z/(b-a)
__bma [e2mitmmb/6-0) _ paritm-nio/6-0)]
2mi(m—n)
b—a 9
— i ( b—a) 1-11=0
2mi(m—n) | ]
— Completeness:

The set {¢,} = Fourier expansion for functions in L?(a, b), which is complete
e Energy operator: (Hg)(z) = —(h?/2m)¢"(z) + V (z)¢(x)

— Hermitian 7

First inspect kinetic part. Note that Hyy, = p2/2m, so

($1) —(Hl) = - [(8l5™) — (570l
1

= 5B 61v) = (p*3[v)]

So Hyi, is Hermitian if and only if (p7)> = p?. For boundary conditions such that
Pl = p (see above).
Next inspect potential energy part V:

GIT0)~(Voly) = [ de V(@) (2)p(a) — 6" @)V (@)(a)] =0

Thus, given suitable boundary conditions, H is Hermitian
— Eigenfunctions:
h2

(Vo € (a,0)) : = 5 —dh(z) + V(2)9x(2) = Ada(2)

Sturm-Liouville problem, generally complicated; solution depends on choice of V'(z)
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3.3.

The Postulates of Quantum Mechanics

These are motivated by the properties of the SE and of Hermitian operators

(i.e.

I:

11:

III:

IV:

real eigenvalues, expression for (A) in terms of eigenvalues of A)

Every physical system describing a particle moving in € is described by a wave-function
Y € L*(Q), which contains all the information about the state of the particle

The wave function 1) evolves in time according to the Schrédinger equation
2

b, 1) = (e, 1) + V(@) )
Every observable physical quantity corresponds to a Hermitian operator A : H — H with
a complete set of eigenfunctions {¢,}. The corresponding eigenvalues {a,} of A are the
possible outcomes of a measurement of this quantity.
The probability P, that a measurement of A leads to the observation a, equals P, =
[{$n]9)|?, given normalization (¢, |¢m) = dum and (Y|p) =1 (if a,, is not degenerate)

If a, is degenerate, the probability that a measurement of A leads to the observation a,
equals P, = a0 =an |{0m|0) 2.

V: At the instance of a measurement of A, leading to observation a,, the wave function

‘collapses’ to the eigenspace of the operator A corresponding to the eigenvalue a,,.

Note:
Since H has complete set of othogonal eigenfunctions:
solution obtained by separation of variables is general and unique

2
H = —h—V2 + V(33) H¢, = Eq¢y
2m .
1/)(113; t) - cheilEnt/h¢n($) Cn = <¢n|'§/)t:0>
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4. Examples of Simple Systems

4.1. Free Particle in a Box

4.1.1. Solution of the Schrodinger Equation

e Construct solution of SE in [0, ]
by separation of variables:

B2 d?
o da? (z) = E¢(x)

= Z Cne_iEnt/han (:E)

(or integral, dependent on spectrum {E,})

To be solved: ¢"(z) 4 k*¢(z) = 0, with k? = 2mE/h*

General solution:

¢(z)
e Boundary conditions: ¢(0) =

— Aue* 4 Bye i,
¢(L) =0
This gives:

Ay + B, =0, Age*l + Be ™ =
Hence: kL =nm (n € N), or k, =nn/L

nrx n2m2h?

On(z) = sin(— 7 ), E, =
e Normalize ¢,:
¢n — Cpsin(nmz/L)

7rn:r

1—|C|/dxsm(L = |C A (—

(5 = ST

=GP

Thus C), = \/2/7L

fn(r) = @ sin ()

e General solution of SE:

ImI2?’

25

A, B €

= Bk = —Ak, sm(kL) =0

n=1,23,...

/ dz sin?

.ZE t \/72 Cy € 7zn T ht/QmL2 : (n’/[ix)

)ib(x,0)

9 L
:\/;/0 dx sin(H
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4.1.2. Ezxpectation Values and Uncertainties

Choose simple initial conditions: ¢, = d,¢

2. 232
W) =) ) = e g =
(so Hyp = Epp for all t)

e Position:

/ dx Y xp = L/ dx xsin (Wix) i/ﬂdex{l—cos(QﬂLm)}

1 2wl
_§L_Z/o dx x cos( )
1 1| Lz . 2nlx L . 2l
—§L“{m S RE=TE T )}
1 1 L2 otz [F] 1
2 L{O 0% e =7 )0} 2

/da: ot = = /d:E:E sin? 7r£x /da:x { —cos(QWLgx)}

1, 9 2mlr, 1 2 1.

— §L - z/o dx x* cos( 7 )= §L Ly—}27rZ/L 0 / dz cos(yx)
Lo, 1o, o, L1, 1 S

B §L * Zy—}%r(/L dy? [y s1n(yz)] B §L Ly—}QwZ/L dy? (y sm(yL))

2

1 1 2 2L L
= §L2 + 7 y_}gr%/L (— sin(yL) — 7 cos(yL) — m s1n(yL)>
Ll I

3 2m2(?

Az = /(22) — (2)? = L\/1/12 — 1/272¢2

e Momentum:
L 2
(p) = —ih/o dx @Z)*%@Z) = —Lh/ dx sin( ng 2sm(wix)
2thmt L l l th L 2m/
— %% s sin(%)cos(ﬁLx) —“22 / v sin(22)
_amlh L ol |

L2 27r£ (L)

ih
2L (

cos(2ml) — cos(0)) =0

(p?y = 2m(H) = 2mE, = (*r*h*/L?

Ap = [(p?) — (p)? = \/a?R? |12 = (xh/ L
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e Energy:
(HY = E, = ?r*h?/2mL?
(H?) = E? = (*n°h*/2mL?)?
AH = \/(H?) — (H)? =0 =0
Note:

1
—71'262 —9

1
Az Ap=mlhy)— — — — =
TEP =TT T 922 T 9

1. /1 1
(=1: Az.Ap = -y -m2 =2 (/7% =2~ 1.136)
2 V3 3

27
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4.2. Particle in Attractive 6-potential

V(z) = —gé()
4.2.1. Solution of the Schrodinger Equation
e Solution of SE by separation of variables:
n d?
— 5, 739() = 96(2)¢(z) = E¢(z)
P(x,t) = che_iE”t/hqﬁn(z)
To be solved in regions (—oo, 0) U(0, o0o):
¢"(x) + k*¢(z) = 0, with k* = 2mFE/h’
v <0: ¢(r) = A e* 4+ Bre ", Ap, B €
r>0: ¢(r) = Afe* 4 Bfe ", Al B eC

e Boundary conditions, ¢(00) = ¢(—o0) = 0:
lim [A e™ + Boe ™| =0 = k=iy, yeR", A =0

T—r—00

lim [Afe™ + Bie ™| =0 = k=iy, ye R, Bf =0

T—00

Hence, upon putting y — k:
2 <0: ¢p(x) = Bre', B,e(
x>0 ¢p(x) = Age® A e
with k& > 0 and Ey = —h%k?/2m
e Solution continuous at x = 0, i.e. lim, o ¢(z) = limyyg Pp(x): By = Ay
nk?

r#0: gp(z) = e M, k>0, Ep=-—
2m

e Connection between x > 0 and z < 0 regions:
integrate time-independent SE around location of d-peak (e > 0)

€ h2 d2 €
iy [t |~ ot0) — go(w1000)| = By [ s 00
n? ¢
— 5= liml¢'(6) — ¢'(0)] — 96(0) = Elimy [ du (x)
2
lim ¢'(2) ~ lim &' (2) = — =57 6(0)

Present solution: ¢'(z > 0) = —ke *® ¢/'(x < 0) = ke**, ¢(0) =1, so
—k — k= —2mg/h? so k =mg/h*

28
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e Normalize ¢: ¢ — Aeklzl

00 0 21 A2
1= |A|2/ dx 6—2k|m| — 2|A|2/ dr 6—2]().’,6 - _ | | 6—2]().’,6
—00 0

2k

oo

0
Thus A = Vk = vmg/h

1/mg 77719‘11?‘/712 mg
= — E = ——
(ZS((I?) f € 2h2

2

e Solution of full SE:
77/)(:E,t) — C—V;ng 6img2t/2h3_mg|m|/h2’ |C’| =1

4.2.2. Ezxpectation Values and Uncertainties

Note: Hiy = Ev for all t, with E = —mg?/2h*
Note: L sgn(z) = 24(x)

e Position:

(z) = /oo dx P zk /oo dx e~k =

(z?) = / dz Yz = k/ dx z2e 2kl = Qk/ dx x2e ke
— 00 —00 0

b2 Ed? o1 © L1 1
_ 7 d 72km:__ [__ 2km:| _ v -
2dk2/o re 2di | 2k" |,

Az = \[(a?) — ()? = 1* /mgV/2

e Momentum:

X

(p) = —ih /_de ¢*§_x¢ — ik /_de 6—kxaﬂe—kx

= ith/ dr sgn(z)e 2 =0

p*) = —n’ /OO dx 1/)*8—2 = —h’k /OO dx e’kma—Qe’k'm'
—0 0x? —o0 Ox?
— w22 [ dee ’”"%[ sgn (x)e He]
h2k? . dz e””"ag[%(ac)ek'm| — ke’km]
—00 T

— on2R? / Y dr e a5 () — h2K3 / ~ do ekl
— 2h2k2 o h2k3k71 — h2k2 — m292/h2

Ap =/(p?) — (p)? = mg/h

_ A

k

T 4d2E 2%k

2

h4

29

2

2m?2g
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e Energy:
(HY = E = —mg*/2h?
(H?) = E* = (—=mg®/21")?
AH = \/(H?) —(H)?2=0=0
Note:

Az.Ap = (h?/mgV/2).(mg/h) = %\/5 h

30
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4.3. Potential Barriers, Tunneling

31

V(z)

4.83.1. Solution of the Schrédinger Equation Vo

Note: no normalizable solutions to be expected !

(scattering of incoming waves if V5 > 0)

e Construct solution of time-independent SE: 0 L
h? d? xT
o dp2 () + V(z)¢(z) = Ed(z)
To be solved:

x € (—00,0): &) (z) + k*¢r(x) =0 = ¢i(x) = Ae™™ + Bemh®
ze (0,L): 7(x) + kipr(x) =0 = ¢u(x) = Fe™® 4 Ge e
x € (L,00): (@) + E2om(r) =0 = ¢m(z) = Ce** 4 De ™

with k2 = 2mE/h*, k2 = 2m(E—-Vy)/h* (k € R)
e Continuity conditions:

¢1(0) = b1 (0) : A+B=F+QG

(W59, k(4-B) = k(F - @)
¢H(L) = ¢111(L) - (CletkL + De kL — petkol + Gl koL
¢{1Le[j :¢;Hk(ceikL _ De L) = ko(Feifol — Ge kol

3oundary conditions:

onsider incoming (and possibly reflected) waves from thg lefi; D =0 1+B/A k14+G/F
— :> -
0 A+ B k(A—B) ko(F —G) 1-B/A kyl—-G/F
x=0: , : )

_ . l B FezkoL + Ge*lkoL N @ _ 621k0L + G/F

TR kT ho(Fehl — Geikol) k ekl — GJF

— G .k G o ko —k

2ikoL7™0 1= = o 1 ' ,2ikoL 0
A a2 B Rl ey

Combine:
1+ B/A _ ﬁl +62ikoL£g_J—rz _ ﬁ ko + k + e2koL (kg — k)
1-— B/A kol — e2ik0ng_;£ ko ko + k — CQikoL(l{Jg — l{))

e—ikoL 6ik0L(l§0 — k) kK cos(koL) — ik sin(koL)

k (ko+k il
e~thol — eikol (ko — k)~ ko kcos(koL) — ikqsin(koL)

" ko (ko + k
1= i(k/ko
1 —i(ko/k

~—

tan(kOL)
tan(kOL)

~— | — R ,
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Hence

(1+ BJA)1 — (ko k) tan(koL)] = [1 — i(k/ko) tan(koL)](1 — B/A)

, k*—k3 B, k4 k2
itan(koL) T 0 — =1 itan(koL) e 02
B (k*—k2) tan(koL)

A~ (k2+k2) tan(koL) + 2ikkq

4.3.2. Interpretation: Reflection and Transmission
e Calculate the probability current j( )
@)= — 90 5%

]
]I(l') — —;—Zlﬁ [(A —ikx B*elkm)(Aelkm_Befﬂcm) + (Aezkm_'_Beflkm)(A*efzkm_B*ezkm):|

0¢*

_ 5’—’“ 2Re [|A" — A*Be™** 1 B* A — B[] = % 1A = 1BF]

Other regions similar, hence:

. , hk
region:  j(z) = p [|A|2 - |B|2}

hk[

region IT: if kg € R: j(o) = — [[F[* = |G]?]  (different if ko ¢ R)

hk
region 111 :  j(z) = —|C|?
m
Note: hk/m = p/m = v (velocity of a plane wave), so
(hk/m)|A|* = strength of incoming wave

(hk/m)|B|* = strength of reflected wave
(hk/m)|C|? = strength of transmitted wave

Note also: general equation £|¢)|>+ V - j = 0 reduces here to 2 j(z) =0

Hence j(z) is independent of x

Hence: |A|*> — |B|?> = |C?

e Define reflection and transmission coefficients:

(note: kg is either real, for E > V;, or purely imaginary, for E < V)
_ (k/m)|BI* _|B]* | (k*—kj)tan(koL)
—(hk/m)|A]2 A2 | (k24+k3) tan(koL) + 2ikko
| (24 K3) tan(koL) + 2ikko | _ [(K*+H3)? tan?(koL) + 4k2k3]

(k?—k3) tan(koL) (k2 —k2)? tan?(koL)
_ [}, AR tan (kL) + 4K7KG o . A2k !
(k2 —k3)? tan?(koL) (k2—k2)2 sin?(koL)

2
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_ (Ak/m)|C]> _|C] _ |AP —|B]* _

LT Gk AR AT ap
Note: k? = 2mE/R?, k2 = 2m(E—V,) /R
E < Vy: ko =ik '/2m(Vy—E)
E >V ko =h™"/2m(E—-V})
(in former case: use sin®(iq) = [55(e™? — e?)]* = — sinh*(q))

e Classical result:
E<Vy: T=0
E>V,: T=1
QM result :
_ AE/ W) (E/Ve—1)
sinh?(y/2m (Vo —E)L/h)

EV)(EVe-1) |

E>Vy: T=1—-11+
sin?(,/2m(E—Vo)L/h) |

— T > 0 even when E < V; (‘tunneling’)
QM particle can be found in classically forbidden regions

— limg /0T =0

— limg 150 T =1

— limpg/y, 1 T = [1 +mV,L?/20%] 7

— T =1 for sin(y/2m(E—V,)L/h) =0 (E > Vp),

i.e. for \/2m(E—Vy)L/h = nm with n € {1,2,3,...})
i.e. for B = Vy + n?m?h?/2mL? (Ramsauer-Townsend effect)
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15

1.0

0.5

0.0

mVpL?/h? = 8

0.0

E/Vo

15

34

mVyL?/h* = 32

E/Vo
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4.4. The Harmonic Oscillator

Note: in 1900 Planck triggered QM by just assuming that E, = n.hw
in order to get the elusive blackbody radiation law right ...

4.4.1. Solution of Schrodinger Equation

e Solve SE in (—oo, 00) by separation of variables:

h? d?
577 (z) + %mw?x%(fﬂ) = E¢(x)

P(z,t) = che’iE"t/hqﬁn(x)

(or integral, dependent on spectrum {E,})
Note: since we know that (p?) > 0 and (V) > 0 (for any state ¢)): E >0

We define u = zy/mw/h, so d*/dz* = (mw/h)(d?/du?)
To be solved:

h? mw d? 1T h oy
- _ . — E
2m h du? +2mmwwud) ¢
d? 9 2F
SO w —Uu QZS = —%d)
e Behaviour for u — +o0:
1 d?

m — =
u—+oo u2¢ du?

Put ¢ = eX:

=1

po L4 L
im — || — —
u——Foo 742 duX d’LLQX
Two independent solutions: y = £1u? i.e. ¢ = e*7%" (u — +00)

. . _ 1,2
Demand normalization: ¢ — e~ 2% as |u| — oo
1,2

e Transformation suggested by asymptotic behaviour: ¢ = e 2" H(u)
Eqn for H(u):
d2

du?
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e2u2dd—:2 [6_%“2H(u)] —u?H (u) = —% (u)

65“2% [6_%“2H'(u)—ue 5“2H(u)] —u’H(u) = % (u)

e [e " H" (u)—2ue =" H'(u)+(u?—1)e =" H(u)| — u H(u)——% (u)
thus :  H"(u) — 2uH'(u) = [1-%}1{(@

e Assume H(u) is analytic

construct solutions in the form of power series: H(u) = 22, au’

Substitute into eqn:

(Vu € R) : Zaﬂ(ﬁ—l)u —QZaﬂu —[1—— Zaw
(VueR): Y apa(l+2)((+1)u —QZaﬂu _[1_h— Zaw
=0 =0
- ¢ 2F ¢
(Vu e TR) : Z{ag+2(£+2)(£+1)u _ [2z+[1—%] ag}u —0
=0
Conclusion:
20,( 1 E
(V6202 an A 37
Two types of solutions:
. . E 1
truncating series: — — —=n  for some n € N
hw 2
E 1
infinite series : =3 ¢ IN

We show that, if they converge, the non-truncating series give non-normalizable solutions:
(note: even and odd powers give two independent solutions)

. €a4+2 . 2€ 1 E

lim 22 — fim | ()| =2
oo ap | Lo (e+2)(e+1)[ G
hence for ¢ — oo : apro ~ ag/l

Asymptotic solutions:
ag=1/(£/2)! for £ — oo even, ay = 1/(¢/2 — 1/2)! for { — oo odd
verification:
{ even : lim farys = lim (6/2) im
=00 ay £—00 (f/?—i—l) fﬁoo 5/2—|—1
Codd:  lim (%2 oy Q2120 £
S0 ay i—oo (£/241/2)! Hooﬁ/2+1/2




CM332C — Introductory Quantum Theory - April 2005 37
We conclude for the non-truncating series:

even: Ht(u) — >

> U w?
R — N
£>0, even ( /2 z:: k! (|U| OO)
E 00 2k+1

odd: H (u) — b;)ddm ];)“T:uem (Ju| = o0)

This leads to the two asymptotic solutions ¢ = ez’ and ¢ = uez™’

both are not normalizable

e Conclusion: normalizable solutions correspond to

1
En:[n+§]hw ne€{0,1,2,3,...}

On(z) = e_%m“ﬁ/th(z\/mw/h), H,(u): Hermite polynomials
Properties of Hy,(u):
— solutions of: H"(u) — 2uH'(u) + 2nH,(u) =0

— L H,(u) = 2nH,_1(u)

— H,(u) = (1) (d"e " /du™)

— examples: Ho(u) =1, Hy(u) =2u, Hy(u) =-2+4u? Hs(u)=-12u+8u?,
— orthogonality: [duH, (u)Hy(u)e " = 2"n)\/Tbmn

Now also {¢,} orthogonal:

/dx o5 (2)pm(x) = /dx e ™ M H (@1 /mw /B) Hyp 24/ mw /R)

h 2 h
— _ —u — 9yl
\/ p— /du e Hy(u)Hp(u) = 4 mw2 PN S

One can prove: {¢,} are also complete in L?(IR)

e Normalize ¢,:

¢n N Cnef%mme/th(x /mw/h)

h mw 2
PN LV .
L e G nl\/m SNy

() [%] ? bt o o )

General solution of SE:

=5 e B o= [T dr @)
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1.0

= AV VAl ()" for 15 = 1
0'0—5 0 5
1.0 T
n=2 05
-5 0 5
1.0 T
n=1 05

1.0

4.4.2. Ezxpectation Values and Uncertainties

Choose simple initial conditions: ¢, = d,¢

Yz, t) = e PG (x)  pe(x) = Cp e 7™ M Hy(wy/maw /h)

C, = l?f\é/'ﬂ\}—%] B = (04 )ho

(so Hyp = Ep for all t)

o=

e Position:
x) = dr p*xp = C? dx ace’m“”’[‘)/’t”H2 ry/mw/h) =0
‘ L

(integration of an odd function over (—oc, oc) !)

e Momentum:

% 0
w) = —ih [ dz o' s-v



CM332C — Introductory Quantum Theory - April 2005 39

= —zhC’e/ da e~ 3" /hHg (x mw 8 { —gmws I H :E\/m)}

= —zhC’e/ dx e 3™ /hHg (xy/mw/ {\/7 __m“"”Q/hHe x\/m)
_ m;uxe_%mwﬁ/hm(m\/m)}

= —iCmhw /_ Zdz e (o [ ). 20H],_ (e /1)
+iCimw /O:de xe’m‘*’ﬁ/th(x\/m) =0

(integration of odd functions over (—oc, 00))

e Calculate (z?

) and (p*) using the Virial Theorem (proof given in exercise 9):

Uncertainties:

e Energy:

Note:

Az

Ap = \/(£+ %)—

(@)= (45 () =+ )
Ar = fla?) — (@ = (e + 5)--
ap = ) — ()2 = 1+ )

1
(H) :E4:(€+§)hw

(H* = B} = ({+= )h2 2

AH =/(H?)— (H)?=+/0=0

h 1 1
mw.\/(ﬁ—l— E)hmw = 571(1—!—26)
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4.4.3. Algebraic Solution of SE for Harmonic Oscillator

As an alternative to the previous analysis at the level of functions and differential equations,
we now turn to solution at the operator level. This will turn out to be much simpler.

Define: L ,
mw 2 D
2 e

annihilation operator: a =

2h mw
. 4 [mw] 2 p
creation operator : a'=|—| [x——]
2h mw
number operator : N =dla
e Fact: H = hw(N + 3)
Proof (use [z, p] = ih):
1 Loy ip ip [ i P’
hwN = hwa'a = —mw’ [z — —][z + —] = zmw* |2° + —[z,p] +
2 mw mw 2 mw m2w?
1 1 2 1
= —mw?a? — Zhw + P _H- hw
2 2 2m 2
Hence, solving the time-independent SE < finding eigenfunctions of N = a'a
Note: if H¢,, = E, ¢, then E, > %hw (follows from H = hw(N + %) and N = a'a)
e Theorem 1:  (Yne N, >1): [a,a™] = na’ "!
Proof by induction:
mw p p 1
n—n+1l: [a,a ") =a'la,a™] +[a,a']la’ " = alna’ "N+ 1.6t "
= (n+1)a™ OK

e Theorem 2: (Vne€ IN,>1): [H, a™] = hwna!™
Proof (use theorem 1):

[H,a™] = hwlala, a™] = hw {aT[a, at + [aT,aT"]a} — {aT.naT n—1 0}
= fwna™

e Define Ey = min, {E,}, with eigenfunction H¢y = Eyey
Define ¢, = a'™¢,, and use theorem 2:

0 =[H,a™¢y — hwna™py = Ha"py — a'™ Hy — hwna'pg
= Hop — Eon — hwno,
Hence: H¢,, = (Ey + nhw)d,, with Ey > %hw
e Finding Ey: determine properties of ¢, use [a,a'] =1

Nagy = (aTa)ad)o = (anr — Dagg = a(aTa — 1o = a(N — 1)¢q
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1 1 1
Hapy = hw(N + 5)aqso = hw(aN — a + §a)¢0 = hwa(N — 5)%
= a(H — hw)oe = a(Ey — hw)og = (Ey — hw)agg
Conflict with our assumption that FEj is smallest eigenvalue, unless: a¢q =0
1 1
apo =0 and hw(aTa + §)¢0 = Fyoy : E, = §hw

Corresponding function:
ip L d mwx —mwa? j2h

[$+%]¢0:01 M@%Z— - b0 = ¢o(z)=c¢e

We now have H¢,, = hw(n + 3)hwe, and N¢, = né,
Normalization of ¢,: ¢, = C,a™dq (hence Cy = 1 if ¢y normalized)
Use [a,a'] = 1 and demand |¢,| = 1:

1=|C, 2 aldolat™ o) = (al " oo|(aah)al "Loo) = (al ") (aah)at )

t n—1 t n—1 |C"|2 |Cn|2
_ <a ¢0|(N+ 1)a ¢0> = |C _1|2<¢n—1|(N+ 1)¢n—1> = |C _1|2n
Cnl? Co 1 1
H : 2 — | n = — = — = ——a'"
ence: |C n Cn Vol V/n! On ma %

e We have proven generally that (¢,|¢,,) = 0if E,, # E, (for any QM system !) so we do not
need to verify orthogonality of the {¢,}. Let us check for fun. First assume m > n > 0:

Vmlnln|dn) = (a'™gola™go) = (a"™ " gola"a o) = (a" " o|a" " (aa)a™ " do)
— <aTmfn¢0|anfl(N + 1)aTn71¢0> _ n<a1‘mfn¢0|anfla1‘nfl¢0>
Repeat argument until all @ in right-hand side of the inner product have vanished:
\ m'n‘<¢m|¢n> - n!<a’[mfn¢0|¢0>

Note: this statement is also true when m > n = 0. Finally, since m > n we can move over
one more a' from left to right, and use a¢, = 0:

VmInlém|dn) = nl{a™ " dolade) =0 hence  (Pm|dn) =0

Summary of results (with n =0,1,2,3,...):

o=
—

e—%mw;ﬂ/h by = —CLT"¢0 E, = hw(n + _)

Iz
<¢n|¢m> — 5nm U/T¢n =vn+ 1¢n+1 a(bn — \/ﬁ(bnfl N¢n - n(bn

z= [%lé(aTqLa) p:ilhrgwr(a’f_a)

Let us now calculate expectation values with these tools:
(note: {¢nlale,) = (¢n]atp,) =0 for all £ € {1,2,3,...})
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e Position:
.
otn) = o] (el +a1o) =0

2mw

(0ula%6,) = 5 (dul(a" +a)0,) =

- QZ (622N + 1)) =

2—
(n
e Momentum:
hmw :
2

(bnl(a
1. h
Q)M

(Bulpdn) =i [—] (Bul(a’ — a)n) =0

1

ata + aaT)qﬁn)

(GuliPon) = — shmlbula’ = afgn) = —3hme(gul(—a'a — aa')gn)

= Shmas(al (2N +1)gn) = (n+

1
—)hmw
2

42
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5. Simultaneous Measurement and Uncertainty

5.1. Simultaneous Diagonalization of Operators

5.1.1. Operator Commutation and Existence of Common Eigenfunctions

Let A and B denote Hermitian operators, acting on Hilbert space H,
and let A have a complete set of eigenfunctions {¢,} in H

Fact: A and B have complete set of common eigenfunctions in H if and only if [A, B] =0

e PROOF (first part): complete set of common e.f. implies [A, B] =0
Assume: {¢,} complete in H, (Vn) : A, = a,é, and B, = b, ¢,
(Vn): [A, Bl¢, = AB¢, — BA¢, = a,b,dp, — bpayo, =0
Each ¢ € H is a linear combination of {¢,} (completeness), so: (Vi) € H): [A, B]y =0

e PROOF (second part): [A, B] = 0 implies complete set of common e.f.

(i) Suppose eigenvalue a,, non-degenerate:
0= [A, B]d)n = ABQSn - BA(lsn = A(qun) - an(Ban)

Since a, non-degenerate: B¢, = b,¢,, so ¢, is also eigenfunction of B, QED.

(ii) Suppose eigenvalue a,, m-fold degenerate, i.e. Ad,, = apd,, for p=1,... ,m:
Call the degenerate eigenspace: S, C H
One can always choose {¢,,} orthonormal (Gram-Schmidt) in S,
Proceed as before:

0= [A7 B]¢nu - AB¢nu - BA¢nu - A(B(]snﬂ) - an(B¢nu)
Hence: B¢y, is in same degenerate eigenspace, so (3D, € C) 1 Bopy = 3101 Dty
Inner product with ¢nx: (Snr|Bony) = ity Dy (dna|dnn) = Dy

Note: {D,,} is a complex m x m matrix, with D, = D},
= D* is self-adjoint in vector space C™, with inner product « -y = 21 T Y
= D* has m linearly independent eigenvectors &’ € C™, where £ =1,...,m
forall ¢ € {1,...,m}: vy Dyl = dyx,
one can always choose {x:} orthonormal (Gram-Schmidt) in "™

Construct m new functions ¢, € Sp: tny = 301 Tnu, p=1,...,m
m

(Wnp| Bng) = > 02l ($pu| Bon) = Y. 203l D,
pyr=1 pr=1

m m

_ p * p p v

= ), > D,z = > hdyry = dydy,y
p=1 v=1

p=1
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/
Note also: (Yn,|Vny) = 301 T0T0 O = Opy

44

We conclude: {¢,,} are a complete orthonormal basis in S,, such that A, = a,y,

and By, = dpn,, QED.

5.1.2. Example: Parity

Consider time-indep SE in one dimension, with H = —%d‘f_} + V(x)
e Define parity operator P: [Py|(x) = ¢(—x)
Properties:

(i) PT = P, since for any two functions ¢ and ’gb'

(GIPY) — (WP = [de {6 (@) (~2) — [W"(@)d(~2)]'} =0
(ii) P? =1, since for any function t: [P?¢](x) = [P1/)]( x) = P(x)
(iii) Eigenvalues: A = +1. Proof: use P? =1
Pp=Xp: P’op=XN¢ = ¢=XN¢ = XN=1
(iv) Eigenfunctions:
A=1: Pp=¢ = o¢(—2)=¢(x) forallz e R
A=—-1: Pp=—¢ = ¢(—z)=—¢(x) forallz e R
Eigenspace of A = 1: all even functions of x
Eigenspace of A = —1: all odd functions of

e Fact: [P, H|=0if V(z) =V(—2) forallz € R
Proof: consider arbitrary ¢(x) and calculate [P, H]i. Define 1(z) = ¢(—x):

([P, H]y)(x) = (PHY)(z) — (HPY)(x)

= Py v - (L Vi)
nod - n - .
= = o gz V@)V (=0)0() + 5 (e) = V(@)i(e)

= [V(=2) = V(2)]¢(=2) =0
e Hence: if V(z) = V(—xz) for all z € R then
H and P have a complete set of common eigenfunctions in L?*(IR)
e Verify the validity for the normalizable solutions in the examples worked out so far:

(i) Free particle in a box, zero boundaries:
all eigenfunctions ¢, (z) = \/2/7Lsin(n7rx/L) are odd
(ii) Attractive d-potential: eigenfunction ¢(z) = (\/m—g/l‘l)e‘mg|“”|/h2 is even
(iii) Harmonic oscillator: all eigenfunctions pf H are eigenfunctions of P
Even functions: ¢, (z) = Ce s/l gy H,(zv/mw/h) with n even
Odd functions: ¢, (z) = Ce ? smer/h g H,(z\/mw/h) with n odd
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5.2. The Heisenberg Uncertainty Relations

5.2.1. Deriwation and Consequences of Uncertainty Relations

e Definition:
Heisenberg uncertainty relation for arbitrary Hermitian operators A and B
acting in Hilbert space H

AAAB > %I([A,BDI

Proof:
Consider an Hermitian operator F': H — H and a quantum system in state ). Note that

(AF)? = (F=(F))?) = WI(F=(F))*) = ((F = (F))Y|(F = (F))y)

= |(F—(F))y’
Hences A4 AB = |(A— (A)0|[(B—(B))¢| > [{(A—(A)¥|(B—(B))¢)| (Schwartz)
= |(|(A—(A)) (B~ (B))¥)|
Now split the operator G = (A—(A))(B—(B)) into Hermitian part (G + G') = 15 and

3
3
=
z
Q

= 18+ LiC, with §' = S and Ct = C:

€ =+ {(A=(A)(B—(B) — (B~ (B))(A—{))}
= —i[A—(A), B—(B)] = —i[A, B]
Since (S) € R and (C) € R:
AAAB = [(IGY)] = SIS +C))] = 5(8) +HC)] = 3/(8) + ()2
> 2(C)| = 5l(~il4, B)| = 51(14. B QED

e Consequence:
if two physical observables correspond to the quantum operators A and B, we can only
know the values of these observables to unlimited accuracy simultaneously if [A, B] = 0

(conversely, if [A, B] = 0 we know that A and B are simultaneously diagonalizable, and
therefore also simultaneously measurable to arbitrary accuracy)

5.2.2. FExamples € Applications

e Position and momentum: [z;, p;| = ihd,;
1 1
Azi-Apy 2 S{[zi pil)| = Shoy;

(confirm for the explicit solutions worked out earlier !)
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e Position and energy: [z;, H] = [x;, p*/2m] = ¥ ;[2i, pj]/2m = £=las, pi] + [0, pi] o = A

2m 2m
Awi AH > (o, HY)| = = |(p3)]
Zi- Z 5 I\ = 5 I\Di
2 9m P
e Angular momentum: L; = >k €ijkTiPk
Let us first calculate some commutators:
(i) [Li, Lj] = ih X €iji Ly

Proof (see classical case worked out in exercises), use ., €;ik€imn = 0jmOkn — 0jnOkm:
[Lia L]] = Z 6ikl(fjmn[xkpla mmpn] = Z €ikl€imn {xk [pla mmpn] + [l‘k, mmpn]pl}

kimn kimn

= Z €iki€jmn {TkTm D1, D] + Tk [Pl Tm|Dn + T[Tk, DolDr + [T, T DRt }

klmn

=il > €iri€imn {—OumTPn + OknTmpPi}

klmn

= —ih Z €lik€inj TP + iH Z €kli€kjmTmPl
Ink klm

= — il [6inbkj — 0ij0kn|Trpn + i0 > _[010im — Om0ij)Tmpi

nk lm

k

(ii) [L;, L’] =0
Proof: [Li, L) = D _[Li. L3] = 3_{L;[L, Lj) + [Li. L] L;}

j
=1h Z €ijk {Lij + LkL]} =0
jk
(since we sum over (j, k) an object which is anti-symmetric under j < k)

We now conclude the following from the uncertainty relations:
1 1 1
AL.ALy > §h|<L3>| ALy AL; > §h|<L1>| AL,.AL; > §h|<L2>|

Yet, for every given i: L, and L? are simultaneously measurable to arbitrary accuracy.
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6. Representations in Quantum Theory

6.1. Dirac’s Bra-Ket Notation

Primary objective: reduce messy calculations to transparent symbolic manipulation
Secondary objective: generalize quantum formalism to arbitrary Hilbert spaces
Idea: exploit interpretation of inner product with a fized vector as a linear functional on H

forgivenp e H: (¢|.): H—C

e Bra-vectors and Ket-vectors:

(i) Write each ordinary element ¢ € ‘H as a ‘ket-vector’: |¢

Write basis elements ¢, € H as: |n)
If =3, andy: |77/)> =2 an|n>
Ket-vector corresponding to Ay (A € €): Al)
Ket-vector corresponding to Ay (A :H — H): A1)

(ii) Write the linear functional associated with each |1)) € H as a ‘bra-vector’: (¢|

Write the functional associated with a basis element ¢,, € H as: (n|
Ity =3, andn: <77Z}| = na;kz<n|

Bra-vector corresponding to Ay (A € €): (Y]

Bra-vector corresponding to Ay (A :H — H): (] AT

e Simple familiar objects and relations:

inner product : (P|)

(]¢) = (o]v)”

{(olA}[v) = (ol {Al)} = (o] Al¥)
adjoint AT of A : (B|AT|Y) = (| Alg)*  for all |@), [v) € H
Hermitian A : (P|Alw) = (| Alg)*  for all @), |v) € H
{|n)} orthonormal :  (n|m) = §,,

Note: an object of the form |¢)(x|, where |p),|x) € H, is an operator
since: {|9)(x[}[¥) = [9)(x[¥) = ((x[¥)]¢) € H

e Closure relation:
If {|n)} complete and orthonormal basis, then >, |n)(n| =1 (unit operator in H)

Proof: take any |¢) € H

{Z |n><n|} [9) = D_ In)(nl¢) = 3 _(nl)In) = |¢)

n n
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e Matrix representations of operators:
If {|n)} complete and orthonormal basis and A : H — H, then

A= App|n)(m]| with Apm = (n]Alm)

Proof:
Consider an arbitrary |¢) € H, |p) =3, ca|n)
Define [¢/) = Al¢) € H, ) = X duln)

dm = (m|¢') = (m|A|¢) = ch m|Aln) = chAmn
Hence 14 = 5yl = 3ty 1) = 5 A 01} = {5 Al 6

e Matrix representation of A in terms of eigenstate ba81s
If {|n)} complete and orthonormal basis and A|n) = a,|n) for all n, then

Proof: trivial

Proof: C,,, = (m|AB|n) = (m|A{>Z. |k){k|} B|n) = >k AmkBin

If B=Af: By, = Al
Proof: A = (n|Alm)* = (m|AT|n) = (m|B|n) = B,

If AT = A: Apn = A5
Proof: follows immediately from previous statement

Note 1: the representation {A,,,} of an operator A : H — H, given the complete orthonormal
basis {|n)}, is unique

Note 2: the representation {A,,,} of an operator A : H — H will, however, depend on which
complete orthonormal basis {|n}} is used (as with ordinary matrices)

Note 3: since our Hilbert space are generally infinite-dimensional, the representations {A,,,}
of operators A : H — H are generally matrices of infinite size

Note 4: for eigenvector bases of operators with a continuous spectrum one finds the above
replaced by:

closure : /dn In)(n| =

operators : A= /dndm Apn|m)(n
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6.2.

Representations

Given a complete orthonormal basis {|n)} in H, we have for
any state 1)) € H and any operator A : H — H:

Y) = ch|n> A= ZAnM|n><m|

Definition: the choice of basis {|n)} is called the representation

6.2.1. Representations and Basis Transformations

Given a representation, ¢, € C and A,,, € C are unique: ¢, = (n|), A, = (m|A|n)

Hence, on basis {|n)} states and operators are represented by oc-dimensional complez
vectors and matrices:

1 Ay A oo Ay,

Co Ay Ay ... Ay,
=1 A=+ 1 r

Cn App Apa ... Ap,

If |¢) = X culn) and |¢0) = 32, dp|n), then: () =32, cpdy
Proof: (Bles) = ZC don (n|m) = ZC:dn

If |¢) = A|g), with |¢p) =3, cu|n) and |[¢) = Y, ¢/ |n), then: ¢, =3, Agncy
Prook = Alg) = (R s (k) = (K|Al9)

Y_culkln) = > calk]Aln)
VEk): = Akncn

Consider switching from one orthonormal basis {|n)} to another {|n’)}.
We can write any [¢)) € H in two ways:  |¢) =Y, culn),  |¢) =, c,Im)
Take inner product with (£'|:

=Y Skt Sin = (K'|n)
n
Fact: matrices { Sy, } representing basis transformations are unitary, i.e. STS =557 =1
Proof: use (ST),, = S}, and closure

> SeaShe = Y (K n)(C]n)* = S (Kn)(nl¢') = (K {Z [n)(n }If' (K'|") = Ore

n n

S Sl Sur = SR 1) = 3 (k') (o kﬂzm } _ (HO) = b

n n
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6.2.2. FExamples of Representations

(i) ‘Number Representation’:
Representation of eigenstates {|n)} of N = a'a in H = L2(R), n = 0,1,2,3,...

use: aln) = y/n|n—1), a'ln) = vV/n+1jn+1)

anm = (n]alm) = vVm{n|m — 1) = /md,m 1
al = (n|a’|m) = Vm+1(n|m+1) = Vm+18,m 1

nm

o

1
h ho|?
Tpm = |=—| (n|(a'+a)|m) = |— [v m~+10pmy1 + \/ﬁén,m—l]
2mw 2mw
hmw]? hmw]?
| hmw]? | hmw |2
Pum = =1 l 2 ] (nl(at—a)|m) = i [ 2 ] [Vim+T0nm i1 = VMo -1
Npm = (n|N|m) = mbm,
0 V2 0 vi o 0 1
0 V3 vz 0 ?
a = 0 al = V3 0 N = 3
0 0 0
0 Vi 0 -1
Viiooo 2 0 Vioo V2 ¢
B Vi o0 V3 himw vz o0 -3
T = V3 0 D=4 —F5— V3 oo
2mw 2
0 0

(ii) ‘Momentum Representation’:

Representation of eigenstates {|k)} of pin H = L?(R), k € R

1 . ’ o dx i o ’
Brla) = =™ plR) =BRR)  {RIK) = | e = (k=)

! * d —ix(k—k' .0 !
zrp = (k|z|k") = /dx op () xdp (x) = % ze  WER) = — §(k—FK)

ok
e = (klp|K') = 1k (k|K') = hkd(k— ')

8
I
SS)
Ho
S
I
=t
Ed
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(iii) ‘Position Representation
Representation of eigenstates {|u)} of z in H = L*(R), u € R

Ou(x) =0lz—u]  zlu) = ulu) (ulu'y = /O:de Slx—u)dlx—u'] = o[u—u']

Ty = (u|z|u') = udlu—1u']

pue = [z 6,(0)pou(x) = ~in [d 5[x—u]%5[x_u/]

., 0 /
—Zhw /dx Sz —ulo[z—u']

L, 0 n_ .0 )
= zhwd[u—u] = —Zhad[u—u]

Note: we have so far always used position representation implicitly
but this is just one of an infinite number of mathematically equivalent representations
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6.3. Schridinger vs Heisenberg Picture

6.3.1. Exponentials of Operators
Definition: e! = Y,504r, A°=1

o If Aln) = a,|n) and {|n)} complete: e =3, e |n){n|

Proof:
ZE' Z|n (n| = ZZ |n (n| = Ze“"|n
>0 n e>0
e ele A =1 L i
Proof: A _—A (_1)A+ Am &
o cc = k%:o Ko ngo .Zw !

S+ Y S =1

m>0

o [ =nz0 A" = Zxo .[AT]

o If AT = A, then U = €' is unitary
Proof: UtU = o iAT gid — o-idgid _ q

—iAT A i
UUT _elAe iA 1A€ zA:1

6.3.2. Summary of Schrodinger Picture

e Schridinger equation: ih%|y) = H|y), with H = H

Define U(t):  |1y) = U(¢)|1bo)

d
ih=U(t) = HU(H),  U(0) =1

solution :  U(t) = ™™, 50 |yp) = /™ |uy)

e Compare with familiar form of solution:
use closure, with H|n) = E,|n) and ¢, = (n|y)

) = <) = {5 o oo
= > el M n)(nle) = e ™ n)
e Properties of U(t):
U(t) = i/ . [U@t),H] =0 U'QU®) =UU(t) =1

U(t) unitary (like basis transformation), but time-dependent

e Expectation values of operators:

(A1) = (el A()][ 1) = (ol U (1) AT (#)[th0)
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6.3.3. The Heisenberg Picture

1925 1926
SA=HAHITSA gy = LV Vi

oo-dimensional matrices wave functions

e Both pictures: observables represented by linear Hermitian operators

Schrodinger :  time—dependent state vector |i;)
observables generally time—independent, e.g. z, p, V

Heisenberg :  time — independent state vector |[iyq)
observables generally time—dependent, e.g. (), p(t), V()

e The link: for every Hermitian Schrodinger operator A
Heisenberg operator : fl(t) = U'(t)AU (1) U(t) = et/

(i) Expectation values: (A) = (4| A(t) 1)
(ii) Heisenberg’s equation of motion for operators:

d - 1. - o .
aA(t) = E[A(t), H] + &A(t)
Proof: p y
ZAm =2 [Uinamu )]
AUt du(t) 0A(1)
= AWMU + U’r(t)A(t)7 + UT(t)TU(t)
T

= [HUO)] AU + U0 A0 [ 5060 + U025 0
- %UT(t)HA(t)U(t) + %UT(t)A(t)HU(t) + UT@)%;)U@)

= L Lama - mAw) + 01 2o = i, m+ g
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7. Symmetries in QM

7.1. Physical Symmetries

7.1.1. Physical Symmetries and Unitary Operators

e Consider invertible symmetry transformations: (V& € IR?): x — T(x)
with Det|0T;(x)/0z;| = 1 (rotations, translations, reflections, coordinate permutations)

Corresponding QM operator S: (Ve € R?) : S|z) = |T(x))
(linear, but generally not Hermitian)

S = /da:da:’ ') (2 |S|z) (| :/dmda:’ ') (2| T (a)) (|
- /da:da:’ 5[z — T(2))|2) (=] :/da: IT(2)) (x|
o S is unitary:
SSt = / dzdz' |T(z))(z|e')(T(z)] = / dzdz' 8z — 2| T(2))(T ()|
= [dz [T@)(T(@) = [do |z)(@)] =1
Sts = / dzdz’ |2)(T(z)|T(z){z] = / dzdz' 8z — 2| T ()T ()|

= /da: T Y x)(T )| = /d:n z)(z)| = 1

7.1.2. Continuous Symmetry Groups

Consider continuously and analytically parametrized groups of symmetry transformations

Ts(m) with £ € R" as above.
(Ve e R?): Tg(z) == TgTéf = TC(€ ¢ for some (&, ¢')
We also assume:
T/\éTMS = T()\+u)£ forall A\, p € R
(e.g. rotations, translations, ...)
e Associated unitary operators:
SO = 1, SSSSI = 54(6761)’ S)‘SSMS = S()\‘Hi)g for all )\,/L cRR
The {Sg} also form a group G:
S€S€’ €g (S&S)‘)SC = S&(S}\SC) 1eg S&‘S,& = Sig,s& =1
Define generators G; = ih limé_)o %5’6
if {G;} and e &iGilih - oyigt Sg = g2 &iGi/ih (G is a Lie group)
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Proof: 1 1 1
 WBorog —Ser = 1Se ~11Se = {50 + i LG+ O(e) - 1} S

_ %(Z £Gi)S,¢ +O(c)

hence: %S){ = (% > ngz)SAg’ SO S)\& = e% Zz§1G150 = e% >, &G
e If G is a Lie group:
(i) GI =G, for all i.
Proof, demand that for all £ € IR™:

1= sés£ — e GG o Y, GG

_ LSeqt 2 s ca 2
= {1 +%Z&(Gi Sy +(’)(£2)} hence  (Vi): Gl =G;

(i) (F{lijr € R}) :  [Gi, G| = ih X2, LijiGy
{liji}, with l;j, = —Lji: structure constants
Proof:
use first group property et i €iGigw 2601 — e 2 r(€E&a: for some X, (¢, ¢')
use expansion to 2nd order: e 2 &% =1 + =30 6G — 32 23 &&GG + -

em D NEENG _ ok Y 6G o Y G
1 1 1 1
1= S 66— S 665G Gt S 14— S €G- — Y EEGG+. .
{er;g om 258Gt }{er;g’ on 256Gt }

1 ! 1 ! ¢! !
=1+ i Z(@‘F@)Gi—ﬁ Z(§i§j+€i§j+2§i€j)GiGj + ...
i ij
Expand left-hand side:
eH LNEEG — 1 4 % SNl €)G; — 21? DA€, €)Ni(€,€)GiG; + O(N)
i ij

Require identity in lowest orders: \;(€,€') =& + & + 3M:(€, &), Ay = O(2),
hence also: \;(€,&")A;(€,€') = (& + &) (& + &) + O(?)

Now compare second order terms:

1 1 1
5ih D> Ai(&,€)G, — o2 D (EG+E)(E+E)GG; = 577 Y (&&+EE+2665) GG + O(P)
i YA€ €)= Y6 HENE +E)GG; — Y(GEHEEH25E)G,C, + O()
1 1) 1)

—ih Y Ak(€,€)G = Y (66 — GE)GGy + O(2)
k

ij
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ZhZAk £,.€8)Gy = Z&S [Gi, Gj] + O(?)

Hence [G;, G;] = ih 3y, 4ijr Gy, and Ak(é: ¢') =2, &&ilisn + O(?)
Proof that /;;; € IR: consider adjoint of [G;, G;] = ih ¥y, ;G
Gy, Gy = — mz%cﬂ = (GG -GGt = —me;jka =
k
(\7/2,]) : Z(&ﬂf Ezjk)Gk =0 SO gijk S IR

k
Note: all representations of G must have generators with the same structure constants

7.1.3. Examples of Continuous Transformations

e Translations: Tg(a:) =x+£
Meet criteria above for continuously symmetry groups !

Se = [da [Tp@))(@| = [da' |o'+ )|
(@|Sgv) = [da' (@lz' + &)@ |) = [da' dla — @' - gJv(a))
= (z — &)
Generators: . - 5 . P
(@lGiv) = i Jmy 8€1<m| gv) = ih Jim 5w~ 8

9,

= — i (@) = (@)

Hence : G = p, Sg = e &P

Note:

(i) &P/t = [dp EP/i|p)(p| exists
(11) [GZ, G]] = [pz,p]] =0so0 gijk =0
(iii) GI = G, for all 4, &P/ is unitary

e Rotations:

First consider rotation around z3 axis: T¢(x) = Rex
Meets criteria above for continuously symmetry groups !

cos(§) —sin(§) 0 0 =€ 0
Re= | sin(¢) cos(é) 0|=T1+|& 0 0[+0(&)
0 0 1 0 0 1
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Thus — 24 0
Rex=x+&| o |+0E) =x+ |0 |xz+ O
0 §

Arbitrary rotation axis &/|£]:
Rgm:aﬁtg x x + O(&?)
Generators:

(€|G) = zhshm a—&(azb’éz{)) i Jim —/dm .'13|S£|az)< 2'|¢)

/dm z[Rea')i(a ’):ihgli_% 5 /da:’ olz’ — R_galy(a’)

iw(aj—g x x + O(€%))

=1h hm

8& ’gb(ng:l:) ih £hm

0 0
7, {w( ) = D€ xa)j5—v(x) + O¢ )}

J J

=1h hm

Z €gkeangg$e [p;Y](x Z einete[ps](x) = (x| L)

jkt=1 k=1
Hence : G=L (L==zxp), S¢ = ewé-L
Note:
(i) &L/t exists (but will not give proof here, will come later)
(i) [Gi,Gj] = [Li, Lj] = ih Yy €ijuLi, = 0 50 Lijp = €5
111 =G, tor all 7, e is unitar
(iii) GI = G, for all 4, &-L/in y

7.1.4. Scalar Operators and Vector Operators

e Definitions: A is scalar operator :  [L;, A] =0 for all 4

A is vector operator :  [L;, Aj] = ih Z €ijrAy  for all i
k

Examples of vector operators:

x:  [Li,xzj) = €nelzipe, x;] =D €ine {xu[pe, 25] + [2h, 25]pe}
Y,

kL
= =il ) €iperrdy = =il ) €jme = iR €ijpty
ke k k
P [Lip] = D ewelzape, pi] = 3 €ine {zalpe, pj] + [, pslpe}
e Y

= ih ) €inedripe = ih Y €ijepe
ke 4

L . [Lz, L]] =1h Z EijkLk
k
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Examples of scalar operators:

L*: [Li, L*] = Xk:[Li, Lj) = zk: {Lx[Ls, Ly] + [Li, Li] Ly }
= in Y eme {LiLe + LeLy} = 0
ke
z-p: [L,x-p|= zk:[Li,fﬂkpk] = zk: {z[Li, pe] + [Lis wx]pr}
=ih % €ire {Trpe + Tepr} =0

e Physical implications:
let R§ denote a rotation in IR? (axis £/[€|, angle |€]),

with corresponding QM transformation |¢') = e€~L/ih|1/)>

Then:
A is scalar operator : (Y| A|Y") = (Y| Al)

A is vector operator : (Y| AY") = R§<1/)|A|’¢>

(i.e. expectation values of A and A transform like scalars and vectors, respectively)

Proof for A:
Note that [€ - L, A] = X, &[Ls, A] = 0, hence [eg'L/iha Al =0:

WAy = (ple & Lm A& Lrm gy — (e & L& L g1y — (5] 4] 45)

Proof for A:
We prove this by showing that LHS and RHS obey an identical first order differential eqn,
with identical initial conditions.

First note that [¢ - L, A] = —ih(€ x A):
[€-L,Aj )= &[Li, Aj] =ik &GeijuAr = —ih Y €juki Ay = —ih(€ x A);
5 ik ik
Now inspect R, ¢ and its associated operator HE-Lin,

e ST APE T = (e T (6 1) A~ AE- L)) 4Ly
= <¢|6*A§'L/ih {¢ x A} eA{-L/mW)
— £ x <w|ef)\§-L/ihAe/\£-L/ih|w>
d 1
AR WlA)} = lim Ry, e~ Rye} (WAlY)

e—0 €

~ fim © {Reg -1} Ry (V| Alv)

e—0 €

= lim {& x R,¢ (V[ A[p)) + O(?)} = € x R, ¢ (¢ Al))
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The vectors (y|e=&L/ih A& L/in |y and R,¢(¥|Alt)) are both solutions of

d
TTk(V) = € x k() k(0) = (¢[Alv)

Solution is unique, hence
(VA>0): (gl L ATy = R o (] AJw)

The actual statement we wish to prove follows by putting A = 1.
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7.2. Intrinsic Angular Momentum: Spin

7.2.1. Angular Momentum Operators

No define angular momentum operators .J; (i = 1,2, 3) more generally as generators of rotations
in arbitrary Hilbert spaces, i.e. just by the group structure

S = & /it [ Jj) = ik Y eudi g =
k

Much can be proved from structure only:
e [J;, J%] = 0 (we have proved this earlier from commutation relations)
Hence J? and .J; have a common basis of eigenstates.

e One can prove algebraically (similar to the algebraic solution of the harmonic oscillator)
that these eigenstates |j, m) and correspond to the following spectrum of eigenvalues (no
proof given here, due to lack of time):

J?|j,m) = j(j + 1)R*|j,m) je{O,%,l,%,Q,...}
J3|j, m) = mhl|j,m) me{—j,—j+1,—j+2,....,5—1,5}
(4,ml',m")y = 8; 0o
So-called quantum numbers: (j,m)
e One also finds that the effect of rotation over 27 depends on the quantum number j:
S| m) = e2mIalih| ) — 2§ )
=|j,m) for j even
= —|j,m) for j odd
e Define J as sum of ordinary angular momentum and intrinsic angular momentum (‘spin’):

J=L+S

[Li, LJ] = Zh Z GijkLk [Sz; SJ] = Zh Z Giijk
k k
Since the standard energy dependence on angular momentum (charged particle moving in
magnetic field B) takes the form AH = gJ - B:
[H,8?) =0 hence S conserved

Consequence: if a particle is at ¢ = 0 described by an eigenstate of S?, with quantum
number s, the state will remain in this eigenspace for all times. Intrinsic angular momentum
is called ‘spin’. We may call the particle a spin-s particle.
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7.2.2. Spm—% Particles

(very brief)
Inspect particles with only intrinsic angular momentum as degrees of freedom.
Simplest particles: spin-1

e Two dimensional Hilbert space: spanned by | 1) = [3,3) and | |) = |3, —3)
Operators S; are represented by 2 x 2 complex Hermitian matrices
e Transform S; = %fwi: (04, 05] = 2i€ijn >op ok
by definition:
o3| 1) = 255
U3| i) = %

Final objective: find matrices o7 and oy such that

[0'1,0'2] = 2’i0’3 [0'2,0'3] = 27:0'1 [0'1,0'3] = —27:0'2

(01 (0 i (10
1o 7 \i oo T o -1
(Pauli matrices)

Note: 02 =1

e Hamiltonian: H = gB -0 = g¥7_, 0; (also a 2 x 2 matrix !)

Solution:

61
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8. Exercises

(i) Define the Kronecker symbol {d;;} and the tensor {e;;x} with i, j,k € {1,2,3} as follows:
Sy=1 ifi=j
9;j =0 otherwise

€jrk =1  if (4,7, k) is an even permutation of (1,2, 3)
€ijk = —1 if (4,7, k) is an odd permutation of (1,2, 3)
€ijr = 0 otherwise
(a) Show, for x,y € IR®, that (z x y); = Z?k:l €iikTi Yk
(b) Prove the following identity: 32, €ijk€imn = OjmOkn — OjnOkm
(ii) Define for a classical particle with x,p € IR? the angular momentum vector L = X p €

IR?, with components L; = Z?mzl €xemTiPm- Let (A, B) denote the Poisson bracket:

5. (0A0B 0AOB
(A7 B) B Z {&Ei Ip; - Ip; aiﬂi}

=1
(a) Show that (Lu L]) = Zzzl EijkLk
(b) Use the equation df /dt = 0f /ot+(f, H) to show that angular momentum is conserved
for spherically symmetric potentials, i.e. when V(z) = V(|z|).

(iii) Consider the wave function ¢ of a QM particle in IR? moving in a (real-valued) potential
V(x), described by the Schrodinger equation. Define expectation values of operators as
(A) = Jgs dex * A, You may assume that lim g |2]*|¢ (2, 1)]* = 0.
(a) Prove that d{x)/dt = (p)/m
(b) Prove that d{p)/dt = —(VV)
(iv) Let (4]¢)) denote an inner product on a Hilbert space H, and let ¢, ¢ € H.
(a) Prove the Schwartz inequality: |(#[)] < |¢]|¢].
(hint: calculate |1 + A@|?|$|* with A € ()
(b) Prove the triangular inequality: |¢ — | < |¢] + |9
(c) Prove that strong convergence of a series {1} in H implies weak convergence, i.e.
that

If lim |ih, —¢| =0 then (Vx€H): lim (¢n]x) = (¢|x)
(v) Consider the Hilbert space L?(0,1). Prove that the following object defines an inner
product on L?(0,1):
1
Wlo) = [ do v (@)o(x)

(vi) Find the norm |f| of the function f(6) = cos(#) in the Hilbert space L*(0,27) with inner
product (f[g) = [57d6 f*(0)g(6).
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(vii)

(viii)

(xiii)

(xiv)

Define the functions ¢,(0) = sin(nf) for n € {1,2,3,...}, in the Hilbert space L?(0,n)
with the standard complex inner product. Prove that (¢,|¢,,) = 0 if m # n.

Let H = p?/2m + V(x), with p = —ihV. Calculate the two commutators [z;, H] and
[pi, H].

Consider the wave function ¢ € L?(IR*) of a QM particle in IR* moving in a (real-valued)
potential V' (x), described by the Schrédinger equation. Define expectation values of
operators as (A) = ()| Ay). Use the Ehrenfest Theorem to prove the following statements:
(a) d(z)/dt = (p)/m

(b) d(p)/dt = —(VV)

(c) If V(x) = V(|x|) then d(L)/dt =0

(d) Virial Theorem: d{(zx - p)/dt = m~{(p?) — (x - VV)

Solve the Schrodinger equation for a free particle in a one-dimensional box (i.e. = € [0, L]),
as was done in the lectures, but now with periodic boundary conditions. In other words,
all eigenfunctions of H are now to satisfy (Vz € [0,L]) : ¢,(z) = ¢n(x+L), rather than
¢(0) = ¢n(L) = 0.

Solve the Schrédinger equation for a free particle in a two-dimensional box (i.e. z; € [0, L;]
for i = 1,2), similar to the lectures, with zero boundary conditions. Hint: use separation
of spatial variables in the time-independent Schrodinger equation.

Calculate the transmission coefficient T for incoming plane waves in one dimension,
scattering at a delta-peak of the form V(z) = gd(z) (with ¢ > 0). Use the following
two methods, and verify that the two results which you thereby obtain are identical:

(a) Calculate directly the non-normalizable solutions of the Schrédinger equation,
describing an incoming wave from the left, in analogy with the derivation for scattering
at a block potential in the lectures. Deal with the singularity using the method
described in the lectures for V(z) = —gd(x).

(b) Take a suitable limit in the expression for T which was derived for scattering at a
block potential in the lectures.

Solve the Schrédinger equation for a charged particle in a one-dimensional harmonic
oscillator potential, in the presence of an electric field, where

Define the standard creation and annihilation operators. Use the creation and annihilation
operators to calculate (z) and (p) as functions of time from the general solution of the
Schrodinger equation, for arbitrary initial states 1 (x,0). Express (z) and (p) in terms
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(xvi)

of (x);—¢ and (p);—o. Verify the correspondence principle, i.e. confirm that your solution

satisfies
d d d 9
S %) = (p)/m 2 == {-V(2)) = —mw{z)
We consider again the one-dimensional harmonic oscillator. Define the standard creation

and annihilation operators. Investigate and compare the following two alternative methods
for calculating (z) and (p) as functions of time, for arbitrary initial states ¢ (z, 0).

(a) Use the Ehrenfest theorem to derive ordinary differential equations for (z) and (p),
and solve these equations. Verify that the outcome agrees with that of the previous
exercise.

(b) Use the Ehrenfest theorem to prove that (a) = e=“!(a);—¢ and (a') = e“*(al),—o. Use
the result to express (z) and (p) in terms of (x);—o and (p)—o. Verify that the outcome
agrees with your earlier results.

Verify the validity of the operator identity [z, p] = ih upon writing x and p in each of the
following representations (where they take the form of co-dimensional matrices or integral
operators):

(a) In number representation, i.e. with respect to the basis of eigenstates of N = ala.

(b) In momentum representation, i.e. with respect to the basis of eigenstates of p.
(c) In position representation, i.e. with respect to the basis of eigenstates of .
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