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Chapter 1

Introduction

This lecture course is the sequel to the core course ‘Neural Networks’, which can be regarded
as a prerequisite, in which we expand both in breadth and in depth the material covered so
far. Apart from the first of the four chapters in the present notes (and in contrast to the bulk
of ‘Neural Networks’), this course ‘Advanced Neural Networks’ deals with relatively novel
research results which go back less than ten years.

Expansion in breadth refers to the addition of new neural network classes and new learning
rules (Competitive Non-Supervised Learning Processes, this material is not too mathematical
because there is little theory on these systems; Support Vector Machines, again a subject with
only a modest amount of theory).

Expansion in depth refers to a more solid statistical understanding, interpretation, and
increased potential for analysis and prediction of the most popular system types (Bayesian
Techniques in Supervised Learning, and its spin-off Gaussian Processes). These latter sub-
jects, although more mathematical in nature, have generated the main progress in industrial
and commercial neural network applications over the last ten years, since they have removed
in a rigorous way the problems related to data noise and to the quantification of the reliability
of neural network decisions.
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Chapter 2

Competitive Non-Supervised
Learning Processes

In this first chapter we will introduce and study a couple of so-called ‘unsupervised’ learning
processes, where the problem is not to learn to associate some ‘correct’ response to each pos-
sible incoming signal (specified by a ‘teacher’ or ‘supervisor’ signal, as in e.g. feed-forward
networks of the Perceptron or Multi-Layer Perceptron type), but rather to build some alter-
native (more efficient, more compact or more structured) representation of the data vectors
fed into the system. The first two procedures to do this (Vector Quantization and Soft Vector
Quantization) aim to achieve data reduction for initially unknown data distributions (with
typical applications in communication, where compact representations are obviously cheaper
to transmit than non-compact ones, since it will allow more signals to be communicated via
the same channel). The third class of systems (Self-Organizing Maps, or Feature Maps, or
Kohonen Maps) aim to create a topologically correct but low-dimensional internal represen-
tation of a given data distribution. This has applications in e.g. biology (the brain is known
to create such maps for sensory signals), data-base mining, medical diagnostics, etc.

2.1 Vector Quantization

Data-Reduction via Code-Book Vectors. Imagine we have a source of real-valued data vectors
z = (r1,...,2,) € R", with statistics described by some probability density p(x) (with
Jdz p(x) = 1, and with the definition (f(x)) = [dz p(x)f(x)). Alternatively, if the data
can only take values from a discrete set, we would have p(x) representing probabilities, with
Yep(x) =1and (f(x)) = >z p(x)f(x) (see appendix on elementary probability theory).
Especially if n is very large, we would like to represent the real data & by alternative (and
simpler) signals from which the & can be re-constructed, with some loss of accuracy, but with
a reduction in dimensionality. One way to achieve this is the following:

e We ‘cover’ the data space by a suitable (small) set of characteristic data points, the
so-called ‘code-book vectors’ m; € R™. Here ¢ labels the individual code-book vectors,
i.e. if we have N code-book vectors theni=1,..., N.

e We then approximate (or ‘round off’) each data point & by the nearest code-book vector,
i.e. by that particular m; for which |z — m;| is minimal.
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Figure 2.1: Example of a Voronoi tessalation of data space for n = 2, i.e. & = (z1,22). The
points e represent the code-book vectors. The “Voronoi cell’ associated with code-book vector
m;, V;[{m}], is the compartment surrounding point m,.

It will be clear why in communication this might be desirable: instead of the n real numbers
(1,-..,z,) we would now need to send only a single integer number: the index i. The
price we pay for this is a reduction in accuracy; after all we have approximated & by m;,
and have thereby lost information. We can no longer be sure of the exact value of x, since
many more data points & would have been replaced by m; (all those which are close to m;).
The amount of information lost will obviously be less if we have a larger number or a more
efficiently distributed set of code-book vectors.

The above procedure gives us what is know as a Voronoi tessalation of data space. This
is a partitioning into convex subsets V;[{m}], controlled by the choice {m} made for the N
code-book vectors, defined as

Viim}l ={z e R"|Vj #i: |z —mi| < |z —m;l} (2.1)

(see figure 2.1).

A good set of code-book vectors is one with the property that the density of code-book
vectors in a given region of R™ is proportional to the density of data-points in that region.
In other words, given the statistics of the data and given the number N of code-book vectors
we are willing to invest, we aim for a set {m} such that

Prob [z € V;[{m}]] = Prob [z € V;[{m}]] (2.2)

In this way all code-book vectors are used equally often, and no resources are wasted. The
problem addressed by the VQ and SVQ algorithms is how to find a proper set of code-
book vectors, via adaptive processes; i.e. both are based on gradually ‘learning’ a proper
positioning of the code-book vectors by observing the data.

The VQ Algorithm and its Properties. The Vector Quantization (VQ) algorithm is defined
as follows. First we initialize the N code-book vectors m; € R" (randomly, or according to
a recipe to be given below). Then we iterate the following stochastic process:
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step 1: pick a data point « at random, according to the probability density p(x)

step 2: find the Voronoi cell containing @, i.e. find ¢ such that |# — m;| < | — m;| Vj # i
step 3: move m; towards : m; — m; + n(x — m;)

step 4: return to 1

The parameter 7 > 0 (the learning rate) controls the magnitude of the changes, one takes
n < 1 to suppress fluctuations. The uncertainty (stochasticity) of the process is only in the
realization of the subsequent data points we draw. Note that there would be a problem with
data points & which are exactly on the border of two Voronoi cells. In practice this is not
an issue: firstly, the probability for this to happen is generally very small (unless we have a
pathological distribution p(x)), and secondly, one could simply decide in those instances not
to make a change.

The VQ algorithm can be seen to have the following properties:

(1) A code-book vector will only become mobile when we pick a data point in its Voronoi
cell, i.e. sufficiently close to it. Hence the process of moving the m; will proceed slowly
in areas where the data density p(x) is low.

(#7) Unless we reduce 7 during the process, the code-book vectors will continue to move
stochastically, although the density of code-book vectors in any given region should
become stationary.

(797) VQ is very simple and (as we will see below) effective, and has just three parameters to
be chosen: N, n, and the duration of the process.

As a consequence of (i) we also conclude that it is not necessarily optimal to initialize the
N code-book vectors randomly: those which are initialized in regions where p(x) is zero will
never be used. Alternatively one could initialize the m; by putting them at the locations of
the first N observed data points (by construction they can now never be initialized in regions
where there are no data).

Ezxamples of VQ in Action. The figures below illustrate the functioning of the VQ algorithm
for a number of simple examples with n = 2 (i.e. where one has data points & = (21, z2) in a
plane) and N = 100 (i.e. a population of 100 code-book vectors), but for different choices of
the data distribution p(x) and with different initialization strategies. Firstly, figures 2.2 and
2.3 show examples of simple data distributions and random initialization, where the process is
still seen to work fine, simply because in this case no code-book vector happens to have been
initialized in data-free regions. Figures 2.4, 2.5 and 2.6 refer to strongly inhomogeneous data
distributions, but now with non-random initialization (so that the inhomogeneities cannot
disrupt the functioning of VQ). The process is again seen to work fine. In contrast, in
figures 2.7, 2.8 and 2.9 the same three inhomogeneous distributions were considered, but
now with random (i.e. inappropriate) initialization of the code-book vectors. The resulting
locations of the code-book vectors illustrates quite clearly how for random initialization and
inhomogeneous data distributions the VQ process fails to use its resources effectively.



Vector Quantization, learning rate = 0.5
100 codebook vectors at t=0

Vector Quantization
input data: homogeneous ditribution on a square

Vector Quantization, learning rate = 0.5
100 codebook vectors at t=1000

Vector Quantization, learning rate = 0.5
100 codebook vectors at t=2000
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Vector Quantization, learning rate = 0.5
100 codebook vectors at t=5000

Vector Quantization, learning rate = 0.5
100 codebook vectors at t=4000

Vector Quantization, learning rate = 0.5
100 codebook vectors at t=3000
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Figure 2.2: Example: numerical simulation of Vector Quantization, with n = 2, n = 0.5 and
N = 100. Top graph: data distribution p(x), homogeneously distributed over the square
[—1,1] x [-1,1]. Bottom six graphs: locations of the code-book vectors m; during the course
of the process (i = 1,...,100), at times ¢ = 0 (middle row, left), ¢ = 1000 (middle row,
center), ¢ = 2000 (middle row, right), ¢ = 3000 (bottom row, left), ¢ = 4000 (bottom row,
middle) and ¢ = 5000 (bottom row, right). Times are measures in the number of iterations.

Initialisation of code-book vector allocations: randomly in the square —%, %] X —%, %]
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Vector Quantization
input data: homogeneous distribution on circular disc
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Figure 2.3: Example: numerical simulation of Vector Quantization, with n = 2, n = 0.5
and N = 100. Top graph: data distribution p(x), homogeneously distributed over the disk
|z| < 1. Bottom six graphs: locations of the code-book vectors m; during the course of the
process (i = 1,...,100), at times ¢ = 0 (middle row, left), ¢ = 1000 (middle row, center),
t = 2000 (middle row, right), t = 3000 (bottom row, left), ¢ = 4000 (bottom row, middle) and
t = 5000 (bottom row, right). Times are measures in the number of iterations. Initialisation

of code-book vector allocations: randomly in the square [—3, 3] x [-3, 1].
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Vector Quantization

input data: inhomogeneous distrbution near borders
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1
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Figure 2.4: Example: numerical simulation of Vector Quantization, with n = 2, n = 0.5 and
N = 100. Top graph: data distribution p(x), inhomogeneously distributed over the square
[-1,1] x [-1,1] (with highest data density near the borders |z;| = 1. Bottom six graphs:
locations of the code-book vectors m; during the course of the process (i = 1,...,100), at
times ¢ = 0 (middle row, left), ¢ = 1000 (middle row, center), ¢ = 2000 (middle row, right),
t = 3000 (bottom row, left), ¢ = 4000 (bottom row, middle) and ¢ = 5000 (bottom row,
right). Times are measures in the number of iterations. Initialisation of code-book vector
allocations: positioning at the locations of the first 100 data points picked by the process.
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Vector Quantization
input data: homogeneous distribution on curved strip
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Vector Quantization, learning rate = 0.5
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Figure 2.5: Example: numerical simulation of Vector Quantization, with n = 2, n = 0.5 and
N = 100. Top graph: data distribution p(x), homogeneously distributed over the region
3 < |z| < 1. Bottom six graphs: locations of the code-book vectors m; during the course
of the process (i = 1,...,100), at times ¢ = 0 (middle row, left), ¢ = 1000 (middle row,
center), t = 2000 (middle row, right), ¢ = 3000 (bottom row, left), ¢ = 4000 (bottom row,
middle) and ¢ = 5000 (bottom row, right). Times are measures in the number of iterations.
Initialisation of code-book vector allocations: positioning at the locations of the first 100 data

points picked by the process.
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Vector Quantization
input data: homogeneous distribution on unit ircle
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Figure 2.6: Example: numerical simulation of Vector Quantization, with n = 2, n = 0.5
and N = 100. Top graph: data distribution p(x), homogeneously distributed over the circle
|| = 1. Bottom six graphs: locations of the code-book vectors m; during the course of the
process (1 = 1,...,100), at times ¢ = 0 (middle row, left), ¢ = 1000 (middle row, center),
t = 2000 (middle row, right), ¢ = 3000 (bottom row, left), ¢ = 4000 (bottom row, middle) and
t = 5000 (bottom row, right). Times are measures in the number of iterations. Initialisation
of code-book vector allocations: positioning at the locations of the first 100 data points picked
by the process.
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Vector Quantization
input data: inhomogeneous distribution near borders
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Figure 2.7: Example: numerical simulation of Vector Quantization, with n = 2, n = 0.5 and
N = 100. Top graph: data distribution p(x), inhomogeneously distributed over the square
[-1,1] x [-1,1] (with highest data density near the borders |z1| = 1. Bottom six graphs:
locations of the code-book vectors m,; during the course of the process (i = 1,...,100), at
times t = 0 (middle row, left), ¢ = 1000 (middle row, center), t = 2000 (middle row, right),
t = 3000 (bottom row, left), ¢ = 4000 (bottom row, middle) and ¢ = 5000 (bottom row,
right). Times are measures in the number of iterations. Initialisation of code-book vector
allocations: randomly in the square [—3, 3] x [, 4]. Comparison with figure 2.4 shows that
code-book vectors initialized in data regions where p(x) is small tend to get ‘stuck’.
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Vector Quantization
input data: homogeneous distribution on curved strip
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Figure 2.8: Example: numerical simulation of Vector Quantization, with n = 2, n = 0.5 and
N = 100. Top graph: data distribution p(x), homogeneously distributed over the region
% < |z| < 1. Bottom six graphs: locations of the code-book vectors m; during the course of
the process (1 = 1,...,100), at times ¢ = 0 (middle row, left), ¢ = 1000 (middle row, center),
t = 2000 (middle row, right), t = 3000 (bottom row, left), ¢ = 4000 (bottom row, middle) and
t = 5000 (bottom row, right). Times are measures in the number of iterations. Initialisation
of code-book vector allocations: randomly in the square [—3, 2] x [-%,1]. Comparison with
figure 2.5 shows that code-book vectors initialized in data regions where p(x) is zero tend to
get ‘stuck’.
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Figure 2.9: Example: numerical simulation of Vector Quantization, with n = 2, n = 0.5
and N = 100. Top graph: data distribution p(x), homogeneously distributed over the circle
|z| = 1. Bottom six graphs: locations of the code-book vectors m; during the course of the

process (i = 1,...,100), at times ¢ = 0 (middle row, left), ¢ = 1000 (middle row, center),

t = 2000 (middle row, right), t = 3000 (bottom row, left), ¢ = 4000 (bottom row, middle) and
t = 5000 (bottom row, right). Times are measures in the number of iterations. Initialisation
of code-book vector allocations: randomly in the square [—3, 2] x [—3, 2]. Comparison with
figure 2.6 shows that code-book vectors initialized in data regions where p(x) is zero tend to

get ‘stuck’.
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2.2 Soft Vector Quantization

The SVQ Algorithm and its Properties. The Soft Vector Quantization (SVQ) algorithm,
which can be regarded as a ‘smooth’ version of VQ, is defined as follows. First we initialize
the N code-book vectors m; € R" randomly (in contrast to VQ, random initialization poses
no problem for SVQ as we will see). Then we iterate the following stochastic process:

step 1: pick a data point & at random, according to the probability density p(x)
e—Bl@—m;)?

Zé'v:1 e_ﬂ(m_mj)2

step 2: calculate, for all i:

Filz,{m}] = (2.3)

step 3: move all m; towards : m; — m; + n(x — m;) F;[x, {m}]
step 4: return to 1

The parameter 0 < n < 1 (learning rate) again controls the overall magnitude of the changes.
Note that, by construction, Y, Fj[z, {m}] = 1 and that always 0 < Fj[z,{m}] < 1.

The SVQ algorithm can be seen to have the following general properties:

()  All code-book vectors are moved towards & at every iteration step, but those which are
closest to @ are moved most.

(#7) Unless we reduce 7 during the process, the code-book vectors will continue to move
stochastically, although the density of code-book vectors in any given region should
become stationary.

(731) SVQ is still simple, but it has more parameter more than VQ. This extra parameter,
B, defines a characteristic distance in data space: code-book vectors with | — m;| >
ﬁ_% will move only weakly, in contrast to those with |z — m;| < ﬁ_%. Hence 1/1/B
defines the distance over which code-book vectors tend to exert an influence. Since the
characteristic distance between the code-book vectors will also strongly depend on N,
one should also expect the optimal value for 8 to depend on N.

(7v) SVQ has an advantage over VQ when data distributions p(x) can (slowly) change over
time. Although we can ensure in VQ, by appropriate initialization, that the code-book
vectors cannot get stuck in data-poor regions, this will no longer be guaranteed if p(x)
can change over time: regions which are data-rich now, and which attract code-book
vectors, might become data-poor later. In SVQ the system will always be able to adapt
to the new data environment, since all code-book vectors are updated all the time.

Let us next investigate the action of the SVQ algorithm for the two extreme choices to
be made for the new parameter 8: = oo and § = 0.

Fact 1: limg_,,, SVQ = VQ

Proof: Define the Voronoi tessalation of data space induced by the code-book vectors {m}.
Consider an SVQ iteration step, where we pick data point . Assume z € Vi[{m}],
i.e. x is found to be in the Voronoi cell of code-book vector k (we again rule out the
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pathological cases where & is at the boundary of Voronoi cells; see the section on VQ).
Multiply numerator and denominator of (2.3) by e#(®=T%)* and use the property that
|z — m;| > | — my| for all i # k:

B2 (T -2

lim Fi[z,{m}] = lim
B—00

prrso SN | ¢ PL@—T1;)2 (@110, )]
— e~ Al@—m)*~(Z-m)”] )1 for i=k
T i lt e A@ M@ M T 0 for i#k

Hence for 8 — oo the SVQ modification of the code-book vectors in a single iteration

reduces to
my — my + (T — my)
m; = m; for all 7 #k
which is identical to that of VQ. O

Fact 2: For  — 0 all code-book vectors m; will ultimately collapse to a single point, which
will fluctuate around the average data-point (z) = [dz = p(z).

Proof: For 8 — 0 we find Fj[z, {m}] = N~! (for any «, any i and any {m}) and the SVQ
modifications simply reduce to

m; — m; + %(az —m;) for alls

Now consider the difference between any two code-book vectors. If we label the itera-
tions by £ =10,1,2,..., we find

mi(0+1) =m0 +1) = (1= 0)fmi(6) = my ()]

hence  m;(€) —m;(6) = (1= 10)/[mi(0) — m;(0)]

so limy_,o[m;(€) — m;(£)] =0 a

To find out where all the code-book vectors will go, we only need to inspect the dynamics
of the average m = N~1 3, m; (since limy_,oo[m(£) — m;(£)] = 0). Upon writing the
data point drawn at iteration £ as «(£), we get m(£+1) = (1—)m(£)+ Frx(£). Hence

m(1) = (1= 3)m(0) + g2(0)

m@) = (- ) |- )mO) + 20| + wa()
= (1= pPm) + L1 - D20 + )

m®) = (1= 1) [(L= 1Pm(0) + 11~ )e(0) + wa(1)] + Fe
— (1= 2Pm(0) + 2 [~ 1P2(0) + (L= T)e(1) +o(2)
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{—1
m(l) = (1-3)'m0)+~ > - ) (k)

Averaging over the possible choices of data, using (z(k)) = (x), the average of the
distribution p(z) (assuming this average to be finite), and using 37 2F=1/(1-2)
(for |z| < 1) then gives us

£—00 £—00

-1
lim (m()) = lim {(1 — D)m(0) + (@) > (1 - %)’“}

= - 0= ) = (@)
As claimed. O

One can similarly show that the fluctuations of m around (x) remain finite, provided the
width of the data distribution is finite, i.e. (x?) = [dz p(z)x? < .

Thus VQ can be seen as a special case of SVQ, obtained upon putting 8 — 0o. Secondly
we infer from inspection of the extreme case = 0 that one of the effects of the smoothening
of SVQ (relative to VQ) is for code-vectors to ‘drag one another along’.

A Lyapunov Function for Small Learning Rates. Our understanding of SVQ (and thus also
of VQ) would greatly improve if we could recognise the process as the minimisation of some
error measure. For finite n this is not possible, but for for n — 0 it is. Upon labeling the

different iterations with £ =0,1,2,..., and upon writing the data point drawn at stage ¢ as
x(£), we can write both VQ and SVQ in the following compact form:
m;(£+ 1) = m;(£) + nFi[x(£), {m(£)}][z(£) — m;(£)] (2.4)
with a( 2
SVQ _ e ¢
F’i [SC, {m}] - Z;VZI e*ﬂ(wfmj)z (25)
VQ . 1 if x€ Vz[{m}]
B e, {m}] = { 0 otherwise (2.6)

For small learning rates we follow the procedure introduced to derive deterministic equations
for on-line learning in layered neural networks (see lecture notes ‘Neural Networks’), and
define a new time unit ¢ = n¢. We then take the 7 — 0 limit and find the stochastic process
(2.4) being replaced by the deterministic equation

Smi = {(z —m) Rz, (m}) 2.7

(with (f(z)) = [dz p(z)f(x)). Let us now choose FiSVQ[w,{m}], and let us define the
following average of Gaussian distributions, each centred at one of the code-book vectors:
e—Bl@—my)?

q(z[{m}) = %Z W

2

(2.8)

We can now prove the following:
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Fact 3: For Fj[z,{m}] = Fz-SVQ [z, {m}], equation (2.7) defines gradient descent:

d 1 p(z)
—m; = ——Vm,E[{m El{m :/d:c z)lo [7] 2.9
Proof: Just work out the relevant partial derivatives of E[{m}]:
1 1
~55 VmElm)] = 55 [de p(@)Vm, log a(al{m)
1 _B(T—1m;)2
= %/daz p(€)Vm, log;e fl@—m;)
1 Vfrni(B_B("I:_’rn”")2
_ (& — m;)e @)’ _ N\ SVQ
= [do p(a) { s | = (@ - m) B, (m)])
Hence the desired result. O

The object in equation (2.9) is a familiar function in information theory, where it would
have been written as D(p||q), and where it goes under the name Kullback-Leibler distance. It
obeys D(p||q) > 0 for any two distributions p(x) and ¢(x), with equality only if p(z) = g(x)
(in a distributional sense). It is an information-theoretic measure of the deviation between
the two distributions p(z) and g(z).

From the general inequality D(p||q) > 0 (and hence E[{m}] > 0), in combination with
the gradient descent equation in (2.9) (which ensures that %E < 0), we may now conclude
that the function in (2.9) is a Lyapunov function for the SVQ process (2.4). Hence we can
interpret SVQ, at least for small 7, as approximating the data distribution p(x) optimally by
a mixture of Gaussians of the form (2.8), via adaptation of the centres m; of the Gaussians.
Similarly, since limg_,,, SVQ = V@ and since lim/g_wo[ﬁ/ﬂ]%efﬂ(a”*m'i)2 = [z — m;], we
may for small 7 interpret VQ as approximating the data distribution p(z) optimally by a
mixture of delta-distributions, via adaptation of the centres of the delta-distributions:

SVQ:  finds {m) such th () ~ - Ze_ﬂ(w_mi)z
n <1, : nds {m} such that p(z) =~ =) ——r—
N i (Vm/B)™
1
nkl, VQ: finds {m} such that p(z) =~ ¥ ;5[;6 —m,]

The characteristic distance o = 1/4/283 which we already identified before, is now giving the
widths of the individual Gaussians with which SVQ aims to copy the data distribution p(x).
For finite 1 (provided not too large) we may regard SVQ and VQ as noisy versions of the
above gradient descent processes.

Finally we briefly note that the stationary state of the n — 0 equation (2.7), given by
((x — m;)F;[xz,{m}]) = 0, translates into

_ Jdz zFi[z, {m}]p(z)

_ Jvigmydz = p(2)
" Tdz iz, {m}]p(x)

 Juymyde p(@)

so for VQ : m;

(2.10)
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Vector Quantization
input data: homogeneous distribution on curved strip
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Figure 2.10: Example: numerical simulation of Soft Vector Quantization, withn =2, n = 0.1,
B = 10 and N = 100. Top graph: data distribution p(x), homogeneously distributed over
the region § < |z| < 1. Bottom six graphs: locations of the code-book vectors m; during the
course of the process (i = 1,...,100), at times ¢ = 0 (middle row, left), ¢t = 1000 (middle row,
center), ¢ = 2000 (middle row, right), ¢ = 3000 (bottom row, left), ¢ = 4000 (bottom row,
middle) and ¢ = 5000 (bottom row, right). Times are measures in the number of iterations.

Initialisation of code-book vector allocations: randomly in the square [—3, 2] x [—3, 3].
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Soft Vector Quantization
input data: homogeneous distribution on square
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Figure 2.11: Example: numerical simulation of Soft Vector Quantization, withn =2, n = 0.5
and N = 100. Top graph: data distribution p(x), homogeneously distributed over the square
[-1,1] x [-1,1]. Bottom four graphs: locations of the code-book vectors m; after 10,000
iteration steps (i = 1,...,100), for different choices of the parameter §: f = 50 (middle row,
left), 5 = 10 (middle row, right), 8 = 5 (bottom row, left) and 8 = 1 (bottom row, right).
Initialization of code-book vector allocations: randomly in the square [—3, 3] x [-1,1].
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For VQ we thus have the transparent result that, in equilibrium and for 5 sufficiently small,
the location of code-book vector m; will be exactly the centre of gravity of the data distri-
bution within its associated Voronoi cell.

Ezxamples of SVQ in Action. The figures on the previous two pages illustrate the functioning
of the SVQ algorithm for a number of simple examples with n = 2 (i.e. where one has data
points € = (z1,z2) in a plane) and N = 100 (i.e. a population of 100 code-book vectors),
but for different choices of the data distribution p(x). Figure 2.10 shows the locations of the
code-book vectors at different times, for § = 10, where the characteristic width of the data
covering Gaussians is ¢ = 1/y/283 =~ 0.22. We observe that code-book vectors indeed do not
get ‘stuck’ in data-poor regions, and that the code-book vectors indeed keep a distance of the
order of o from the boundaries of the data region (due to the width of the data strip being
%, this more or less sends all code-book vectors to the circle || = 3/4). Figure 2.11 shows
the asymptotic locations (after 10,000 iterations) of the code-book vectors for four different
values of 8. The corresponding values of o are: 0 = 0.1 (8 = 50), 0 = 0.22 (8 = 10), 0 = 0.32
(8=05), and 0 = 0.71 (8 = 1). With these values one can understand perfectly the observed
clustering properties of the code-book vectors; this underlines the power of results such as
those above (i.e. fact 3).

2.3 Time-Dependent Learning Rates

We have seen that for finite  the processes of the type (2.4) can be regarded as ‘noisy’
versions of the deterministic equation (2.7) (for SVQ and VQ, the latter, in turn, minimise a
sensible error measure). Hence one would in the initial stages of these processes prefer to have
a finite 7 (since the added randomness may prevent the system from going to a sub-optimal
local minimum of the error measure), but one would asymptotically prefer a fluctuation-free
and unique (reproducible) final state, i.e. n — 0. It would therefore appear natural to choose
a slowly but monotonically decreasing time-dependent learning rate 7(£), where £ labels the
iterations of the algorithm (2.4). The question is how to determine the optimal rate of decay
for n(£). Too fast a reduction of n(£) might cause evolution to local minima, or might prevent
the code-book vectors from traveling over sufficiently large distances to take up their optimal
positions in data space (note that we do not know beforehand the size of data space). Too
slow a reduction of 7(¢) might cause fluctuations and non-uniqueness of the final state to
persist too long for us to achieve the desired stationary state within the time-scales of our
experiments. Below we show that sensible criteria to be met by n(£) are

not too fast: Y _n(f) = oo not too slow: Y _n*(f) < oo (2.11)
£=0 £=0

Fact 1: The learning rate must obey » 2,n(£) = oo, otherwise there will be an a priori
bound on the possible distance to be covered by the code-book vectors.

Proof: From my(¢ + 1) = my(€) [1 — nFi[z(8), {m(D)}]] + nFi[z (), {m(€)}(8), which is
just an alternative way to write equation (2.4), together with Fj[z,{m}] € [0,1] and
0 <7 <1, we deduce for time dependent learning rates:

[mi (£ + 1) < [ma(0)] +n(6)|z(€)]
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L/t

Figure 2.12: The time-dependent learning rate defined in (2.12), which meets the conditions
(2.11) on the asymptotic rate of decay to zero.

Hence, upon repeated iteration:

o

—1
[mi(0)] < Jmu(0)| + Y _n(k)e(k)]  so  lim (jm;(8)]) < [m;(0)] + (|z]) D n(k)
k=0 b0 k=0
Thus, unless Y 22, 7(k) = oo, we have an a priori bound on the distance which can be
traveled by any code-book vector, which could prevent outliers of the data distribution
from being reached. O

Fact 2: The learning rate must obey 322, 7%(£) < oo, otherwise even for the simplest process
of the class (2.4) the uncertainty in the location of the average code-book vector will
diverge.

Proof: The simplest process of the class (2.4) is the 8 — 0 limit of SVQ: Fj[z,{m}] = 1/N,
so m(£+1) = m(£) + (n(£)/N)[z(£) —m(£)], where m(£) = & 3, m;(£). We now write
m(£) = (m(£)) + v(£), so that (v(£)) = 0 and

1100 + " () — (@)

Note that v(£) is statistically independent of all z(¢') with ¢/ > £. Note also that, since
at £ = 0 there are no fluctuations yet: v(0) = 0. Hence

_ n(4) n*(4)
vA(l+1) = =A%) + () — (@) + - e (0) - () — ()]

2
e+ = 1-"p0e0) + T @)

v(l+1)=[1-
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Further iteration gives
we+2) = -1y 1Wp )

N
n(¢+1) 2m*(0)

-]

nl+1)0. 1l o

-2 ey 1020y

P+ ')
N2 N2

~—

+ +0(n*)[z — (x)]*)

-1 =1 2
@) = w0) [I1-"07 + o — @) T 1 0w
k=0 k=0
-1 9
= (o @ YW 1 o)
k=0
We conclude that the fluctuations v diverge, i.e. limy o (v%(£)) = oo, as soon as
S20m%(£) = 0. As claimed. O

The most commonly used asymptotic form of decay for 7n(£), which meets the above two
requirements, is 7(¢) ~ £~ as £ — oo. For instance:

0 LT n)=n(0)1—4£/7]
! )T which obeys LT n(l) =~ 5n(0) (2.12)
e>1  n) =~n(0)r/L

This dependence is drawn in figure 2.12.

2.4 Self-Organizing Maps

Detour: Biological Inspiration. Any flexible and robust autonomous system (whether living or
robotic) will have to be able to create, or at least update, an internal ‘map’ or representation of
its environment. Information on its environment, however, is usually obtained in an indirect
manner, through a redundant set of usually highly non-linear sensors which each provide
only partial and indirect information. The system responsible for forming this map needs
to be adaptive, as both environment and sensors can change their characteristics during the
system’s life-time. Our brain performs recallibration of sensors all the time; e.g. simply
because we grow will the neuronal information about limb positions (generated by sensors
which measure the stretch of muscles) have to be reinterpreted continually. Anatomic changes,
and even learning new skills (like playing an instrument), are found to induce modifications
of internal maps. At a more abstract level, the neural system responsible for building the
internal representation is confronted with a complicated non-linear mapping from a relatively
low-dimensional and more or less flat space (the ‘physical world’ W, with D dimensions) into
a high-dimensional one (the space of sensory signals, of which there are n > D), and the
aim is to extract the properties of the original space W from the sensory signals alone, i.e.
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Figure 2.13: Simple 2-dim. example of the internal representation (‘map’) of the environment
as built in biological systems. The brain has no direct access to the world coordinates
(X1, X3), it is only given sensory signals z1(X1, X2) and z5(X7, X3). Many representations
of the coordinates (X7, X2) would have been possible; in the specific one aimed for here, each
(indirectly) observed position (X7, X5) gives rise to a specific localised area of firing activity in
a sheet of neurons. Compare this to driving a car with blinded windows, but with electronic
sensors observing the environment. The sensory information is to be converted back into
world coordinates, and to make an light flash up in a road map inside the car, exactly at the
car’s current location. This is the information used by the driver. The question discussed
in this section is how to construct the road map and the conversion of sensory to world
coordinates, on the basis of structure in the sensory signals z1 (X7, X2) and z2(X71, X3).

to ‘invert’ the operation which maps world states to sensory signals.

world coordinates : sensory signals : internal representation :
X=(X,...,Xp)eW — x=(x1,...,2,) —> reconstruction of W ?

The definition of the ‘world’ depends on the specific degrees of freedom of the system at
hand, e.g. D need not be three. The sensory signals are usually non-linear, indirect and
noisy, but also highly redundant to compensate for their individual inadequacies. The key to
achieving the objective is to exploit continuity and correlations in sensory signals, assuming
similar sensory signals to represent similar positions in the environment, which therefore
must correspond to similar positions in the internal map: if X’ = X + AX then also
z(X') = z(X) + A(X).AX, for some A(X) (the Jacobian matrix of the mapping X — ).

Before turning to the learning process which is to carry out the construction task, we first
explain in more detail the type of representation one aims for (which is inspired by biological
systems). Let us give a simple example (see also figure 2.13). Image a system operating in
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a simple two-dimensional world, where positions are represented by Cartesian coordinates
X = (X1,X2), observed by sensors and fed into a neural network as input signals. For
simplicity we will consider trivial sensors, and just put z; = X;. Each neuron i receives
information on the input signals (z1,22) in the usual way, via modifiable synapses {m;;}:
yi(®) = g[miz1 + miozs], for some monotonic non-linear function g[z] (e.g. g[z] = erf[z]
or g[z] = (1 + tanh[z])). We indicate the (physical) location of neuron 4 in the array
as 7;. If this network is to become an internal coordinate system, faithfully reflecting the
events € = (x1,x9) observed in the outside world (in the present example its topology must
accordingly be that of a two-dimensional array), the following objectives are to be met

1. Each neuron y; is more or less ‘tuned’ to a specific type of signal x;, i.e.
yi(x) > 0 only when |x — ;| is sufficiently small.

2. Neighbouring neurons in the array are tuned to similar signals, i.e.
if |r; — r;| is small, than |@; — ;| is small.

3. External ‘distance’ is monotonically related to internal ‘distance’, i.e.
if |r; — ;| <|ri —rgl, than |z; — ;| < |z; — @]

How to Learn A Topologically Correct Map. Tt turns out that in order to achieve these
objectives one needs learning rules where neurons effectively enter a competition for having
input signals «; ‘allocated’ to them, whereby neighbouring neurons stimulate one another
to develop similar synaptic interactions and distant neurons are prevented from developing
similar interactions. Let us try to construct the simplest such learning rule.
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Initially, before learning has taken place, input signals just evoke random firing patterns in
the neuronal array. After learning we wish to see localised firing patterns, as shown above.

Our equations take their simplest form in the case where the input signals are normalised,
so we define (z1,72) € [-1,1]2 and add a dummy variable z3 = {/1—2?—1z2, together with
a dummy synaptic interaction m;3 for every neuron. If we write the synapses of neuron ¢ as

m; = (m;1, M2, m;3), and normalise them according to |m;| = 1, we simply get

mil = Ja| = 1 (2.13)
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Learning implies rotating the vectors m;. By construction (since g[z] is a monotonically
increasing function), a given neuron is triggered most when m; -  is maximal, which is for
the input signal & = m;. This has two important implications: one can now interpret m;
as the input signal to which neuron ¢ is ‘tuned’, and ‘tuning’ neuron ¢ to a given signal x is
found to be equivalent to rotating m; towards . As a result one finds that a learning rule
with the desired effect is, starting from random (normalised) synaptic vectors m;, to iterate
the following recipe until a (more or less) stable situation is reached:

step 1: pick a data point  with || = 1 at random
step 2: find the most active neuron, i.e. the ¢ such that |m; - x| > |m; - x| for all j # i

step 3: rotate the synaptic vector of neuron i and its neighbours in the array towards a,
rotate the synaptic vector of all other neurons slightly away from x

step 4: return to 1

The neuron that was already the one most responsive to the signal  will be made even more
so (together with its neighbours); the other neurons are made less responsive to . In biology
the above is achieved via Hebbian-type learning rules, and by having short-range excitatory
synapses which ensure that neighbouring neurons tend to be simultaneously active, and ‘team
up’ in the synaptic adaptation.

We note that in the above formulation the normalisation of synaptic vectors and input
vectors was purely introduced in order to retain the connection with the biological picture
of firing neurons, via expressions like (2.13). For the purpose of computation and learning
in synthetic systems, on the other hand, we can move away from the firing of neurons and
work directly in terms of the {m;} only. Henceforth we will define m; simply as the signal
in input space to which neuron i is tuned; we forget about how this is actually realised, and
we forget about normalisation.

Visualization of the Learning Process: Fishing Nets. The above formulation of the self-
organizing maps in terms of the {m;} has brought us (deliberately) very close the VQ and
SVQ algorithms. However, there is an important difference, which is the insistence that
the various code-book vectors m,; are no longer inter-changable (in VQ and SVQ we only
cared about the overall distribution of code-book vectors in input space), but now each m; is
associated with a specific location 7; in an array, with the condition that those {7, j} which
belong to nearby locations {r;,r;} in the array must have code-book vectors {m;, m;} which
are very similar. Hence, simply drawing the code-book vectors in input space (as we did for
VQ and SVQ) is no longer adequate, because it will not inform us about the topological
features of the state.

In the case of SOM’s the standard visual representation of a state {m;} is the following:

e Draw each m; as a point (‘knot’) in input space (as in VQ and SVQ)

e Connect with line segments all those points {, 7} which correspond to neighbours in in
the array of the {r;}

We then end up with a graphical representation of the synaptic structure of a network in the
form of a ‘fishing net’, with the positions of the knots representing the signals in the world
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Figure 2.14: Graphical representation of the state of a self-organizing map (SOM) in the form
of a ‘“fishing net’. Here r; € [0,1]? (i.e. the neurons live in a square 2-dimensional array) and
x € N3, with |z| = 1 (i.e. the data live on the surface of a sphere). The positions of the knots
represent the signals m; to which the neurons are ‘tuned’, and the cords connect the knots
of neighbouring neurons in the array. Left: equilibrium result of the numerical simulation of
a particular version on the SOM algorithm. Right: corresponding theoretical prediction.

to which the neurons are tuned and with the cords indicating neighbourship, see figures
2.14. The three objectives of map formation set out at the beginning of this section thereby
translate into the following desired properties of the graph:

1. all knots in the graph are separated
2. all cords of the graph are similarly stretched
3. there are no regions with overlapping pieces of graph

Note that this representation is in practice useful only for two-dimensional arrays (i.e. when
creating two-dimensional internal representations).

The SOM Algorithm and its Properties. The Self-Organising Map (SOM) algorithm is an
abstract realisation of the processes underlying the creation of topologically correct internal
representations in the higher brain regions of humans and animals. It is defined in terms of
‘code-book’ vectors m;, which represent the specific signals in data space to which neurons are
‘tuned’. It aims to create a topologically correct internal representation of low-dimensional
structure (potentially non-linear) hidden in (possibly high-dimensional) data.

Each neuron is located in a physical array, the dimension of which will become the di-
mension of the internal map created; the vector r; indicates the location of neuron i. We
define a neighbourhood function h;; as follows:

hij =h (@) , >0 (2.14)

in which h(z) is a monotonically decreasing function, with h(0) = 1, h(co) = 0, and with a
width of order 1. For example:

h(z) = eféz : hz] = 67%(’,'1'7”']')2/(72
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Figure 2.15: Example of the ‘fishing net’ representation of the state of a self-organizing map
system. Upper left: the arrangement of 9 neurons in a physical array (defining the {r;},
and hence the notion of neighbours). Upper middle: the positioning of the nine code-book
vectors m; in data space, corresponding to the state {m; = (0,1), mqy = (%,1), ms =
(lal)a my = (0,%)5 ms = (%a%)a me = (11%)1 mr7 = (an)a mg = (%,O), mg = (110)}'
Bottom graph left: the fishing net graph corresponding to the aforementioned state. Bottom
graph middle: the fishing net graph corresponding to the state one obtains by exchanging
code-book vectors ms and mg. Bottom graph right: the fishing net graph corresponding
to the state one obtains by exchanging code-book vectors mg and mg. Note that all cases
would give rise to exactly the same distribution of code-book vectors, so that the incorrect
topology of the last two states can indeed only be inferred from the fishing net graph.

h(z) = 0[1 — 2] :

hij=1 if|ri—rj| <o
hij:() if|ri—7'j|>a

in which 6[z] is the step function (6[z > 0] =1, 6]z < 0] = 0). The SOM algorithm can now
be defined as follows. First we initialize the N code-book vectors m; € R"™ randomly Then
we iterate the following stochastic process:

step 1: pick a data point & at random, according to the probability density p(x)

step 2: find the Voronoi cell containing @, i.e. find ¢ such that |# — m;| < |€ — m;| Vj #1

step 3: move all m; towards z: m; — m; +n(x — m;)Fj[xz, {m({)}], where F}[...] = hyj

step 4: return to 1
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The learning rate 0 < n < 1 controls, as always, the overall magnitude of the changes.

The SOM algorithm can be seen to have the following general properties:

()  All code-book vectors are moved towards & at every iteration step, but those which are
closest to the code-book vector in whose Voronoi cell the data point is (i.e. that of the
neuron which is triggered most) are moved most.

(79) Unless we reduce n during the process, the code-book vectors will continue to move
stochastically, although the density of code-book vectors in any given region should
become stationary.

(ii7) The properties of the {h;;} guarantee that neighbouring neurons ‘team up’, and develop
similar code-book vectors.

(7v) SOM has one parameter more than VQ. This extra parameter, o, defines a characteristic
distance in the original physical array of the neurons: code-book vectors with |r; —7;| <
o will be the ones to feel one another’s influence.

(v) limyo SOM = VQ (the proof is trivial). Hence we can see the SOM as VQ plus
enforced spatial continuity.

We observe that the SOM is again of the general form (2.4), hence we can apply our results
on time-dependent learning rates also to the SOM. The relation between the three processes
discussed so far is

lim SVQ = VQ = lim SOM

B—00 o—0

Applications of the SOM include sensor fusion (in robotics), data visualisation and data-base
mining (finding hidden regularities in messy data), data preprocessing, medical diagnostics
(finding causal relationships in medical data), etc.

It will be clear that the determination of the right value for o is delicate. If o is too small,
the system will behave like VQ, and the correct topology will not emerge (or be correct only
locally). If o is too large, all neurons will drag one another along, and all code-book vectors
will become identical (see also the simulation examples below). The new parameter o also
introduces boundary effects. Since neurons ‘drag along’ one another’s code-book vectors, it
will be clear that those neurons which are at the boundary of the array will feel an effective
force dragging their code-book vectors towards those of the inner region of the array (since
there are no neurons pulling from the outside). This shows itself in a tendency for the
boundaries of the ‘fishing net’ to keep a certain o-dependent distance from the boundaries
of the data region. In practice one therefore chooses a time-dependent o, similar to the
time-dependent learning rate, i.e.

o) = 210

- 1+t/m

a(0)

"=y,

Ezxamples of SOM in Action. The figures below illustrate the functioning of the SOM algo-
rithm for a number of simple examples with n = 2 (i.e. where one has data points & = (z1, z2)
in a plane) and a 10 x 10 array of neurons (i.e. a population of 100 code-book vectors), but
for different choices of the distance parameter o and the time-dependence of the learning
rate.
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Vector Quantization
input data: homogeneous distribution on curved strip

Self-Organizing Map, sigma=0.1, eta=0.5
400 codebook vectors at t=20000
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Self-Organizing Map, sigma=0.3, eta=0.5
400 codebook vectors at t=20000

Self-Organizing Map, sigma=0.5, eta=0.5
400 codebook vectors at t=20000

Self-Organizing Map, sigma=0.7, eta=0.5
400 codebook vectors at t=20000

Self-Organizing Map, sigma=0.9, eta=0.5
400 codebook vectors at t=20000
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Self-Organizing Map, sigma=1.1, eta=0.5

Self-Organizing Map, sigma=1.3, eta=0.5
400 codebook vectors at t=20000

Self-Organizing Map, sigma=1.5, eta=0.5
400 codebook vectors at t=20000

400 codebook vectors at t=20000
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Figure 2.16: Example: numerical simulation of a Self-Organising Map, with n = 2, n = 0.5
and N = 100. Top left graph: data distribution p(x), homogeneously distributed over the
strip % < |z| < 1. Other eight graphs: system state after 20000 iteration steps, for different
values of the range parameter o (o € {0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5}, from top middle
to bottom right). One clearly observes the two effects of loosing the correct topology for o
too small, with only local correctness for intermediate o, and of the code-book vectors of
boundary neurons keeping a o-dependent distance from the data boundary.



32 CHAPTER 2. COMPETITIVE NON-SUPERVISED LEARNING PROCESSES

Vector Quantization
input data: homogeneous distribution on curved strip

SOM, sigma=1.5, eta(t)=1/t*t (tau=10, eta(0)=0.5)
400 codebook vectors at t=20000

x1
SOM, sigma=1.5, eta(t)=const (tau=10, eta(0)=0.5) SOM, sigma=1.5, eta(t)=1/t (tau=10, eta(0)=0.5)
A =20000 400 codebook vectors at t=20000
£
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SOM, sigma=1.5, eta(t)=expon (tau=10, eta(0)=0.5)
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Figure 2.17: Example: numerical simulation of a Self-Organising Map, with n =2, 0 = 1.5,
n(0) = 0.5, and N = 100. Top left graph: data distribution p(x), homogeneously distributed

over the strip % < |z| < 1. Other eight graphs: system state after 20000 iteration steps,

for different choices of the time-dependence of the learning rate 7. Second row left: n = 0.5

(constant). Second row, middle: n(¢) = 7n(0)/[1 + t/7], with 7 = 10. Second row, right:
n(t) = n(0)/[1 + #2/7?], with 7 = 10. Bottom: n(t) = 7(0)exp[—t/7], with 7 = 10. One
clearly observes that the system can get ‘stuck’ in a suboptimal state, where the topology is

only locally correct.



Chapter 3

Bayesian Techniques in Supervised
Learning

In this chapter we discuss the Bayesian approach to supervised learning from examples. Its
introduction in the 1990’s has been a very welcome development, in that it contributed
significantly to converting synthetic neural computation, especially learning in multi-layer
networks, from a collection of interesting but ad hoc algorithms (‘invent a rule, play with
parameters, draw performance graphs, and hope for the best’) to a sound, well grounded, and
systematic scientific procedure. It also contributed to the area becoming more mathematical
in nature.

3.1 Preliminaries and Introduction

Supervised Learning from Ezamples. Let us first set the scene and define our terminology.
In supervised learning from examples we are confronted with a ‘task’, defined by a collection
of questions £#, drawn randomly from some set D C R (with probabilities, or probability
density, p(£€), with corresponding answers t/:

‘questions’ :  {&',.... &P}, €*eDCRY

the task :
‘answers’ : {4, ... t*}, theR

This task, assumed to have been generated by a ‘teacher’, is to be learned by a ‘student’
(the neural network). The student executes a parametrized operation S : RV — R, where
S(€) = f(& w). The parameters w determine the details of the operation, and thus represent
the ‘program’; in multi-layer neural networks they would be the synaptic weights and the
neuronal thresholds. If the outputs (or ‘targets’) are binary, e.g. t* € {0,1} or t* € {—1,1}
we would call the task binary classification. If the outputs can truly take values from a
continuous set, we would speak about regression.

It is assumed that the data (or ‘answers’) were not assigned randomly by the teacher
(otherwise there would be no point in learning), but that they were generated according to
some function 7 : Y — R. The student has no direct information on the function T' (the
teacher is a ‘black box’, or ‘oracle’), but has to infer 7" from the p input-output pairs (&, t#);
this is the objective of the learning process. The problem faced by the student is made more
difficult by the fact (which is quite realistic in the real world) that the data are not perfect,

33
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student (adaptive) s(8)
5(8) = /(& w)
§€=(,--5¢N)
teacher (oracle)
? T(¢)

Figure 3.1: The ‘teacher-student’ scenario of on-line supervised learning. The student can be
any type of parametrised operation (not necessarily neural or neural-inspired).

i.e. the teacher can make mistakes, or is subject to noise. If, for simplicity, we assume that
the inaccuracy or noise is independent for the different outputs (i.e. the teacher is sloppy,
rather than consistently using the wrong rule), we have

binary classification:  Prob[th =T(£¥)]=1—€¢ 0<e<1

regression : th=T(&") + z, zy, € R drawn randomly (3.1)
according to P(z)

In the case of binary classification, the parameter ¢ measures the amount of noise in the data,
with € = 0 corresponding to perfect data. In the case of regression we may without loss of
generality assume (z) = [dz zP(z) = 0 (since a non-zero average would be equivalent to a
structural modification of the underlying rule 7', and could be absorbed in its definition);
hence the amount of noise in the data is here measured by the variance of P(z), with perfect
data given by P[z] = J[z].

Due to the possibility of data noise and the difference between our finite sample {£, ..., &P}
and the full set of possible questions D, there are several performance measures one could
define. Here we concentrate on two: the training error E; (measuring how well the student
reproduces the given answers t#), and the generalization error E; (measuring how well the
student has learned the underlying rule T'):

D
E = %; Elt", 5(¢M)] B, = [ de p(©) EIT(E),5(6)

where E[t, s| is some, as yet unspecified, measure of the difference between ¢ and s, such
as &[t,s] = |t — s|” (with v > 0). Given the dependence of the student’s operation on the
parameters w, via S(§) = f(&, w), this becomes

p
Fifw] =~ Y £S5 w)]  Bylwl= [ depl) ETE). fEw)] (32
pu=1

There are three important observations to make at this stage:

e The above two error measures E;[w] and Ey[w] differ in two aspects: (i) E; is an average
only over the p available questions {£ S 2 }, whereas E, involves all questions in
D. (ii) E; checks performance relative to the (noisy) answers {t*} given, whereas E,
checks performance relative to the correct underlying rule 7.
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e The real objective of learning is to minimise E,[w], via suitable modification of the
parameters w, since we ultimately wish to use our system for predicting the answers to
novel questions, rather than just parrot the answers to those of the training stage.

e In the learning process, however, we have no access to E,[w], since we know neither
the full set D nor the true rule T'; we only have the data {(¢',t!),..., (€7,tP)} ...

Many of the obstacles and problems in neural network learning in the past (i.e. before, say,
1990) had their origin in the fact that one wished to minimize one object (E;), but one could
only measure the other (E;), and one tried to get away (out of necessity, it seemed) with
pretending that the differences between the two were not too important.

Conventional Network Types. Let us next briefly review the most common types of neural
network S(€) = f(&,w) which are being used in practice for the above purpose. We first
consider regression tasks, where the outputs are supposed to be continuous:

e Single layer neural networks (perceptrons):

&1

. < - f(&w) = g(w- €+ wo)

wy
En o

These are basically single neurons, carrying out a (soft) linear separation in the space
D of the input vectors &, of the form S(&) = g(w - & +wy). Here g(z) is a monotonically
increasing sigmoidal function, which saturates for z — +o0o. The modifiable parameters
(i.e. the ‘program’) are the synaptic weights (w1, ..., wx) and the threshold wy.

e Multi-layer neural networks (MLP’s):

L—1
yi Y1
D =] L
£ o S i R
=] e 2 =]
D =]
=] D =] D&
) .. - ‘D . L L
. - = . o f(&w) = g(X; wiyy (€) +wp)
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n : : 7
D =]
=] . a =]
é‘ND n Tt o o L
D o yNL
D =]
1 L—1
Ym YN, 4
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These are feed-forward processing networks of neurons of the type described above (soft
linear separators), with monotonically increasing and saturating sigmoidal functions
g(z). The overall output is calculated iteratively from the outputs of the preceding
layer, according to

N
yi = gD wi&rwg)  ytl=g Z iy +wf) = 9[2 wjyy+wg] (3.3)

and the modifiable parameters (i.e. the ‘program’) are the synaptic weights and thresh-
olds of all L layers, i.e. w = {ww, wrl, wf}. Given a sufficient number of layers and
units within each layer (dependent on the problem to be solved), these networks have
been proven to be ‘universal approximators’: any sufficiently well-behaved continuous
function f : RN — R can be approximated to arbitrary accuracy by MLP’s (we will

not discuss the precise conditions or the proof here).

e Radial basis function networks (RBF):

$1

e
~—

1 o

o f(an) = 22/[:1 wn¢n(£) + wo

En e

0 000D 00D 000D OO0 ODOGO OGO OGO o

<
=
o~

The motivation behind these networks is also the principle underlying the previous multi-
layer networks: one converts a non-linearly separable problem into a linearly separable one, by
suitable pre-processing. In the previous network the final neuron does the linear separation,
and the preceding L layers do the pre-processing. In radial basis function networks one
chooses specific functions ¢, (€) to do a specific type of pre-processing:

M
w) =Y wadn(€) +wo Pn (&) = o(|€ — ™) (3.4)
n=1

The ¢, (&) (the ‘radial basis functions’) are allowed to depend only on the distance |§€ — ™|
between the input vector and a code-book vector ™. For the remaining scalar function ¢ to
be specified several choices have been proposed; which one to pick is crucial for performance,
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but (unfortunately) highly dependent on the problem at hand!. Popular choices are:

pu) = e /27
d(u) = w2+ (a>0)

P(u) = u
p(u) = (w2 +0?)f (0<B<1)
The modifiable parameters are the weights w (and sometimes one also allows the code-book

vectors " to adapt). Note, finally, that in RBF networks the output does not undergo a
non-linear (sigmoidal) operation, hence the output depends linearly on the parameters w.

localised basis functions :

non —localised basis functions :

Model Complezity and Ouverfitting. Systems such as those discussed above have been used
(and are still being used) extensively as ‘student networks’ S(£) = f(&;w) in the sense of
figure 3.1. The strategy for finding the best parameters w was, in the early stages of neural
computation, based on performing gradient descent on the surface defined by the training

error Ey[w] as given in (3.2), with a quadratic error measure £[z] = £2%:

% w = gV Eifuw] - 2i S0 - sy (3.5)

with a learning rate > 0. The objective is to find w* such that miney Ei[w] = Ei[w*]; the
above process would at least be guaranteed to lead us to a local minimum of E;[w], since

4 Bilw) = VapBifw] - Sw = [V Efw])® <0

d

One problem with this approach has been clear from the beginning: one can end in a local
rather than a global minimum. A second problem was appreciated only some ten years later:
gradient descent is not the optimal local process to find minima on an error surface (see the
chapter on information geometry in the Information Theory course). Here we concentrate on
a third problem, called inappropriate model complexity, or ‘overfitting’.

This problem is best explained using a very simple example. Suppose we have a task
T : ® — R defined by a teacher which carries out some function g(z). The student S : ® — R
tries to emulate the teacher by some parametrized function f(z;w), for which we choose a
finite polynomial (i.e. truncated Taylor expansion):

flz;w) = wo + wiz + ... + wyz™ or flzw) =w-¢(z), dolz) =2’ (3.6)

Learning means adapting w = {wg,...,wnm}. The data consist of examples of p inputs z,
and corresponding outputs t* (with p > M +1), however, the teacher is not perfect (there is a

!This illustrates how in RBF networks the learning problem is, in a way, simply moved under the carpet,
for how do we now choose the function ¢(u), the code-book vectors ", or the number M ? And under which
conditions can we be sure that the ad-hoc restriction to RBF units does not render the problem unlearnable ?
At least in image processing, however, one can set up a rigorous framework, and show that all non-pathological
images can be decomposed in terms of a bundle of local expansions (derivatives of Gaussian functions), which
can (in turn) be constructed by adding and subtracting Gaussian functions of the type in (3.4).
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3.0

()

X

Figure 3.2: Example of a simple learning process where a system ‘learns’ via gradient descent
on a quadratic error measure how to approximate a function g(z) = 3 +sin(27z) (thick solid
line) with by an order-M polynomial f(z;w) = wo +wiz+ ... +wyz™, on the basis of nine
noisy sample points of this function (circles). The resulting polynomials are shown for M —1
(dotted), M = 3 (dashed) and M =9 (thin solid).

noise source in the data generation), so t, = g(z,)+ 2, where the 2z, are drawn independently
according to a zero-average distribution P( ). The training error is given by
1P

Ei[w] = Z —w- (z,)]

N> |

Gradient descent learning then boils down to

M | P
'_z —w: (i)x“](/),xu Zt(/’zxp z Z¢z$u¢j$u wj
This can be written as 7 lc‘ii'w =u — Aw, with u; = 33} _; th(z,)" and A;j = ZZ:1($u)i+ja
with solution (provided A is invertible)

w(t) = A"y + e A w(0) — A7y

The final outcome of the learning process is the weight vector w* = w(oo) = A~ u. Insertion
into (3.6) gives the associated function extracted by the student from the data. In figure 3.2
we show the result for the example g(z) = % + sin(2nz), with 0 < z < 1. For small M (e.g.
M =1 in the figure), the complexity of the student is insufficient for reducing either training
or generalization error. Increasing the complexity of the student (i.e. M) initially improves
both (e.g. M = 3 in the figure). However, for large M the system increasingly succeeds in
reducing the training error by getting the exact locations of the data points right (including
the noise), with the side effect of a deterioration of generalization (i.e. M =9 in the figure).
Plotting the values of E; and E, as functions of time for a student with excessive complexity
(M too large) would lead to the behaviour illustrated in figure 3.3.

The most commonly used solutions to the overfitting problem are the following:
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Figure 3.3: Evolution of training and generalization errors during a learning process defined
as gradient descent on an error surface, with noisy data, in the regime where the student is
too complex (‘overfitting’) and starts reproducing also the noise in the data.

()

(i)

Cross-validation.

The idea is to split the p available data points into two sub-sets: a training set
{(¢',tY),..., (€%, %)} and a validation set {(&FTL, ¢5+1), ..., (£P,#P)}. One then uses
the training set for learning, and the validation set to estimate the generalization error:

k V4
Elw] =+ S Ep fEhw)]  Bulm —— S £ f(Ehw)]  (37)
k= p—k 52,

This latter estimate can be used in two possible ways:

(a) Controlling model complexity (or: finding optimal complezity).

In terms of the example of figure 3.2: start learning by minimizing the training error
E; with a small value of M, measure the estimate of the generalization error in (3.7),
and repeat this procedure for increased values of M until E, is seen to increase.

(b) Controlling learning times (or: ‘early stopping’).
In terms of figure 3.2 (see also figure 3.3): learn by minimizing the training error E; with

a large value of M (a complex student) and monitor the estimate of the generalization
error in (3.7) as a function of time. Terminate learning as soon as E, is seen to increase.

Regularization.

This method is based on the assumption that both the function to be learned and the
basis functions of the student are in principle smooth, and that any observed irregularity
and discontinuity of data must have been due to noise. Since the only way for the
student to reproduce irregular or discontinuous functions is by having large (possibly
diverging) components of the parameter vector w, the idea behind regularization is to
prevent w from becoming too large by adding a suitable ‘penalty term’ to the function
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1.0 N ! N
0.0 0.5 1.0

Figure 3.4: Regularization with a quadratic penalty term, as in eqn (3.8), in the example of
figure 3.2. Thick solid line: the function to be learned. Crosses: nine noisy sample points of
this function. Thin solid line: approximation by order-9 polynomial, without regularization.
Dashed lines: similar, but with regularization term (A = 0.001 and A = 0.02, respectively,
from bottom to top at the left of the figure). The A = 0.001 curve improves generalization
compared to the un-regularized one (i.e. it resembles the true function more). However, for
A = 0.02 we observe over-regularization: the approximation is becoming too smooth.

to be minimized, such as:

%w " {Et[w] + %Auﬁ} Eyw] = Z[t“ w2 (38)

Neither cross-validation nor regularization are ideal. In the first case we waste data and CPU
time which could have been used for learning. In the second we must tune or guess the form
of the penalty term (and its parameter \); see also figure 3.4. In either case we cannot be
sure that we arrive at the lowest possible generalization error. The origin of the problem is
clear: we continue to minimize an object which we can easily measure (E;) which differs from
the object which we would really like to minimize (E,), but which we cannot measure.

3.2 Bayesian Learning of Network Weights

Ideas, Definitions and Benefits. The Bayesian approach deals in a systematic and exact way
with the general problem of learning in neural networks and other parametrized information
processing systems of the general form S(§) = f(&;w) + noise, given the observation of
(possibly noisy) data D = {(&*,¢),..., (¢7,%?)}. In its simplest form, i.e. for a given model,
it is based on the following three ideas:

e Consider not just a single parameter vector w, but an ensemble of parameter vectors,
characterized by a probability distribution p(w) which evolves during learning.
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e Assume that the data D were generated by a system of the form S(§) = f(&; w)+ noise.
Try to calculate the probability p(w|D) of the parameter vectors, given the data.

e Use the general Bayesian relation P(A|B)P(B) = P(B|A)P(A) to express the desired
object p(w|D) in terms of p(D|w) (the latter can be calculated quite easily).

Learning is regarded as a process during which the arrival of data reduces our uncertainty
about the ‘right’ parameter vector w from a prior distribution p(w) (reflecting prior knowl-
edge or prejudices about the problem) to a posterior distribution p(w|D) (reflecting both
prior assumptions and the data-generated evidence). Note that we can combine the general
statistical relations p(D|w)p(w) = p(w|D)P(D) and p(D) = [dw p(w, D), to obtain

s(wlD) — — PPp(w) 59)

~ [dw' p(w')p(D|w')

This is the core identity.

We now put the above ideas in practice. In a nutshell, Bayesian learning works like this:

Stage 1: definitions
Define (i) the parametrized model, assumed responsible for the data, (ii) the prior
distribution p(w) of its parameters, and (iii) the data D = {(&1,t}),..., (€7, tP)}.

Stage 2: model translation
Convert the model definition into a probabilistic standard form: specify the likelihood
of finding output ¢ upon presentation of input £, given the parameters w:

model definition in standard form p(t|€, w) (3.10)

Stage 3: the posterior distribution
Calculate the data likelihood, given the model, p(D|w) = Zzlp(t/ﬂ{“, w). From this,
together with identity (3.9), follows the desired posterior parameter distribution

_ () [T p(t"[¢", w)
Jadw' p(w') IT)=; p(t#[€", w')

p(w|D) (3.11)

Stage 4: prediction
The residual uncertainty in the parameters w generates uncertainty in subsequent data
prediction. Prediction of the output ¢ corresponding to a new input £, given our obser-
vation of the data D and our choice of model, thus takes the probabilistic form:

p(tlE, D) = [ dw p(tig, wp(w|D) (312)

This concludes the description of Bayesian learning for a single model; the problem has been
reduced to doing integrals. The remainder of this section deals with implementation and
understanding, and with the generalization of the ideas to model selection.

The Bayesian approach to learning has become very popular within a relatively short
period of time. The reason for this can be appreciated by simply listing some of its main
appeals and benefits (to be derived on subsequent pages in these notes):
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e It provides an interpretation of regularizers and their associated parameters.
e It provides an interpretation of single-point error measures.
e There is no need for cross-validation, so all data can be used for learning.

o It allows for the selection of the optimal complexity within a given model class, and for
the selection of the optimal model class from a given set of candidates.

e It provides not only predictions, but also specific confidence estimates (i.e. error bars)
corresponding to these predictions.

e Traditional learning via gradient descent training error minimization, with regulariza-
tion, is recovered as a particular approximation within the Bayesian framework.

Let us gain intuition on how in the Bayesian picture the arrival of data is converted into
probabilistic statements about model parameters, by working out the steps (3.10,3.11) for
some simple examples. We will write inputs as &€ € R or & € R¥, adjustable parameters as
we R or w e RY, outputs as ¢t € R, and data as D = {(¢4,t1),..., (&P, 1P)}).

Ezample 1. Our first example describes a deterministic model with one real input and one
real output. Stage one in the process is the definition of model, prior parameter distribution?
and data, for which we take:

T D={0,)

(one data point). Next we convert the model into the probabilistic standard form (3.10)3:

p(t|§, w) = 8[t — tanh(we)]

We can now calculate the posterior distribution (3.11):

H(¢) = tanh(wg)  p(w) = (2m) Te TV

2

WD) — PP, w) 5[—1 — tanh(w)]e”2®
POP) = Tt pwrp(areT wf) ~ Jdw' §[~L — tanh(uw')]e~ 7"

= §lw — tanhinv(—%)] = §[w + log V3] (3.13)

Here we have used the two identities 6[f(w)] = |f'(f™(0))|~'6[w — f™(0)] (see Appendix
C) and tanh™ (2) = $log[(1 + 2)/(1 — 2)].

Before we had observed any data our uncertainty about the parameter w was described
by the Gaussian prior p(w). The arrival of the data point (1, —%) induced a collapse of this
prior to the d-distributed posterior p(w|D) = §[w + log+/3] (without any uncertainty). This
is illustrated in figure 3.5.

Ezxample 2. Let us now make matters slightly more interesting and replace the one-parameter
function of the first example by a two-parameter function:

t(§) = tanh(wp + wi) p(w) = (27r)_1e_%w2 D = {(1, _%)}

%Note that, given a choice made for average and variance, the Gaussian distribution is the maximum
entropy (i.e. maximum uncertainty) distribution for real values random variables.
3See appendix C on distributions for the definition and properties of the distribution 6[z].
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Figure 3.5: Left: reduction of parameter uncertainty due to arrival of data in example 1,
from a Gaussian prior distribution p(w) to a d-peaked posterior distribution p(w|D). Right:
reduction of parameter uncertainty in example 2, from a Gaussian prior distribution p(wg, w1)
(contour lines) to a posterior distribution p(wg, w:|D) with support only along the line wg +
w; = —log v/3 (with its maximum at the point indicated by + in the figure).

The probabilistic standard form becomes
p(t|€, w) = [t — tanh(wy + w1€)]

The posterior distribution becomes:

p(w)p(t'|¢!, w) §[—1 — tanh(wo + w;)] e~ 2%’
p(w|D) == d 7 f 1 1 7 = 1 ; ; _lwm
Jdw' p(w)p(tHE, w')  [dw! 0[—5 — tanh(wj + w})] e”2
O[wo + w1 + tanh™ (3)] e 3t 8wy + wy + log /3] e 3%’

= = 14

Jdw' §[wh + w} + tanh™ (3)] e W [dw! S[wh +w| + log V3] e 3W” (314
(again using the identities 6[f(w)] = | f'(f™(0))|~'6[w — f™(0)] and tanh'™(z) = 2 log[(1+
2)/(1—2)]). Note that the posterior (3.14) is nonzero only along the line wy +w; = —log /3
in the parameter plane, and that along this line it is maximal for the choice wy = wy =
—% log v/3. This latter result simply follows upon calculating the minimum of w? along the
line wg + wy = —log /3 (see figure 3.5).

Before we observed any data our uncertainty about the parameters w = (wg,w;) was
described by the Gaussian prior p(w). The arrival of the data point (1,—%) induced a
collapse of this prior to an infinitely narrow distribution along the line wg + w1 = —logv/3
(a ‘slice’ of the two-dimensional Gaussian prior in the parameter plane). The most likely
parameter vector is wy = w; = —%log V3, but we note that in (3.14) we also have exact
quantitative information regarding the uncertainty in (wq,wn).

Note, finally, that (in contrast to the above two simple examples) we will generally have to
allow our data generating models to incorporate noise, in order to retain a non-zero probability
for having generated the (generally noisy) observed data.
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The Link Between Bayesian Learning and Traditional Learning. At first sight it appears
that Bayesian learning is quite remote from traditional gradient descent learning on an error
surface, possibly with regularization, as in

%w = Vo {Eifw] + AEy[w]} Eyjw] = Z £t — (& w)] (3.15)

in which £[u] represents a single-point error measure, the function E,[w] represents a regu-
larizer, and with w € RY. To reveal the link between the two viewpoints we must turn to
(3.11), which we write as

P
logp ! (w|D) = — log p(w Z log p(t"|&*, w) + log /d'w p(w H (tH|€H w')

Finding the most probable parameter vector wyp, given the data D, is thus equivalent to
minimizing log p~!(w|D), i.e. to minimizing the quantity S(w, D):

S(w, D) = —log p(w Z log p(t*|€*, w) (3.16)
pu=1

Let us work out this expression for the following simple (and natural) class of data-generating
model: ¢t = f(&w) + 2

§ — fl&w) ———— [f(&w)+2z

z

where f denotes some parametrized function (such as performed by the standard neural
networks, e.g. MLP, RBF, etc, which are traditionally used in gradient descent learning of
the type (3.15)) and where z is a zero-average random number, representing additive noise
in the data. If the noise variable is distributed according to P|[z], one has

p(t|&; w) = Pt — f(&w)] (3.17)

Now the function (3.16) (whose minimum gives the most probable parameters) reduces to

L s(w, D) ———Zlogp[t“ F(€"w)] + S log[1/p(w)]
p P p

Comparison with expression (3.15) reveals the following:

e Learning by finding the minimum on a training error surface, with regularizer, as in

(3.15), is equivalent to finding the most probable parameter vector wyp*.

e Choosing a specific single-point error measure £[u] in (3.15) means making the following
assumption on the data noise statistics: P[z] ~ e~¢[2l.

“This is also called the Maximum A-Posteriori Probability (MAP) procedure
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e Choosing a specific regularizer AE,,[w] in (3.15) means deciding on the following specific
prior distribution for the parameters w: p(w) = e PAFu(W],

Our previously ad-hoc choices of error measure and regularizer are now replaced by direct

interpretations, and hence guides for how to make appropriate choices. We also learn en

passant that the regularizer strength must scale with the number of examples as A ~ p~.
For example, learning by minimisation of the simplest (quadratic) training error measure

E[u] = u? and quadratic regularizer, viz.
d 1 & 5 1.
—w =V = > [tF— f(E"w)] + - dw (3.18)
dt P 2
is found to be fully equivalent to finding the most probable parameter vector wyp for the
model

_1 _
p(t|é;w) = 2_”] ? LB f(Ew)? p(w) = [2_”] —ow? A= 22 (31

5 a " Bp

For this choice the surface (3.16) simplifies to (modulo an irrelevant constant):

S(w, D) = %ﬂ i[t“ — f(&"w)] + %an (3.20)
pu=1

We need no longer guess the value of A, but can calculate it via A = 2a/fp from

1 8 1
o= ——- =
<wi2 )prior {t?)moise — <t>I210ise
Quantities such as a or 8 in (3.19), which are not themselves adjustable parameters in the
sense of w, but are more global parameters which reflect prior knowledge of the problem and
which will influence the leaning process, are called hyper-parameters.

p = number of data points

Approzimation of the Posterior Parameter Distribution. If we were to only calculate the
most probable parameter vector wyp we would gain only interpretations compared to old-
fashioned training error minimization. The power of the Bayesian techniques is that they also
provide information on the reliability of a learning outcome. This information is embodied
in the full posterior distribution p(w|D), which can be written in terms of (3.16) as
efs(waD)
D)= 21

p(wlD) = 2w (3.21)
In those cases where S(w, D) has only a single relevant local (and thus also global) minimum
wyp, the reliability of the learning outcome is mainly coded in the local curvature (i.e.
‘width’) of S(w, D) around wyp. We now expand S(w, D) in the vicinity of wyp:

1
S(w,D) = S(pr,D) + E(w—pr) . A('w—'pr) + (’)(|w—'pr|3) (3.22)
9%8
b= (3.23)
Ow;0w; Wi

(A is called the Hessian matrix of S at the point wyp; linear terms are absent in (3.22) due
to wyp being a minimum).
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Truncation of the expansion (3.22) after the quadratic term leads to a Gaussian approximation
of the posterior p(w|D):

S(w,D) — S(w,D) = S(wyp, D) + %(w—pr)-A(w—pr) (3.24)
p(w|D) = (w|D) = [%re—%w—ww)-mw—ww) (3.25)

Average, variance and co-variance matrix of the approximated posterior distribution p(w|D)
are given by the following identities (see appendix B) which involve the inverse of the Hessian
(3.23), with the notation (f(w)) = [dw f(w) p(w|D):

(w) = wwp (w?) — (wi)? = (A7) (wiws) — (wi)(w;) = (A7) (3.26)

3.3 Predictions with Error Bars: Real-Valued Functions

Learning and predicting the action of continuous real-valued functions from (noisy) data
examples is called regression. As we have seen in the previous section, a trained network
is within the Bayesian framework given by the posterior distribution p(w|D) for the system
parameters, as given by (3.11). Prediction then proceeds via formula (3.12), which can also
be written in terms of the function S(w, D) (3.16) as

¢—S(w,D)

p(IE D) = [dw (g winw|D)  pwlD) = oy (327

This formally defines the statistics of the output to be associated with input &.

Mean and Variance for Gaussian Output Noise and Gaussian Priors. We now work out
output average and variance of (3.27) for the simplest class of systems (3.19): a parametrized
function f(&; w) with additive zero-average Gaussian data noise, and with a Gaussian prior
parameter distribution p(w):

§ — flGw) ———— f(&w)+2

z

The moments (t) = [dt t p(t|¢, D) and (t?) = [dt t* p(t|¢, D) become (transform integration
variables by putting t = f(&;w) + z/v/p):

t)y = [%T]%/dtt /dw e 3Pl IEW) 0 D) (3.28)
— [aw [ e s w) + 2/VE ptw|D)

= [dw f(&w) p(wiD) (3.29)
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@2 = [%“] /dt £ /dw ¢~ 3B1=1EW) (41 D)

- /dw

_ %+ / dw f2(£;w) p(w|D) (3.30)

™7 [f(&w) + 2/ VBI? p(w|D)

The prediction variance 0? = (t?) — (t)? now follows as

o? = % + /d'w (& w) p(w|D) — [/dw f(&w 'w|D) (3.31)

variance due to uncertalnty about system parameters

The first term, 8!, represents the intrinsic uncertainty in the data generation model; the
remainder in (3.31) reflects our uncertainty about the right parameters after having learned
the data. The Bayesian predicted output t*(&) for the input €, and its associated error margin
At*(€), are now defined as (t) and o, respectively:®

/ dw f(&w) p(w|D) (3.32)
At*(€) = \/% + /dw 12(&w) p(w|D) — [/d'w f(&w 'w|D) (3.33)
For Gaussian output noise and priors the function S(w, D) is given by (3.20), hence
5 e*S(w D) Sl tu u 1 )

In (3.32) we now have proper predictions with error bars.

Simplification for Approximated Posterior Distribution. The above exact result (3.32,3.33)
can be simplified using the approximated posterior distribution p(w|D) of (3.25). Upon also

putting w = wyp + A 3z in the parameter integrations, we then find

/dz ;;/2 §,pr+A_%z) (3.34)
__z2 L
At(g) = + / Gy & we AT @) (3.35)

We now make one further and final approximation. If the width of the Gaussian approxima-
tion (3.25) is not too large, we may approximate/expand f(&; wnp+u) for small u:

1

[ (& wrtA™52) = (€ wup) +a(€)- A 24 (AH2) B(€)(A 3 2)+ (A F2]) (330)

SNote: t*(£€) need not be identical to f(&;wwmp), where wnp denotes the most probable parameters.
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where z;(§) = Of(&w)/0w;|wy, and Bij(€) = 62f(&w)/0w;0wj|w,,- Insertion into
(3.34,3.35) gives:

% H[ATEB(€) A7)z + O(|A7?))

= f(&wwp) + ETI[A_EB(E)A_?] +0(lA7%))

t*(&) = f(&wup) + Z/dz

ArE)? = %+f2(§;pr)—[t*(§)]2+(9(IA‘2l)

+ [z v (20 4 12+ fgwae)(a iz BE)A o)
= B—f(E,pr) Tr[A"7B(¢)A?] + 0(|A7?))

+Z{ (OUA~F2(€)]; + f (& wap)[A2B(€) A2} 6
= %—f@;pr).ﬁ[A%B(s)A—%]

z(€)- A" w(€) + f(&wyp) TI[A™2 B(€)A™3] + 0(|A7?))

~ (@) Aa() +0(47%)
(with the trace of a matrix C defined as usual: TrC = Y, Cy;). Hence we arrive at:
(€)= f(&wwr)+ ;THAFBEAT] +0(47) (3.37)
AFE) = V5 () A (E) +O(A7) (3.39)

For expressions (3.37,3.38) to be accurate® and useful (given our earlier assumptions of Gaus-
sian additive data noise and a Gaussian prior) we need p(w|D) to be (i) approximately Gaus-
sian, and (ii) sufficiently narrow (in view of (3.26), since this would guarantee that A™! can
indeed be treated as small).

Models for which Truncation is Ezact. In order to appreciate the nature of the approximations
one would arrive at by simply neglecting the O(|A~?|) terms in (3.37,3.38), it is instructive
to determine the conditions under which they would have been exact. Given Gaussian data
output noise and a Gaussian prior, approximation (3.25) would have been exact only if
S(w, D) (3.16) would depend quadratically on w, i.e. if f(&; w) would depend linearly on w:

N
2

p(tlgw) = || eI ) = [T et ) = Suidi(e)

!

(3.39)
(for some set of functions {¢;(£)}, as in e.g. RBF networks). Here also (3.36) is exact when
truncated after the term linear in 2, so B(¢) = 0 and the O(|A~2|) terms in (3.37,3.38) are

5Note: in many textbooks one finds that the second term in t*(£) is also neglected.
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absent. Furthermore, since S(w, D) is now truly Gaussian, we can calculate (§) and wyp
explicitly. We define ¢(&) = (¢1(€),...,dn(€)), and get

S(w,D) - z—ﬂZ[t“ w- p(E")) + Jow’
- = u2 Hep(EM) A _
2[3/;1[15 — fw - let(ﬁg + w w (3.40)
p
Aij = ab+ B> ¢i(€");(€M) (3.41)
p=1

Since the Hessian matrix A is positive define (provided a > 0), the surface S(w, D) is convex
and has a unique minimum, which is calculated simply from putting 0S(w, D)/0w; = 0 for
all i. This reveals Awyp = BY.0_, t'¢(€H), or

D
wyp =LA tHp(EH) (3.42)

pu=1

Similarly one finds z;(§) = ¢;(€). Insertion into (3.37,3.38) then gives the, for the present
models (3.39) fully exact, result

(&) = Bo(€ 1Ztﬂ¢ £") A€ =B +b(6) ATIE)  (343)

Estimation of Hyper-Parameters by Bootstrapping. The predictions and error margins in
(3.37,3.38) and (3.43) obviously depend on the choices made for the hyper-parameters «
and . We will discuss a proper procedure for this later. A simpler (and generally quicker)
method for estimating « and § is the following. Provided the number p if data is not too
small, it makes sense to require that the trained system will on average (i) predict correctly
the outputs for the data points used in training, and (ii) make errors on these training data
whose magnitude is of the order of the uncertainty it associates with its own predictions:

S - (E] =0 > {itr ¢ ~larEnPl=0  (3.49)
p=1 p=1

N =
’Blr—\

These two equations can be used to determine a and 3.

Ezample 1. Let us illustrate the above procedures using the example problem of (3.6), which
involves a parametrized function of the form (3.39), with a quadratic regularizer term %/\wQ.
To make the learning problem slightly more difficult we have now also distributed the data
inhomogeneously along the z-axis. The non-Bayesian solution to this simple problem (i.e.
minimize the training error plus generalizer), is easily calculated and found to be

M p
=Y ¢i(@)(C V)i D trei(z)  Cij =X+ D ila")gi(a”)  delz) = z* (3.45)

i7=0 1 p=1
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2.0 : : 2.0

1.0 ! . 1.0 !
00 05 10 00 05 10

Z Z

Figure 3.6: Bayesian prediction on the basis of an order-9 polynomial with assumed Gaussian
data noise (variance: 371) and a Gaussian prior (variance: a1 = (A\8)~!, A = 0.005). Thick
solid line: the actual function f(z) = § + sin(27z) to be learned. Crosses: nine noisy sample
points of this function. Solid line: predicted function ¢*(z) after learning. Dashed lines:
t*(z) + At*(z), where At*(x) denotes the Bayesian prediction uncertainty. Note: the actual
data variance corresponds to g = 12.

(without error bars). The Bayesian answer (3.43), upon assuming Gaussian output noise and
a Gaussian prior, would be exactly the same prediction #*(z) given in (3.45)", with A = /3,
but it would also equip this answer with the following error estimate:

M

At*(z) = ﬂ_%\l 1+ Z :CH']-(C*l)Z’j (3.46)
ij=0

The result is shown in figure 3.6 for A = a/f = 0.005, M = 9, and 8 € {10,20}. The

actual value of the variance in the data points (unknown to the network) in this example

corresponds to 8 = 12. As expected, we see again in the above graphs that it will be very

important to have a tool with which to calculate the hyper-parameters a and .

Ezample 2. Our second example is also a simple linear system as in (3.39), but now the
input vectors are two-dimensional, and we will focus on finding the hyper-parameters via
‘bootstrapping’:

N
2T 2

ptlgw)= || Te IO pw)= | Z] T dewt f(gw) —w-g (347

[0

with £, w € R2. In the notation of (3.39) we here have ¢;(¢) = &. The data points to be
learned from, four in number, are taken to be the following;:

€0 =((1,0.2), ER)=(01,7, EF)=(1,0,-7, EH =01~

For this choice of data the matrix A (3.41) becomes

ren (38} (38)+ 32+ 3+ )} -

"This is, of course, a direct consequence of our choice of a simple linear example.
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Its inversion is trivial, and hence the predictions and error bars (3.43) can be worked out
explicitly. Using A~™! = (a+28)~'T and Z _, t*€" = (1,1) one arrives at

B(&1 + &2)
a+ 26

B + &)

At (g) = 71 1+ =

(€)= (3.48)

In order to work out the ‘bootstrapping’ relations (3.44) for the present example we next
calculate the system’s internal output predictions for the four data points:

* ok . ﬂ * g% _ _18
G e A
AP(E) = (€)= A(E) = Av(e) = pH [T

Since also Z;‘;Zl t* = 0, the first condition of (3.44) now reduces to the trivial identity 0 = 0.
The second condition of (3.44), however, gives us

By 1 By, 3 B
a+2ﬁ] +[_Z+a+2ﬁ] +[_Z+a+2ﬁ]}

a+ 3B _1{[§_ B

7 = ]2_|_[1_
Bla+28) 4 a+28 4

at+38 1 {[3a—l—2ﬂ ]2}
Bla+28) 32 'a+28 a+2ﬂ

Working out this expression upon putting o = A8 leads to

242

R

B =24 FEwEIT (3.49)

We thus have only one free hyper-parameter left. Upon putting a — 0 (since p = 4 and we
have just two adjustable parameters there should in principle be little need for regularization
via a prior) gives, via (3.49), the prescription 5 = 24, and hence the parameter-free predictions

(2+& +&) (3.50)

] =
Wl
N
N

1
PO =SEtE) AR =
This result is indeed perfectly consistent with the statistics of the training data:

actual data (&) £ At*(§)

th: 3/4 1/2+1/4
2 1/4 1/2+1/4
3. —1/4 —1/24+1/4
tt:  —3/4 —1/24+1/4

The model is also seen to take the sensible decision to assign increasing error bars when
predictions are requested on input vectors which are further away from the origin (around
which the data are located).
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3.4 Predictions with Error Bars: Binary Classification

Predicting binary classifications on the basis of (noisy) data examples proceeds in a way
similar to regression. A trained network is in the Bayesian picture given by the posterior
distribution p(w|D) (3.11) for the system parameters, and prediction is again based on (3.12):

o) [ p( e w)
Jadw' p(w') IT)=; p(t#|€", w')

The only difference with regression is that, in view of the requirement to extract binary
outputs from continuous parametrized functions, the output noise can never be Gaussian.

p(tlé, D) = [dw p(tlg, wp(wlD)  p(wlD) (3.51)

¢ F(&;w) ~ threshold te{0,1}

function

Without output noise we would define the deterministic operation ¢(§) = 0[f(&; w)], with
the step function (i.e. €[z > 0] = 1, [z < 0] = 0). Adding noise implies allowing for
t = 0 even when f(&;w) > 0 and for ¢ = 1 even when f(&w) < 0. So p(1|¢, w) must be a
monotonically increasing function of f(&;w), such that p(1|€,w) — 0 when f(&;w) — —o0
and p(1/¢, w) — 1 when f(&; w) — 0o®. A common choice is:

p(11€,w) = 5 + 3 tanh[f (& w)]
1

(3.52)
p(0|€, w) = 5 — 3 tanh[f (& w)]

Decision Boundary and Measure of Uncertainty. Our objective is to classify new inputs &
into one of two categories. Hence learning from data is here equivalent to deciding on the
decision boundary in input space, and to quantify the uncertainty of this decision. If we
simply combine (3.51,3.52) we arrive at

1

p(1€,D) = 5+ 1(6,D)  p(0l¢, D) =

Jdw tanh{f(¢:w)] p(w) [, p(t|€", w)
16 D) = (@) TPy p (0 8, w)

We classify t*(&) = 1 if p(1|€, D) > p(0/¢, D), and t*(&) = 0 if p(1|€, D) < p(0/€, D). Hence
the decision boundary in &-space is defined by I(€, D) = 0. Our uncertainty is measured by

- %I(g,p) (3.53)

N =

(3.54)

p(1|§,D)  when *(£) = 0

At*(¢) = Prob[ incorrect classification | =
p(0[§, D) when t*(§) =1

8 An implicit requirement is that the selected parametrized function f(&;w) can actually approach +co by
boosting suitably the parameters w. This, however, can always be achieved. For example, if we initially have
a bounded function g(&;w), we can add an extra adjustable parameter wo and define f(x; w) = wog(&; w)
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These statements can all be compactified, using the definition (3.54), into
I(6,D)>0: t5(¢) =1
1§, D) <0: t*(§) =0

At(€) = 5 — 51§, D) (3.55)

N | —
N | =

At the decision boundary I(£, D) = 0 we have At*(§) = 3, i.e. a mis-classification probability
equivalent to random guessing, as it should.

Ezxample. Let us consider a simple task involving the binary classification of two-dimensional
vectors, with a linear parametrized function and a Gausian prior:

gweR  flGw=w-g  pw)= e (3.56)

and with the following two data points

D= {((05_1)71)7 ((05 1)70)} (357)
Working out the key function I(&, D) of (3.54) for this example gives

1(,D) = [dw tanh[w_-f]lj;%zw2 I12_, p(t"[¢", w)
Jdw 3% [[2_, p(tn|g#, w)

_ [dw tanh[w € +wobs] e 2¥W? [1 — tanh(w,))?
Jdw e~ 30W’ [1 — tanh(ws)]?
The decision boundary in input space is found to be given by the line & = 0, for if we
substitute this into (3.58) we indeed find I((¢1,0), D) = 0. Verification of the behaviour of
(3.58) for & — +oo further shows that I(¢,D) > 0 (and hence t*(§) = 1) for & < 0, and
I(¢,D) < 0 (and hence t*(€) = 0) for & > 0.

The more interesting (and less trivial) results concern the dependence of the error measure
At*(€) in (3.55) on €. In figure 3.7 (left panel) we show a contour plot of the mis-classification
probability At*(€) in the input plane, for « = 1. The model (3.56) assumes a linear separation
(a line through the origin, and data noise), the slope of the separating line is extracted from
the data. Clearly, the further away from the data points, the larger the possible impact of
an uncertainty in this slope, which is seen to be reflected in the contours of At*(€).

(3.58)

We continue with the example model (3.56), but now we add one more data point, namely
(€3,#%) = ((1,1),0) and study its effect on the decision boundary and the mis-classification

probability: .
D = {((07_1)51)5 ((Oa 1)50)5 ((17_)’0)} (3'59)

Working out I(£, D) of (3.54) now gives i
16, py = I tanble - €] e 3 Ly p(e]g, )
Jdw em2*W 5 p(tH]€", w)
B Jdw tanh[w; & +waéo] e~ zoW? [1-— tanh(wz)]2 [1 — tanh(w1+%w2)]
B Jdw e 30w’ [1 — tanh(w;)]? [1 - ta,nh(wl—l-%wz)]

(3.60)
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€2

&1 &

Figure 3.7: Bayesian binary classification of two-dimensional input vectors € = (£1,£2) on the
basis of a linear parametrized function with (non-Gaussian) data noise and a Gaussian prior
(variance: a~! = 1). Thick solid line: the decision boundary, where p(1|¢, D) = p(0|¢, D) = %
(equivalently: where At*(¢) = 1). Below this line all points are classified as ¢*(£) = 1, above
it as t*(&) = 0. Circles: data points &* (filled: t* = 1, open: t* = 0). Thin continuous curves:
contour lines of the error probability At*(€). Left panel: p = 2. Right panel: p =3 (i.e. one
further data point added to those of the left panel; see the main text for details).

The decision boundary is now no longer given by {2 = 0; the balance of evidence has changed.
In figure 3.7 (right panel) we show a contour plot of the mis-classification probability At*(&)
in the input plane for the new situation with the extra data point. Still our model assumes a
‘noisy’ linear separation, but compared to the previous p = 2 case we observe both a change
in the location of the decision boundary and an overall reduction of the mis-classification
probability. Note that, had the new data point been less compatible with the first two, one
could also have found an increase in the mis-classification probability.

3.5 Bayesian Model Selection

Bayesian Model Comparison. In the formalism described so far one chooses (beforehand)
a model assumed responsible for having generated the data, followed by an analysis of the
likelihood of parameters for this model. This picture can be generalized to include multiple
candidate models. Instead of working with the joint distribution p(D, w) of data and model
parameters, we must switch to the joint distribution p(D,w, H) to find data D, model H
and parameters w for model H?. The generalized picture then becomes

e Consider an ensemble of models H with associated parameter vectors w, characterized
by a probability distribution p(H,w) which evolves during learning.

9Note that different models will generally have parameter vectors w with different dimensionality
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e Assume that the data D were generated by a system of the form S(€) = f(&; w)+ noise.
Calculate the likelihood p(w, H|D) of models and their parameters, given the data.

e Express the desired objects p(w|D, H) in terms of p(D|w, H) (as before) and p(H|D)
in terms of p(D|H), where p(D|H) = [dw p(D|w, H)p(w|H).

Learning is a process during which the arrival of data reduces our uncertainty about the
‘right’ model H and its ‘right’ parameters w from the prior distributions p(H) and p(w|H)
to the posterior distributions p(H|D) and p(w|D, H). Note that

p(Dlw, H)p(w| )
P(wlD: H) = s o [ p(D !, 1) (3.61)

_ _ p(D|H)p(H)
p(H|D) = S (D[ )pUT") (3.62)

Generalized Bayesian learning, with multiple models, now works like this:

Stage 1: definitions
Define (i) the parametrized models H, assumed responsible for the data, (ii) the prior
distribution p(H) for these models, (iii) the prior distributions p(w|H) of their param-
eters, and (iv) the data D = {(¢},t1),..., (&P, 1P)}.

Stage 2: model translation
Convert the model definition into a probabilistic standard form: specify the likelihood
of finding output ¢ upon presentation of input &, given model H and parameters w:

model definition in standard form p(t|€,w, H) (3.63)

Stage 3: the posterior distribution
Calculate the data likelihood, given model H, p(D|w, H) = 2:1 p(t"|&*, w, H). From
this follow the desired posterior parameter and model distributions

p(w|D, o) = — PO iy p(t]€", w, H)

= Jaw p(w [H) [T, p(t"[€", w', 1) (3.64)

() fdw T plt]€", w, Hp(aw|H)
PUHID) = = "o [dw T, p(01E", w, H)p(aw| 1) (3:65)

Stage 4: prediction
The residual uncertainty in the choice of model H and parameters w generates the
uncertainty in predictions. Prediction of the output ¢ corresponding to input &, given
our observation of the data D and our choice of model set, takes the probabilistic form:

p(tlg. D) = S p(HID) [ dw p(tlg, w, H)p(w|D, H) (3.66)
H
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As an alternative to stage 4, which describes the final output statistics as a weighted average
over all models under consideration, one could also simply select the most probable model
H*, defined as p(H*|D) = maxyp(H|D). This boils down to finding

P
maxg {p(H)p(D|H)} = maxp {p(H) /dw I »(2"(g", w,H)p(le)} (3.67)
p=1
or, equivalently, can be done by comparing models pair-wise via the ratios

p(H|D) _ p(D|H) p(H)
p(H'\D)  p(D|H') p(H')

(3.68)

This can then be followed by the ordinary Bayesian parameter analysis for a single model
H*, as described in the previous sections.

Application to Hyper-parameter Selection. We note that the above reasoning can also be
applied to the hyper-parameter selection problem, since systems which differ in the choice of
hyper-parameters (rather than in architecture) can be regarded as different candidate models
in the sense above. For instance, to describe the family of systems (3.19)

1

Pl w,) = | T BIEWE ppaeg = [T
B «
with two hyper-parameters («, 8), we can simply make the replacement H — (a, ) in our
above formulae. The specific form of (3.69), for which e.g. p(t|€,w, @, ) is independent of
a, and p(w|a, B) is independent of 3, also generates several simplifications:

|2

e 20w’ (3.69)

e Consider an ensemble of models of the form (3.69), characterized by a probability
distribution p(c, 8, w) which evolves during learning.

e Assume that the data D were generated by a system of the form (3.69). Calculate the
likelihood p(w, a, B|D) of its parameters and hyper-parameters, given the data.

e Express the desired objects p(w|D,, ) in terms of p(D|w,a, (), and p(a, §|D) in
terms of p(D|a, B), where p(D]a, B) = [dw p(Dlw, B)p(wle).

Learning is a process during which the arrival of data reduces our uncertainty about the
‘right’ hyper-parameters (a, ) and the ‘right’ parameters w from the prior distributions
p(a, B) and p(w|a, B) to the posterior distributions p(a, §|D) and p(w|D, a, 8), according to

pw|D,a, ) = p(D|w, B)p(w|a) (3.70)

~ Jdw' )p(D|w’, B)p(w'|a)

__ pDlfpes)
P PID) = T 4zdp oDl Bp(ar, B (-1

Generalized Bayesian learning, including learning of hyper-parameters, now works like this :

Stage 1: definitions
Define (i) the function f(£;w) in the parametrized model (3.69), (ii) the prior distri-
bution p(a, B) for its hyper-parameters, and (iii) the data D = {(&1,t'),..., (€7,t")}.
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Stage 2: the posterior distribution
Calculate the data likelihood, given (o, ) and w: p(D|w,B) = Zzlp(t“\gﬂ,w,ﬂ).
From this follow the desired posterior distributions

eizawZ lﬂz tV’ f{ﬂ

D = 3.72
p(wl ;aaﬂ) fdwl e__aw/2_% 221 [t”‘—f(&“;wl)P ( )
@) [y ¢~ FOW 3 S E W)
N
pla, BID) = —VI (373)

_1 Iw2_l ! P e 'u;w 2
fda’dﬂ’ B ,Nﬂ’p fd'w a B [ f(§ )
Stage 3: prediction
Prediction of the output ¢ corresponding to a new input &, given our observation of the
data D and our choice of model family (3.69) takes the probabilistic form:

plile. ) = [ dads pla,5|D) l(% NH] / dw p(w|D, a, ) ¢~ 3w HBI-IEw)P
(3.74)

Again the learning problem has in principle been reduced to calculating integrals. However,
one will now have to think about how to choose the hyper-parameter prior p(«, 3).

Model Selection — Occam’s Razor. The Bayesian model comparison procedure, followed by
model selection according to (3.67) or (3.68), will automatically lead to the selection of the
simplest possible model H* which can account for the data D (modulo prejudices embodied
in the prior p(H)). This desirable action is referred to as implementing ‘Occam’s Razor’!?
To see how it comes about we return to (3.68), and remove the effect of prejudice by putting
p(H) = p(H') for all models {H, H'} under consideration. This gives

p(H|D) _ p(D|H)
p(H'D) ~ p(DI)

(3.75)

To simplify the argument we will take the collection of possible data sets D to be discrete
and countable. Let us compare the following three models:

model H; :  p(D|H;) =0
model Hy :  p(D|Hs) >0, p(D'|Hs) =0 forall D'# D
model Hy :  p(D|H3) >0, p(D'|Hs) >0 for some D'# D

Model 1 cannot explain the data, D. Both model 2 and model 3 can explain these data, but 3
is more complex than 2 because it can explain (by a suitable choice of parameters) a greater
variety of possible data (not just D). Hence model 2 is the simplest model which can account
for data D. Insertion into (3.75) reveals

p(H1|D) _ p(H:i|D) _ p(Ha|D) _ p(D|Hy)
p(H2|D)  p(H3|D) p(H3|D)  p(D|Hj)

(3.76)

10 After a monk, William of Occam, who is claimed to have first proposed the general philosophical principle
that one should always select the simplest possible explanation for an observed phenomenon.
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One now always has Y p(D'|H) =1 (marginal distributions are normalized, for any model
H). From this it follows for the above examples that p(D|Hz) = 1 — Y p.pp(D'|Hz) = 1
and p(D|H3) = 1—3Y p,pp(D'|H3) < 1. Hence we find in (3.76) that p(Hz|D) > p(H3|D) >
p(H1|D), and that the Bayesian procedure instructs us to select model 2.

Ezample. We close with a simple example, to illustrate the action of ‘Occam’s Razor’. The
task is to learn a binary classification of the inputs ¢ € {0,1} to the targets ¢t € {0,1}. There
are four such classifications possible, i.e. four possible data sets with p = 2:

Da= {(Oa 1)3 (130)} Dp = {(0’0)’ (1’0)} D¢ = {(07 1)7 (17 1)} Dp = {(Oa O)a (1a 1)}

Given one of these data sets, we have to choose between two deterministic parametrized
candidate models Hy and Ho, without initial prejudice, i.e. p(Hi) = p(Ha) = 3:

Hy: o #(€) = 0lw] (3.77)
Hy:  #(£) = Olwy + wyl] (3.78)

with w = (wi,we) € N2 and 0[z] denoting the step function. As a prior parameter dis-
tribution we take p(w) = (2r)~le"2™’. Clearly model 2 is more complex than 1. We
will select our model by working out the ratio (3.68), this requires calculating p(D|H;) =

Jdw: p(w1)p(Dlwy, H1) and p(D|Hz) = [dw p(w)p(D|w, Ha).

First we focus on model H;. Here we have t(¢) = 1 for all £ if wy; > 0, and ¢(§) = 0 for
all ¢ if w; < 0. Hence we simply find

p(Dalwi, Hi) = p(Dplwr, H1) =0,  p(Dplwi, H1) = 0[-w1],  p(Dclwi, H1) = 0[w]
This gives
p(DalH1) =0
p(Dp|Hy) = [0 dwy p(w) = 3 (3.79)
p(Do|Hy) = [§Pdwr p(wi) = 5 '
p(DalH1) =0

Next we turn to the two-parameter model Hy. Here we have t(0) = 0[w] and (1) =
O[wy +ws9]. Hence we find

p(Dalw, Hy) = 6[w:] 6] (w1 +ws)] p(Dplw, Hy) = 0[—un] 0] (w1 +ws)]

p(De|w, Ha) = 0[w1] 0]w +ws] p(Dpl|w, He) = 0]—w1] O[w; +ws]

This leads to, with the short-hand y = (27)~! fooodwle_%w% S dws e"2%% > () and upon
using the symmetries of the prior p(w):

p(Dalt) = [ T [ :“dwz plw) = x (3.80)

0 —w1 oo w1 1
p(Dp|Hy) — / duwr / dws plw) = / dwr [ dws pw) = = —x  (3.81)
o o 0 2

-0
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o0 o 1

p(Do|Hy) = / dw [ dws pw) = = —x (3.82)
0 —w1 2
0 0 [e’s) e’}

p(Dp|Hy) = / dwn [ dws p(w) = / duwy / dws p(w) = X (3.83)
—00 —w1 0 w1

Finally we combine the results (3.79) and (3.80-3.83) into the following picture:

p(D|H1) 1 1 p(D|H2)
2
3-X 3—X
X X
Dy, D D¢g Dp Dy, Dy D¢ Dp

It follows from (3.68) that

p(H1|Da)  p(Hi|Dp)
p(H2|Da)  p(Ha|Dp)

p(Hi|Dp) _ p(Hi|Dg) _ 1/2

= = >1
p(H2|Dp) p(H2|Dc) 1/2—x

=0,

We conclude that when observing data D 4 or Dp we must select model Hy (which would be
the only candidate to explain these data), but that when observing data Dp or D¢ we must
select model H; (both models can explain these data, but Hi wins simply because it is the
simpler explanation).

3.6 Practicalities: Measuring Curvature

When learning by gradient descent on the surface S(w, D) (3.16), and using simple expres-
sions such as (3.38) to assign error bars to neural network predictions, one needs to know the
curvature matrix A as given in (3.23) at the minimum wyp of S(w, D). In principle this
matrix can be calculated directly from the model definitions, but for many-parameter and/or
multi-layer networks this is difficult. Here we discuss an alternative, based on the idea that
the degree of curvature around the minimum will have a direct effect on the gradient descent
dynamics at the minimum when such dynamics is equipped with additive noise. As a result
the curvature matrix can be extracted from a measurement of the fluctuations.
Let us assume we have arrived by gradient descent at the minimum wyp of S(w, D). We
now replace the (discretized) gradient descent dynamics by the following noisy version:
wi(t + (5) = wi(t) — (5% + \/2_5 ’I]i(t) (384)
I3
where the 7;(t) are independently distributed zero-average Gaussian random variables, with
(n?(t)) = 1, and with 0 < § <« 1. The parameter dynamics is now a stochastic process. Let
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us define averages and covariances of this process as

wi(t) = (wi(?)) Cij(t) = ([wi(t) — wi(t)][w; () —w; (2)]) (3.85)

Their dynamics follow directly from (3.84):

wi(t+9) = wi(t)—96 <%w;m>
Oyt +0) = {wilt+ B)wy(t-+8)) —i(t -+ 8)y ¢ +9)
B <[wi(t) ﬂs'%] l"”ﬂ'(t)_5-%]>+25-6ij—wi(t+6)wj(t+5)
! J
= Cij(t)+5{25ij— <wi(t)%)+m(t)<%>
J j

s L)y 4y PSP 4 o)

Since § < 1, the system can only make infinitesimal excursions w = wyp + O(V4) away
from the minimum wyp, hence we may approximate S(w,D) safely by the quadratic ap-
proximation (3.22)

S(w,D) = S(wwmp, D) + %(w—pr) - A(w—wyp) + O(6%/?)

This implies that
ZAZ] —wMP, J) +O(53/2)

Thus:

w(t+6) = w(t) — 8§ A@—wwp) + O(6%?)

Cij(t+0) = Cy(t) +4 {2% — (wi(t) > Ajp(wi(t) —wap k) + Wi (t) > Ajp (Wk—wnp k)
k k

) A (wi(t) —wnp ) + W;(t) D A (Wi, _wMP,k)} +0O(6%?)
k P

We now arrive at the simple result (using the symmetry of both A and C):
C(t+6)=C(t)+35[21-CA— AC] + O(6%?) (3.86)

One can show that, provided § < 1 (more specifically: provided § < 2/a; for all eigenvalues
a; of the matrix A), the leading order of (3.86) will evolve towards the stationary state
C = A ! + 0(/5), and the vector @ will evolve towards wyp. Hence the desired curvature
matrix A can be measured in equilibrium, by choosing § sufficiently small, according to

0—0: A=C! Cij = tl—lglo(([wz — wmp,i|[wj — wwmp,j]) (3.87)



Chapter 4

Gaussian Processes

We return to the general Bayesian formalism for a single model, characterized by the likeli-
hood p(t|€,w) to find output ¢, given input € and parameters w. The data are, as always,
given by p pairs of example inputs &€” with corresponding (possibly noisy) outputs t#:

D = {(glatl)a teey (&-p,tp)}

For reasons to become clear below we will now write the data set D in expressions such as
p(t|€, D) = [dw p(t|€, w)p(w|D) as the full specification of the constituent pairs (&¥,t#):

p(HE, €L, ... &P th, . P) = /dw p(t1€, w)p(wlEL, ..., &P ... 1) (4.1)
Multiplication of this expression by p(t!, ..., tP|¢}, ... &P) gives:
p(t, e 7€, €Y. EP) = /dw p(t€, wip(w, 1L, . .., 1P|EL, ..., €7)
= [dw pw)p(tlg wp(t',.... IEL .. €7 w)

Upon renaming the target input and output as (£€°,¢%) = (&,t), we arrive at the simple and
transparent expression

P, 1€ %) = [dw p(w) [] pltg",w) (1.2
n=0

We now see that the desired prediction output distribution (4.1) can be simply obtained as
the fraction . .

p(t ""7tp|£ 7"'7£p)
p(th,... tPeh, ... €P)

POJED, ... €08 . 1P) = (4.3)

or, written slightly differently:
10t .., tP|e0, .. eP
p(t0|§0,...,§p,t1,...,tp): p( b ) |£ 70 7£)
fdt p(t7t17"'7tp|£ ""7£p)
Gaussian processes are information processing systems of the above form p(t|€, w) such that

the key object (4.2) is a (multivariate) Gaussian distribution of {¢°,...,#"}, with moments
generally depending on {£',...,£P} in a non-trivial and model-specific way".

'Note: in literature one can sometimes find slightly more broad definitions, where upon adding non-
Gaussian output noise to Gaussian-distributed targets one would still speak about a Gaussian process.

61
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4.1 Examples of Networks Reducing to Gaussian Processes

In order to show that Gaussian processes are not just found upon choosing far-fetched and/or
trivial models, we will first discuss two examples of systems reducing to Gaussian processes.
Both are of the form
1
,6 2 _1gp_ . 2 o
i.e. composed of a deterministic parametrized function f(w;&), with a Gaussian prior and
Gaussian output noise.

N
2

e zow’ (4.4)

£ — fl&w) ———— f(&w)+2

Radial Basis Function Networks. RBF systems with Gaussian output noise and priors, which
are members of the class (4.4), are described by a deterministic part of the form f(w;€) =
w - ¢(€), with w € RV and with N functions ¢;(€) to be specified’. We now work out the
joint output distribution (4.2) for data and target. With a modest amount of foresight we
define » )

Ajj = adij + B hi(€")h;(€") bi =B th'ei(€") (4.5)

p=0 p=0

Insertion of (4.4) into (4.2), with f(&;w) = w- ¢(€), and subsequent usage of the short-hands
(4.5) and the Gaussian integrals in appendix B, gives

- N Pt
p(t0,.. tP|€0, ... £P) = ; 2 2& P /dw e—%a’uﬂ_%/jEizo[tﬂ_w.¢(£ﬂ)]2
L& ] L& |
N oopapHl

_ 2_ 2 2& 2 e—aﬁzizo[t“]Q /dw e_%wAw+wb
L& ] L27 ]
I A =

_ [@]T (B8] e @MY ipati

| 27 | % \/m
_%r(j%ﬁﬁ_owm%ﬂ?[ P GE AT PE")
2m)P+1det
] 1

aVprtt 1P AT v [ 0E AT G|
(2r)PtldetA

-

(4.6)

The output distribution (4.6) is clearly a (zero-average) Gaussian one, characterized fully by
the covariance matrix C[¢°, ..., £P] which is defined as:

CW[EO,...,gp]:/dto...dt” tht” p(t,...,tP|€0%, ..., €P)

2Note: the model family (4.4) with f(&;w) = w - ¢(£) is in fact more general than just the set of all RBF
networks, since we need not put RBF-type restrictions on the form of the functions ¢;(£).
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According to (4.6) we have (see also appendix B):
(CNwlE’,... & = Bou — B2 o(€") - A 9(¢")

Inversion of the above matrix gives

Cule®s €7 = 50+ B(E) - (E") (@7

This can be verified by insertion:
B3 Cuole- 1[0 —6(67)- A7 9(61] = X 1o+ 2 0(e)-0(67)| [3—B9(€")- A 01¢")]
p p

2
P e 0e) ~ 2 S Ip(e")- oo (E") A $(€")

[0
p

= O — g D di(€)g;(€H) [Q(Al)ij — 8 +BD. D ¢i(£p)¢k(€p)(Al)kj]
i k7

= 5uu - IB¢(£M)A_1¢(£V) +

= 5uu - g z ¢’L(£M)¢](§“) la(A_l)ij - 61] + Z[Aik_aéik](A_l)kj] = (Suu
i k
This confirms (4.7).

Linear-Output Two-Layer Perceptrons. Let us next turn a less trivial model example, still of
the form (4.4), which is also found to reduce to a Gaussian process in a specific limit. We
take a two-layer network with sigmoidal transfer functions g(u) in the hidden layer (of size
L) and a linear output neuron, i.e. f(&w,J) =% w; g(Zj-V:l Jii&;):

1
e e (49
AL 2 ay1® 1 L N2

The width of the prior for the L hidden-to-output weights {w;} has been re-scaled by a factor
1/+/L, in order to find a well-defined limit . — oo (corresponding to an infinitely large hidden
layer) later. This model has three hyper-parameters: ay,, @y and . Insertion of the above
definitions into (4.2) is now found to give

P

/dde e —sowlW?—3Zay Zz 1 Z =1 m 2ﬂZ ZiL=1 wig(z;\f:l ‘]”5;)]2

It will be advantageous to introduce p 4+ 1 additional integrals to get rid of the squares in the
exponent, via the identity

1 vy 1 p
eTFLinoE = (2m) " [k e LR YL
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with k = (ko,...,kp). This allows us to write

0 0 awL]? [y p 5 LK i /BY " kut
p(t,...,tp|£,...,£p) = ? % ?)2 /dke 2 u=0 K"K

/dJ e aJ Ez 1 Z] 1 w {/dw, e_%awsz?_iwi\/EEZ=0 k”g(zj\;l Jijgf)]

L NL
2] 5] ] o f e
T ™
% H de w—l—;\/; - Okug(zj L Jis € m[zﬁ Ok“g(z _ i€ ]
NL

ajlz a 1K’ 4i/BY P kut
— - dk 2 =0 "rtr
[%] [(271‘ 2] / ¢ ’

/dJ e 2aJ Ez IZ] 1 ZJ 67% ZV=0k‘u'ku I:% ZlL 19(2 szélu) (Zj\le J@]&é’)]

We re-organize the weights {J;; } into L vectors v; of dimension N each, v; = (Ji1, Jiz, ..., Jin):
% I5} % 12, . P
p(t°,... 1P|£°%,... . &7) = [ﬂ] [—] /dk =2k VB okt
27 (2m)?

L v
« / 11 [dvi e—%aJ’U?] o Tom Lo kb [£ 200, 9(vi-€)g(v:-€")]

=1

If now we take the limit L — oo it is clear that, due to the fact that all Gaussian random
vectors v; are distributed identically but also independently, we may use the general identity

lim —ZF v;) = (F(v))p = /dv p(v)F(v

L—oo L

where p(v) denotes the distribution of an individual v;, i.e. p(v) = (aJ/27r)N/267%C”'02.

Hence, after a further simplifying transformation k — k/+/8 we find

o o kutu =t 00 g kuky [Fount L (9(0-6")9(0-€")w]

Lli_)II;op(tO,. .. ,tp|§07- .. ’g-p) = /( )p+1

e 320, (CIE - E D
= (4.10)
J@m)ptidetCle’, .., €7)

Again we find a Gaussian distribution (4.10), here characterized by the covariance matrix

1 1 d 1.2 - EH . &Y
Cul€°,... € = Eéuﬁ@/ﬁ ¢ 5% g(z\/a%) g(z\/of_J) (4.11)

Thus, also two-layer feed-forward networks with sigmoidal transfer functions in the hidden
layer and a linear output neuron, and suitably scaled Gaussian priors, are found to become
Gaussian processes in the limit of an infinitely large hidden layer.
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4.2 Learning and Prediction with Gaussian Processes

Definitions and Rationale. The association of outputs ¢(§) € R to inputs & € RV is said

to be governed by a Gaussian process if for any finite selection of p inputs {¢!,...,£P} the
conditional joint output distribution p(t!,..., 7|, ..., €P) is Gaussian:
o it-alg. &")-CTE . & t-alg,. .E)
p(tl""’tp‘glﬂ"'7€p) = (4'12)
\/(27r)1’ detCle?, ..., €P]
with the short-hands t = (t!,...,#?), a[...] = (a1]...],-..,ap][...]), and with
alEl... e = /dt ot PlEL. .. €)1, (4.13)

Cnl€lo &) = [dt plt. I &) (lumayl€’ . D (b—alEh ... &) (114)
We note:

e Gaussian processes are fully characterized by the functions in (4.13,4.14). The de-
tailed dependence of these averages a,|...] and covariances C),,[...] on the arguments
{€, ..., €P} reflects both structural properties and prior parameter assumptions of the
underlying models (see e.g. the explicit derivations in the previous section).

e The rationale behind using Gaussian processes is: (i) it allows us to move away from
model specific details (e.g. network architecture and weights) and deal with a reasonably
large class of systems in one go, and (ii) we will be able to derive surprisingly simple
(and hence CPU efficient) expressions for predicted outputs and associated error bars.

Our formulae hold (by definition) for any value of p. To keep notation simple, it will turn out
helpful to refer to the new input & and its output ¢ to be predicted (which in the previous
section we called ¢° and t°) as €P*! and tP*!. With the same objective, and since the
{€',...,€P} occur only as arguments of C[...] and a...], we will also abbreviate

CIE,....e7 =Clp] (pxpmatrix),  algh...,&7] =alp] (p— dim vector)
Prediction means finding (4.3), which upon inserting (4.12) becomes (in our new notation):

p(t17 e 7tp+1|§1’ .- 7§p+1)
p(t,... ,tP|§1, ., EP)
t'—aq[p+1] t'—aq[p+1] t'—aq [p] t'—aq [p]
: C ™ p+1) : + : C™'1p] :
tPt1—a,[p+1] tPt—a,[p+1] tP—ap[p] tP—ay[p]

p(tPTEL .. €T L) =

o=
rol=

V2 detClp+1]/detClp]
(4.15)



66 CHAPTER 4. GAUSSIAN PROCESSES

Ezxplicit Expressions for Predictions and Error Bars. The output probability distribution
(4.15) for P11, given the new input €' and the data D = {(¢',¢!),..., (€P,#P)}, must also
be Gaussian, since it is a marginal distribution of a multivariate Gaussian distribution. This
property allows us to concentrate in the exponent of (4.15) only on terms involving #**!; the
others simply provide an appropriate data-dependent normalization constant:

p(tPTL€PTL D) ~ e 3" =ap1 P12 C 7 ot Uyt pri— (P apa[p 1) 0 O ol (-0 [p+1])

or, equivalently, )
P

—1 —
—1C7 pHlpta,pr [P —appa [p+1]4+ 2= T
p(tp+1‘£p+1,D) ~ e [p+1lp41,p+1

C ™ o+l 1, (Y—av[p+1])

We can now simply read off average and variance of the predicted output. Upon restoring
our original notation the resulting prediction and its associated uncertainty read:

b1 CTEL - & (U —au[E - €7, E))

t*(g) =a +1[£1’ s ,gp’ E] - L _ (416)
P C 1[515"' 7§pa£]p+1,p+1
« 1
At (£) = 1 (4.17)
\/Cil[g PR ’gp, £]p+1,p+1
A mnon-zero choice for the a,[¢),...,€P1!] is equivalent to adding a fixed non-parametrized

function of the joint inputs to the joint outputs of the underlying model. This is allowed
mathematically, but requires rather specific knowledge of the function underlying the observed
data, which is usually lacking. The two examples of Gaussian processes discussed earlier,
RBF-type systems and two-layer feedforward networks with an infinitely large hidden layer,
both had a,[¢',...,&7"] = 0 for all 4. In the latter cases one finds (4.16) being simplified to

t*(g) _ 5:1 C_l[Ela .. ’gp, £]p+1,utl/ (418)

C e, .. & Elpripi

Given a data set D = {(¢',t!),...,(€P,#")} and a choice of model, i.e. of the functions
Cuwll ..., €P1") and a[€], we can now simply insert a novel input ¢ into equations (4.16,4.17).
More specifically, there is no (iterative) learning process; the computational effort is reduced
to the inversion of a symmetric and positive definite (p+1) x (p+1) matrix.

Simplifications for On-Line Learning. We will next establish a relation between the matrices
C~![p +1] and C~'[p] (in our short-hand notation). In those cases where the data (£, t*)
arrive sequentially, it will reduce drastically the computational cost generated by the need
to invert C[p +1]. The idea is to exploit the property that, by definition, all entries of the
covariance matrix C|[p] also occur as the entries in the top-left p x p corner of C[p +1]:

k1

C[P] ko
Clp+1] = . ky = Cupsilp +1]

ki ke v kpyn
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We write the inverse C~1[p +1] to be calculated as

(1

D u9

C'p+1] = .
ul U2 TR up+1

67

with as yet unknown numbers {u,} and an as yet unknown (symmetric) p X p matrix D.
Working out the matrix condition T = C~![p +1].C[p +1] leads us to the expression

(DCp))11 + uik: e (DC)1p + urky Zﬂzl D1k + uikpir
(DCp))21 + ugk: e (DC)gp + u2ky 2221 Doy k) + ugkpiq
1= : :
(DCIpl)p1 + upk: e (DC)pp + upkyp Y1 Dpuk + upkp+1
Eﬁ:l Curptiy +upprky - Zﬁ:l Cputiy + Up1kyp Eu 1 upky

Left and right-hand side are identical if and only if the following hold:

(DCP)uw +uuky, =6y  forall p,v=1,...,p

P P
> Duky+uukpi1 =0 > Culpluy +upprky =0  forall p=1,...

P
v=1 v=1
These equations are easily solved, giving
_ [ p<p(C D wokin] [ p<p(C ™ [P])wiks]
Dy = (C'p)w pop — 4.19
" (C P + Fort— Sryey FA(C P aoks (4.19)
_ > p<p(C [p])up < 420
R SPp S N (e P WL 20
1
4.21
e SV 3 (e W 20
These results allow us, firstly, to replace expressions (4.16,4.17) by
t*(g) = ap+1[§1a e 7£p7 S] + Z Cp+1,/.t[£1’ .. aﬁpa 5]0_1[615 .. a&p]ul/(tu_a’l/[gla .. 7§p7£])
v<
e (4.22)
At*(€) =
\/Cp+1,p+1[§la---a€pa£] — Y Corrule . € E(CTE, . €D CuprilEl .-, €7, €]
V<
o (4.23)

More importantly, however (since the new equations (4.22,4.23) are not simpler than the
previous (4.16,4.17)), the identities (4.19,4.20,4.21) ensure that the inverse of the p x p matrix
C[¢!, ..., €P] can be calculated iteratively from the inverse of the (p—1) x (p—1) matrix

C[gl, ... ,§p71], i.e. upon adding the data points to our data set one by one.
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4.3 The Choice of Covariance Matrix

Structure of Covariance Matrices. The form chosen for the covariance matrix, equivalent to
the selection of data-generating model assumed responsible for the data, is crucial for the type
of predictions that will be made by Gaussian processes. The two neural network examples
of section 4.1, which reduced to Gaussian processes, were both found to be characterized
not only by a, [€1,...,€P] = 0, but also by specific simple forms of the covariance matrices
CulEh, ..., €P], viz. (4.7) and (4.11):

RBF:  Cule.. &= gou+ Z¢, )6i(€") (4.24)

. L el L1 [ d e zogh g
MLP:  Culeh 8= g+ o [ e e ) o) )

(in both cases & € RY; the RBF-type system has L basis functions, the MLP has an infinitely
large hidden layer). Both are of the following general form:

= L+ ClE € (426)

It is in fact easy to show that all data-generating models of the general form (3.19) (not
necessarily with Gaussian priors), i.e.

CHV[£17 b 7£p]

p(t|&; w) = e3P~/ (&) (4.27)

have the property that, if they reduce to a Gaussian process, then this process must have a
covariance matrix of the form (4.26), and in addition a,[¢', ..., €P] = a[€*] for some function
al€] (note: the two examples of (4.7) and (4.11) both had a[¢] = 0). The joint output
distribution for the models (4.27) is

p(th, ... €. e7) = [2”] /dwp LBYr_ [t F(E w))?

Integration over the outputs then immediately leads to
al's . &) = a(") = [dw plw)(g'iw) (4.28)
Coulels- 18] = 5o+ [dw pw) F(€"50) ~al€/ (€' 3w)=al€)] (420

This is indeed of the form (4.26), as claimed.

Ezamples — Homogeneous Covariance Matrices. Let us now work out further the covari-
ance matrix (4.7) of RBF networks, upon choosing Gaussian basis functions of width o, i.e.
k(&) = (2%02)_1\’/26*%[5*”}2/“2. It corresponds to the following function C[¢,¢'], in the
representation (4.26):

L
Cle ¢ = — 1§ o HET+E -r0))/o?

2\N
a(2ro?)N =
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Figure 4.1: Examples of data surfaces, with &,&’ € [0,1]?, generated by Gaussian processes
with homogeneous covariance matrices and a[¢] = 0. Left: C[€,¢'] = Koe_%‘g_£ */o”  with
Ky =10 and o = 0.1. Right: C[¢,¢'] = Koe_|£_£ /7 with Ky = 10 and o = 0.1.

We now imagine having a very large number L — oo of basis functions, distributed homoge-
neously over RY, and we re-scale our hyper-parameter « accordingly as o = &/Ar. Here Ap
denotes a small volume element in RY such that limy,_,oo Y5 Arf[rx] = [dr f[r] for any
sufficiently smooth function f. We now find

; no— é/ ~3[(€—7)2+(& -7)?)/0?
Lll_)n;OC[ﬁ,E] ~ a(2ne?)N dr e

— 55 1E (€)™ , — 2= (€-¢)?
_ e /dr o [P?+7-(§+8))/0% _ e (4.30)
&(2%02)]\7 a(20y/m)N

Working out the covariance matrix of example (4.11) for arbitrary g[u] is hard. For data

vectors € close to the origin (alternatively: for large values of the hyper-parameter «y),
however, we may expand typical choices such as g[u] = tanh[u] as g[u] = u + O(u?) and find

1 d 1,2 , '
Clt.8) = o [wm o (e (=€) +0lelET i)
= S8 L ogele e (4.31)

Qo Qg

(truncation after the first term is obviously exact only for glu] = u).

Homogeneous covariance matrices are the subclass of (4.26) where the function C[€, ¢’]
is of the form C[¢,¢'] = C[|€ — ¢|] (like, for instance, the RBF expression (4.30), but unlike
the MLP expression (4.31)). Here the output statistics are fully isotropic in input space
(i.e. invariant under arbitrary translations and/or rotations of both ¢ and ¢'). Within this
subclass the only remaining freedom we have regarding covariances is the choice of a scalar
function Clu| (with u > 0); however, still much variation is found to be possible in the types
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of data that can be generated and predicted. Figure 4.1 shows examples of data surfaces, with
€,¢' € [0,1)2, generated by Gaussian processes with the following homogeneous covariance
matrices:

‘smooth’ functions : Clg, ¢ = ng_%‘5_51|2/"2 (4.32)
‘rough’ functions : Cl¢, ¢ = Koe_|£_61|/” (4.33)

The qualitative difference between the two can be appreciated upon realizing that smoothness
is defined in terms of the behaviour of the kernels C[€, ¢'] for &' — €. Let is choose &' — € = ¢,
with |e| < 1. For the above two examples one finds, respectively:
2
—1—1202_ € 4 ——’0’_ |€| 2

e—316-€%/ = 1— o+ 0(el') 1€/ —1- =4 0(eP)
Hence the second kernel indeed describes much faster de-correlation of outputs for small
differences in the inputs. In a similar fashion one could define a more general family of
covariance matrices, C[¢,€'] = Koe*E*g /97 "in which the degree of smoothness is controlled
monotonically by a parameter v > 0.



Chapter 5

Support Vector Machines for
Binary Classification

Support vector machines carry out binary classifications. They involve a preprocessing stage
where non-linearly separable data are converted (hopefully) into linearly separable ones.
First, however, we will have to return to the properties of linearly separable problems (for
reasons which will become clear); the pre-processing will be introduced later.

5.1 Optimal Separating Plane for Linearly Separable Tasks

Linear Separations & Stability Parameters. Consider a linearly separable binary classification
task, with a set of data of the usual form D = {(¢},¢),..., (€7,t?)}, where ¢ € RV and
t* € {—1,1}. If this problem is linearly separable, we know that

(Fw e RN Fwo €R) : t* = sgn[w - € +wy] for all (¢#,t#) € D (5.1)

We even have algorithms which are guaranteed to converge towards a solution (w,wp) (a
‘separating plane’) of the type (5.1), e.g. the so-called perceptron or AdaTron rules. However,
it will be clear that in general there will exist an infinite number of separating planes (w, wp)
that will meet the requirements (5.1). See e.g. figure 5.1 (left panel) for N = 2; here a
separating plane is any line separating all points &€* with t* = 1 (marked +) from those with
t* = —1 (marked X).

A natural question to ask is whether one can quantify the quality of the various solutions
of (5.1). This can be done on the basis of generalization performance: a good plane (w,wy) is
one which keeps a safe distance (if possible) from the data points, so that detrimental effects
of noise (which might change the locations of these points slightly) are minimal. Hence we
wish to measure not only whether points are correctly classified by a candidate separating
plane, but also the distance of such a plane to the data points which it aims to separate.
Both are given by the so-called stability parameters v, (there is one for every data point):

Yu(w, wo) = t#(w - & + wo)/|w| (5.2)
They have the properties:

e The plane (w,wy) correctly classifies point £€* if and only if: ~,(w,wy) >0
e The distance of the plane (w,wp) to point &* is: |y (w, wo)|

71
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Figure 5.1: Left: illustration of linearly separable tasks for N = 2. A separating plane is any
line w - € +wy = 0 separating all points €* with t* = 1 (marked +) from those with t* = —1
(marked x). Note that there will generally be infinitely many such planes. Right: measuring
separation quality on the basis of the distance of data points £” from the separating plane
(as calculated via projection); see the main text.

The first property is immediately obvious from (5.1). Demonstrating the second property
requires only simple high-school geometry. We first construct a parametrization of the line
in RV which goes through & and is orthogonal to our plane (see figure 5.1, right panel):
&(p) = &' + pw (p € N). Insertion into the plane’s equation w - & + wy = 0 gives the solution
p=—(w- &+ wy)/w?. Hence the projection P¢* of £ onto the plane (w,wy) is given by

w - EH + wy
w2

Pg“zg“—w[

And thus the desired distance |€* — P£&H| indeed equals (using |t#| = 1 for all p):

g — Per| = | [2EE10)

= |’7N(w7 ’U)())|

As claimed. As a consequence of the properties of the stability parameters we may now
sharpen our requirements of a separating plane:

all data points separated correctly &
. . > A for all
all data points at distance > A from the plane = Tulw,wo) 2 A >0 forall p

(5.3)

There will be an upper limit to the values of the distance A > 0 which are compatible
with correct separation (and it is a non-trivial task to determine this limit), since clearly

1

A<t A= min g -g|  Lo={pe{l,...p}#'=+1}
2 pel, vel_

However, if we choose a value of A such that a solution (w,wg) of (5.3) exists, then there is

an algorithm which is guaranteed to achieve the objective (a straightforward generalization

of the classic Perceptron learning rule, which is indeed recovered for A — 0) :
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Generalized Perceptron Learning Rule:

1. drawn at random a p € {1,...,p}

2. calculate -y, (w,wo) as given in (5.2)

3. if v, (w,wo) < A, modify parameters: w — w + t*€*
wy — wo + tH*

4. return to 1.

Generalized Perceptron Convergence Theorem (E. Gardner):

If Gw* € RY)(Fwg € R) : v (w*,w§) > A for all p € {1,...,p}, then the above
algorithm will converge towards a solution (w,wp) with y,(w,wp) > A in a finite
number of iteration steps.

The proof will not be given here. For wy = 0 it is a simple generalization of the original
perceptron convergence proof. For wy # 0, however, the situation is more complicated; the
reason is that the threshold wy does not occur in the denominator of the stability parameters
(5.2), so that it cannot simply be absorbed into the classic proof by adding a ‘dummy’ extra
component & =1 to all input vectors €.

The Optimal Separating Plane. We are now in a position to define the optimal separating
plane (w*,wj) as the plane for which the smallest of the {y*(w,wo)} (i.e. the stability
parameter of the data point which is most in danger of being mis-classified when data are
subject to noise) is as large as possible:

optimal separating plane (w*,w;) = arg max [min'yu(w,wo)] (5.4)
(waw0) M

Note that:

e If the problem is linearly separable, definition (5.4) will produce a separating plane with
the largest distance to the closest data point. If the problem is not linearly separable,
definition (5.4) will produce a plane which does not separate the data (since that is
impossible), but will have the minimum distance to the plane of those mis-classified
points which are furthest away from the plane.

e By construction, there must be at least two p such that -y, (w*, w§) = min, v,(w*, w§)
for the optimal separating plane (5.4) (see e.g. figure 5.1).

Finding the optimal plane has now been reduced to a relatively simple optimization exercise
(5.4). The only problem with it is that its solution (w*,w{) is still not unique, since there
remains the trivial degree of freedom relating to overall scaling: if we multiply (w,wq) —
(pw, pwy) with p > 0 we simply get the same plane. To eliminate this freedom we nail down
p by insisting that

muint“(w &+ wp) =1

(given the assumption of linear separability this is always possible). This implies that
miny, 7y, (w, wo) = 1/|wl, and that max(qp y,)[min, v, (w,wo)] = 1/ min(gy ) [w|. Hence
we have now converted the initial optimization problem (5.4) into

1
find : (min) —w? under constraints (Vp): tHM(w-€" +wp) > 1 (5.5)
w,wo
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5.2 Representation in terms of Support Vectors

Solution of the Optimization Problem. We now solve the constrained optimization problem
(5.5) using the standard method of Lagrange multipliers. This leads to the following coupled
equations:

a1 ,

P
0
1o? = S th(w - £H 1 i—0,....N
awl2w l; N(w’wo)awi[ (w 5 +’U)()) ] ?
with : Au(w,wp) =0  if extremum has ¢,(w - € +wp) > 1
Au(w,wp) #0 if extremum has ¢, (w - &* +wp) =1

We define the index set S (dependent on w and wy) as follows:

pesS:  thw- € +wy)=1  (so Ay(w,wp) #0) (5.6)
p¢gS:  thw- & +wy)>1 (so Au(w,wp) = 0) )
with |S| <p elements. Without danger of confusion we will henceforth drop the arguments
of the Lagrange parameters and write them simply as ),. Working out the above partial
derivatives gives

w=) A ther > att =0 (5.7)
nES BES
peSsS: t, Z)\,,t”(&“-{”)+wo =1 p#S: t, Z)\yt”(ﬁ“-ﬁ”)-i-w() >1 (5.8)
VES veS

We will now show that, given knowledge of the index set S, the solution of (5.7,5.8) follows
directly. In doing so we will need the following (symmetric and non-negative definite) |S|x |S]|
matrix C':

Cuw =tH(&" - &)Y for p,ves (5.9)

Firstly, after insertion of the first expression of (5.7) (to eliminate w) the first equation of
(5.8) allows us to write the non-zero Lagrange parameters as

peS: A= (CHuw(l—wot") (5.10)
veS

Inserting (5.10) into the second equation of (5.7) gives us the threshold wy:

_ Z,U,I/ES t'u(C_l)IJ'V
Wo

= 5.11
Euues t“(C_l)uvtu ( )

Our problem of finding the solution (w*,w() of (5.7,5.8), i.e. the optimal separating plane,
has thus been reduced to finding the index set S'. We note in the above equations that
only those inputs play a role which correspond to indices 4 € S. This then leads us to the
definition of Support Vectors:

'Tf the matrix C has zero eigenvalues (it can never have negative ones) we must replace C~' in the above
equations by the pseudo-inverse of C.
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e Support vectors are those input vectors £€” in the training set which, in the construction
of the optimal separating plane as given above, correspond to indices u € S.

e Support vectors are those input vectors which are closest to the separating plane, since
the distance for pattern p equals y, = t#(w - £€* 4+ wo)/|w| and (5.8) tells us that

peES: u=1/|w| pgES: > 1/|w|

e Only support vectors and their correlations occur in the construction of the optimal
separating plane. All other inputs are classified correctly once the support vectors are.

Let us at this stage derive two further properties of the solution, for later use. Firstly:

S >0 (5.12)
HES

Proof: we use the fact that C' is non-negative definite and insert the first equation of (5.8),
ie. Y, cq AtH (€ V)t = 1 — wotH, followed by the second equation of (5.7), giving

0< Y MCuhu =D Au(l—woth) = DN,

nreSs nes pnes

Secondly, given the parameter vector w, the threshold wy can be written as
1
wo = —gw - (&* + &%) for any p,v €S with t* =1, t"=-1 (5.13)

Proof: this follows immediately from the definitions (5.6) in combination with t* € {—1,1},
according to which w - &* = t#* —wy = for p € S.

Transformation of the Optimization Problem. Knowing the structure of the solution, we can
transform the problem to a set of equations in the space of the Lagrange multipliers {),},
which makes sense particularly if p < N. Insertion of w = Eﬁ:l Aut*€*, following (5.7), into
the original problem (5.5) gives with A = (A1,...,Ap):

P P
find:  min L Z Auth(€H-€7)t" A, under constraints Vp: tH Z(g“-g”)t”)\,, > 1—wgt*
(Awo) 2 uv=1 v=1
(5.14)
Support vectors correspond to those u for which the last inequality becomes an equality. In
preparation of a statement to be proven below, we note that the equations from which to
solve the solution of (5.5) and of (5.14) can be summarized as

Wy =D th(Er €)'\, + woth — 1, (5.15)
p
> Attt =0, Vu: {A, =0, W, >0} or {\,#0, W, =0} (5.16)
p=1

(these are indeed 2p + 1 equations for the 2p 4+ 1 unknowns {W),, A\, } and wyp). In the case of
multiple solutions we must select the one for which the quantity 1 Zﬁyzl Auth(EH- €)Y N, is
minimal.
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A final transformation brings our problem into the form most commonly encountered in
textbooks. The statement is that the solution of (5.14) is identical to that of the following
similar constrained minimization problem

1 p p
find: m}i\n {5 Z Auth(&F- €V, — Z /\“} constraints : Z At =0, Vp: A, >0
pr=1 u p=1

(5.17)
To appreciate the origin of this statement (we will not give the full elaborate proof here),
let us work out the Lagrange equations for (5.17), denoting the Lagrange parameters of
the inequality constraints A, > 0 as W, and the Lagrange parameter of the constraint
22:1 Attt =0 as —Wo:

Wy = t,(E" &)\, + Woth — 1 (5.18)
P
St =0,  Vu: {dA=0, W, #0} or {\, >0, W, =0} (5.19)
p=1

Comparison with (5.15,5.16) shows that the two sets of equations and requirements are iden-
tical if the following is true:

Solution of (5.14): A, >0 Vpu Solution of (5.17): W, >0 Vyu

Both statements are very similar, and can be shown to be true by virtue of the fact that we
are only looking for solutions of the Lagrange equations which are minima of the quadratic
surface to be extremized (the sign of a Lagrange parameter refers to the direction of the
associated constraining force, relative to the gradient of the surface). Since the solution of a
quadratic minimization problem with linear inequality constraints can also be shown to have
a unique solution, the two minimization problems are indeed found to be equivalent?.

A Simple Example. Let us assume, for simplicity, that the input vectors in our data set D
are orthogonal and normalized, i.e. £ -£” = d,, (which implies also that p < N). We aim
to calculate the optimal separating plane (w*,wj) from

tH(C™)
w = Z Aut“E“ wy = E[,I.I/GS ( - )H
uesS Z[UJGS t,u(C ),LLI/tV

(5.20)

with the matrix C as given in (5.9), and with the index set S giving the labels p of the
support vectors (i.e. those with A, > 0). We note that in the present example C},, = 0,1, SO
that the second equation of (5.20) becomes

wo = [S71 )t —1<wp <1
HES

We calculate the {)\,} via the original equations (5.10), which reduces to

peSs: Auzl—wot“

2See the specialized literature on convex optimization for full and further details.
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Insertion into (5.8) subsequently gives

pes: 1=1 p#ES: tywe>1
We conclude that, in view of |wg| < 1, the only possible solution is the one where S =
{1,...,p}, i.e. all input vectors are support vectors. Hence
p 12
w* = Y[t — wol€” wh ==yt (5.21)
pu=1 p pu=1

(which is know as the ‘biased Hebb rule’). The corresponding stability parameters 7, = |w|™!

(since p € S for all u) are
1

o P

T

5.3 Pre-Processing, SVM Kernels

Pre-Processing of Non-Linearly-Separable Data. Let us now turn to problems which are not
linearly separable, but could possibly be made so via suitable pre-processing. This implies
that we will no longer view the £ as the input vectors, but see the £ as the outcome of
the pre-processing of true input vectors & € RM. If we write the combined action of our
classification machine as S(z) € {—1,1} we have

&E=o(x): S(z) = sgnw - ¢(x) + wo] (5.22)
with ¢(x) = ($1(x),...,édn(x)) and usually with N > M. The data set is now D =
{(x!,tY),..., (xP,t?)}. The set of pre-processing operations ¢;(x) is typically chosen to con-

tain non-linear functions (otherwise there would be no point in pre-processing), such as

#i(x) = z; for e=1,...,.M
bi(x) = 7 for i=M+1,...,2M
Pori1(x) = 2122 Poprgo(x) = 123 domrya(w) = zomy  ete

Our previous results regarding the optimal separating plane (w*,w§) can be immediately
applied via the replacement & — ¢(z*), which leads to

wh= Y NtBlat)  uh=—gwt - [pa) + pla )] (5.23)
u=1

Here the support vectors are those & for which A, = 0, xT are (any) support vectors with
t* = %1, and the {\,} are determined by solving:

. 1 p . . ) p
m}in {5 N,,Z_l AuAtit’ dp(xh)-dp(x”) — ; )\u} constraints : l; Attt =0, Vp: A, >0

(5.24)
Insertion of the above expressions (5.23) into the machine’s operation rule (5.22) gives the

final classification recipe
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S(a) = sen [Z Mt {9lah)-(z) - 3o(e")-p(ah) - §¢(w~)-¢<w—>}] (5:29

u=1

At this stage one makes the important observation that neither in (5.25), nor in the equations
(5.24) from which to extract the {\,} do we retain any ‘bare’ occurrence of the pre-processing
functions ¢;(x). Instead we consistently encounter only the symmetric form

y) = Z ¢i(z)pi(y) (5.26)

More specifically, in terms of (5.26) our full equations become

S(x) = sgn |:i Auth {K(a:”,:c) — 1K(a:“,:z:*') — lK(:z:“,.'z:_)} (5.27)
s 2 2

P
min { 5 Z MK (24 2 Z A } constraints : I;l)\”t“ =0, Vu: A, >0

pur=1
(5.28)
We can henceforth work directly with (5.27,5.28), and call the function K(z,y) in these
equations the SVM Kernel. The decision boundary in input space of our machine is defined
as the set of all z € RM for which

3 A {K(m“,m) _ %K(:c“,w’L) _ %K(w“,:c)} ~0 (5.29)
pu=1

We can even generalize our classification machine to more general non-negative symmetric
kernels K (x,y) than those of the form (5.26).

SVM Kernels — Properties and Examples. We have seen that, at least for SVM kernels of
the form (5.26), making a choice for the K(x,y) implies choosing a specific type of pre-
processing?. Not all non-negative and symmetric kernels K (z,y) can be written in the form
(5.26), however; the conditions for this to be possible are given in Mercer’s Theorem (which
we will not prove here):

A symmetric kernel K (x, y) has an expansion of the form K (z,y) = >°:2; ¢i(x)di(y)
in the function space L?(RM) if and only if

0< /dmdy g(x)K(z,y)9(y) < o0 for all functions ¢ € L*(RM)

Apparently, choosing an acceptable kernel directly, as opposed to via (5.26), will generally be
equivalent to working with an infinite number of pre-processing functions. To see this more
explicitly, we inspect a couple of kernel examples:

3Note: choosing bi-linear kernels K (z,y) = E” x;A;;y; is pointless: we would then assume linear separa-

bility of the original data, and would be better of classifying directly via the optimal plane in input space.
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e Kernels generating pre-processing via polynomials: K (z,y) = [z -y + 1]¢
Expansion of this type of kernel gives:

K(z,y) = 1+4+d(z-y)+ %d(d—l)(m cy)t+ %d(d—l)(d—2)(m Yy

= 1+ dzxzyz + %d(d—l) Z(xlxj)(yzy])
i i
+%d(d_1)(d_2) > (i) (iyiye) + - - -
ijk

This expression is indeed seen to be of the form K (z,y) = > 72, ¢e(&)de(y), describing
pre-processing with polynomial functions ¢y(x). The series truncates only if and only
if d is chosen to be a positive integer.

e Kernels generating pre-processing via radial basis functions: K(z,y) = K(|lz — y|)

Let us consider non-negative definite kernels of the form K (z—y), such that the Fourier
transform K (k) of the function K (z) exists:

_ / dz R T K () K(z) = / (2i’;Meik'$I§'(k)

We first show that K (k) > 0 for all k € R, due to K being a non-negative kernel.
This follows from working out

[y K(@.p)e*Y = [y K(lo - y))ekY = K(k)ek=

Thus the K (k) are seen to be eigenvalues of the kernel K, and therefore non-negative.
We can now construct the following symmetric kernel:

Loy =Ly  La@)= % k@ K (k)

We work out the product

/dz L(x—2z)L(z—y) = ;i:(?;/[«/ 2 /dz o iU(T—2)—iV-(2-Y)

dudv - —iu-T+iv- iz-(u—
= /W K(u)K(v)e uw+vy/dze U ’U)

- [k @e @Y — K@ —y)

(where we used the identity 6(z) = (27r)iM [du e % see also appendix C). If K(z)
is of the form K (|z|), then also K (k) = K(|k|) and L(z) = L(|z|), so that

K(le—y) = [dz pz(@zv).  ¢2(@) = Llle—2)

This describes pre-processing with radial basis functions.
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e Kernels generating pre-processing via sigmoidal neurons: K(z,y) = g[z - y|

Here we choose g[u] to be sigmoidal function, such as g[u] = tanh[au+b], with constants
a,b € R. This kernel can not always be written in the separable form K(z,y) =
> r>1 Pe(®)de(y), but by simply working out equation (5.27) it becomes clear that we
will be doing pre-processing via a ‘hidden’ layer of sigmoidal neurons:

p
S(xz) = sgn [Z Auttglet - ] + wo
u=1

12
wo = =3 Z Aut* {glzh- 2 1] + glzt- =]}
p=1

The number of support vectors will be the number of hidden neurons, and the input-
to-hidden weights are given by the support vectors £” themselves.

Application Example. We close this section with an example of the application of Support
Vector Machines to a binary classification task which is not linearly separable. We have
generated a data set D with p = 30 and with data points & € R2; half of these points
have t* = 1, these are located close to the origin, the other half have t* = —1 and are
located further away from the origin. We try to separate the two classes with an SVM using
the polynomial kernel K (z,y) = [z - y + 1]¢. The resulting decision boundaries (5.29) in
the input plane R2 are shown, together with the input vectors, in figure 5.2 (after solving
numerically the constrained optimization problem (5.28) for the {\,}) for different values
of the parameter d € {2,3,4,5}. Note that for the present kernel, the parameter d controls
the number of pre-processing functions used. As d is increased (and thus the complexity of
the SVM) we observe decision boundaries with increasingly detailed class separation, and
also a decrease in the number of support vectors. This example illustrates also one of the
unresolved issues with Support Vector Machines (which is in fact being studied intensively at
the moment): the method appears to be outside the province of Bayesian analysis, and hence
does not yet allow for dealing properly with noisy data, overfitting and decision reliability.
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Figure 5.2: Binary classification of p = 30 non-linearly-separable input vectors &# = (!, z%)
(half with t* = 1, close to the origin, indicated by ‘+’; the other half with t* = —1, away
from the origin, indicated by ‘x’), by an SVM systems with kernel K (z,y) = [1 + z - y].
From top left to bottom right: d € {2,3,4,5}. Thick curve: the decision boundary as given

by (5.29). The support vectors of the solution are those marked with ‘0O’
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Appendix A

Probability in a Nutshell

We define ‘events’ & as n-dimensional vectors, drawn from some event set A C R". We
associate with each event a real-valued and non-negative probability measure p(x) > 0.

Discrete Event Sets

Definitions & Conventions. If A is discrete and countable, each component z; of  can only
assume values from a discrete set 4; so A C A1R0A42Q...QA,,. We drop explicit mentioning of
sets where possible; e.g. >-, will mean }_, 4., and ) g will mean ) g 4, etc. No problems
arise as long as the arguments of p(...) are symbols; only once we evaluate probabilities for
explicit values of the arguments we need to indicate to which components of & such values
are assigned. The probabilities are normalized according to >, p(xz) = 1.

Interpretation of Probability. Imagine a system which generates events & € A sequentially,

giving the infinite series @1, xo,x3,.... We choose an arbitrary one-to-one index mapping
m:{1,2,...} = {1,2,...}, and one particular event € A (in that order), and calculate for
the first M sequence elements {& (1), ..., Zx ()} the frequency far(x) with which & occurred:

We define random events as those generated by a system as above with the property that for

each one-to-one index map 7, for each event @ € A the frequency of occurrence fy;(x) tends
to a limit as M — oo. This limit is then defined as the ‘probability’ associated with x:

1 M
fu(@) =57 Zl 0L 1y

Veed:  pl@)= lim fu(o)

Since fu(x) > 0 for each x, and since Y 4, far(x) = 1 for any M, it follows that p(x) > 0
and that Y 4, p(x) =1 (as it should).

Marginal & Conditional Probabilities, Statistical Independence. The so-called ‘marginal prob-

ablities’ are obtained upon summing over individual components of & = (z1,...,zy):
P(T1y ey Tp 1, Tpg1y ey Tp) = Zp(a:l, ey Tp) (A1)
Ty

In particular we obtain (upon repeating this procedure):

83
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p(z;) = Z p(z1,...,2n) (A.2)

T1yeesTi—15T4415+9Tn

Marginal probabilities are normalized. This follows upon combining their definition with the
basic normalization ) 4, p(x) = 1, e.g.

Z P(T1ye ey Te 1,1y Tn) = 1, Zp(xz) =1
-’L'i

T1yeeesTh—15Tf415-Tn

For any two disjunct subsets {i1,...,ix} and {j1,...,7¢} of the index set {1,...,n} (with
necessarily k + £ < n) we next define the ‘conditional probability’

p(wiU"'7‘Tilca$j1a"'a‘7"je) (A3)
p($j17 s ale)

P(-Tila---axik|xj1""’sz) =

(A.3) gives the probability that the k components {31, ... ,4} of x take the values {z;,, ..., z; },
given the knowledge that the £ components {ji,...,j,} take the values {z;,,...,z;}.

The concept of statistical independence now follows naturally. Loosely speaking: statis-
tical independence means that conditioning in the sense defined above does not affect any
of the marginal probabilities. Thus the n events {z1,...,z,} are said to be statistically
independent if for any two disjunct subsets {i1,...,4x} and {j1,..., ¢} of {1,...,n} we have

D(Tiys- o Tig | Ty e Zj,) = D(Tiys oo Tiy)
This can be shown to be equivalent to saying

P(@iys -5 0,) = i )p(eis) - - - p(eiy,)
{z1,...,z,} are independent : " " nom " (A.4)
for every subset {i1,...,ix} C{1,...,n}

Continuous Event Sets

Definitions & Conventions. Here A is no longer countable. Each component z; of  can
assume values from a continuous set A; = {z € R| Jz € A with z; =z}, and A C 4;®42®
...®A,. As before we drop explicit mentioning of sets where possible; e.g. [dz; will mean
Ja,dz; and [dz will mean [,dz, etc. The function p(z) is now to be seen as a probability
density, which is accordingly normalized via integration: [dz p(x) = 1.

Interpretation of Probability. Again we imagine a system which generates events ¢ € A
sequentially, giving @1, x,.... We define ‘boxes’ (hypercubes) B(xz, A) in R" as follows:

B(w,A) = {y S §Rn| z; <1y < x;+A; for all z}

in which all A; > 0. The volume of such a box is simply [[;*; A;. We choose an arbitrary
one-to-one index mapping 7 : {1,2,...} — {1,2,...}, and one particular event & € A (in
that order), and calculate for the first M sequence elements {il?w(1), e B M)} the frequency
fa(x, A) with which & happened to lie in box B(z, A):

1 M
fM(maA) = M Z I(ww(m);maA)

m=1

I(y;z,A)=1 if y e B(z,A)
Iy;2,A)=0 if y¢ B(z,A)
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We define random events as those generated by a system as above with the property that for
each one-to-one index map w, for each box B(x, A) the frequency of occurrence fis(x,A)
tends to a limit as M — oo. This limit is subsequently used to define the ‘probability density’
p(x) associated with a:

. limy e fur(z, A)
Ve e A: xz) = lim
p(@) = A =T A,

(provided this limit exists). Since fas(x,A) > 0 for each x, and since [dzx fy(xz, A) =
[Ti=; A; for any M, it follows that p(z) > 0 and that [dx p(x) =1 (as it should).

Marginal & Conditional Probability Densities, Statistical Independence. The marginal prob-
abilities are now obtained upon integrating over individual components of :

p(xla sy =15 L4115 - - - 1"'671) = /d.’Eg p(xla s 7"ETL) (A5)

In particular we obtain (upon repeating this procedure):

p(x;) = /d$1 coodri1dzisy .. dry p(x1, ..., Tp) (A.6)

Again marginal probabilities are normalized (in integration sense). This follows as before
upon combining their definition with the basic normalization [dz p(z) =1, e.g.

/da:l coodrg_1drosy .. dry p(X1, . L1, Tpg1y - Tpn) = 1, /d:vi plx;) =1

For any two disjunct subsets {i1,...,ix} and {j1,...,j¢} of the index set {1,...,n} we define
the ‘conditional probability density’

p(‘T’ila"'7‘Ti197$j17"'1‘7"je) (A7)

p(-’L'in---;xiklel""’le): p(lev""le)

It gives the probability density for the k components {i1,...,i}, given the knowledge that
the ¢ components {j1,...,j¢} take the values {z;,,...,z;,}.
Statistical independence can as before be defined in the following way:
p(@irs - - i) = plai, )p(2i,) - - - p(3,.)

{z1,...,2,} are independent : (A.8)
for every subset {i1,...,ix} C {1,...,n}

Averages of Specific Random Variables

We define ‘random variables’ as arbitrary functions F'(x) of random events @ € A. We define
averages or expectation values or mean values (F(x)) of random variables F'(x) as follows:

discrete random variables : (F(x)) = > g p(x)F(x) (4.9)
continuous random variables:  (F(z)) = [dz p(z)F(x) .

Let us now turn to the definitions and properties of a couple of relevant random variables
(discrete or continuous) and averages. Note that in general one cannot be sure beforehand
(without explicit proof) that the following averages will actually exist (i.e. are finite):
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average: Wi = {x;)

variance: 012 = <3312> - <$Z>2

o? is non-negative, since (z?)—(x;)2 = ([z;—(z;)]%). This also shows that o7 = 0 implies
that ; = z} for any two events € A and &’ € A with nonzero probabilities.
covariance matrix: Cij = (ziz;) — (zi)(z;)

Note that C;; = 0 . The covariance matrix is symmetric so all eigenvalues are real. It
is non-negative deﬁnlte (so all eigenvalues are non-negative), since it can be written as
(@iz;)—(zi)(z;) = ((xi—(z:))(zj — (z;))), from which it follows that

for any z € R" : z-Cz = {ZzZ —(z)]}?) >0
moments: (:vzl” xzh x:':”“), with m;, € {0,1,2,3,...}

Gaussian (or ‘Normal’) Distribution:
e~ 3(z—n)?/0 0 AL0
I) = —"—"7¥7—", T € .
pa) = (A10)

Normalization is built-in (see also appendix B):

dx 1 2/ 2 dz 1,2
d / —s(@—p?/o® _ —3% =1
Jaero = [ 7

For the Gaussian distribution we also obtain:

o) = [ e b1 — o [ e

For n odd the result is zero. For n even we get:

dm dz _ 2_0’2m .o d™

(=p) =0 = (2)=p
(z-p)?)=0® = (2°)=p*+o?
(z—p)®) =0 = (z%) =p3+3uc?
(=) =0 = (z%) =3(*+0?)?

Relations such as (z*) = 3(u%2+02%)? can often serve as a quick test to see whether an
unknown distribution could be Gaussian.
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Gaussian Integrals

Real, Symmetric, Positive Definite Matrices. The symmetric N x N matrix A is assumed to
be positive definite, i.e. & - Az > 0 for all z € RV with |z| # 0. The eigenvalue polynomial
det[A — AI] = 0 is of order N, so A will have N (possibly complex) solutions A (some may
coincide) of the eigenvalue problem Az = Az (& # 0). We denote complex conjugation of
complex numbers z as: z = a +ib, 2* = a —ib (a,b € R), and |z|> = 2*z € R. We define
the unit matrix I;; = §;;. We will use the following facts, proofs of which are found in any
elementary linear algebra course:

Fact 1: All eigenvalues of the matrix A are real.

Fact 2: All eigenvectors can be chosen real-valued.

Fact 3: All eigenvalues A are positive.

Fact 4: We can construct a complete orthogonal basis in RY of A-eigenvectors.

Thus there exist a set of vectors {éi} (A=1,...,N) with the properties:
Aél = \é N ER, N >0 e RN, & -l =4

We can now bring A onto diagonal form by a unitary transformation U, which we construct
from the components of the normalised eigenvectors e: U;; = /. We denote its transpose by

U', U;rj = Uj;, and show that U is indeed unitary, i.e. UTU = UU‘L =1I
Z(UtU)ij.’L'j = Z UkiUkj:Ej = Zé?cé?ch = Z(sijfvj =X;
J jk jk J
SN (UUYijz; =Y UkUpz; =Y eféba; =Y ebfe-z) =
J ik ik k
(since {&} forms a complete orthogonal basis). From U being unitary it follows that U and
U' leave inner products invariant:

Uw.Uy:m.UTUy:w.y UTw.UTy:m,UUTyzm_y
We can see explicitly that U indeed brings A onto diagonal form:

(UTAU);; = Z Ul AUy, = Z e ARE =\ Z eLel = X0 (B.1)
ki=1 ki=1
The inverse A~ ' of the matrix A exists, and can be written as (A~ 1);; = S0, A\, el Af
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Gaussian Integrals. We now turn to the associated Gaussian integrals
I / dz f(z)e 3T AT (B.2)

The simplest such integral is I = [dz e~3%°. Tt is calculated by writing its square as an
integral in R®2, and switching to polar coordinates, (z; = rcos ¢, zo = rsin¢). The Jacobian
of this transformation is r. Hence

. 2 o0 .
= /dzlsz e"3%7 = / d¢/ dr re=3" =21 [_6_%7,2]20 =27 S0 I=+2rm
0 0

For f(x) = 1 we can do the integral (B.2) by using the previous results on the diagonalisability
of the matrix A. We put & = Uz (since U leaves inner products invariant: de = dz):

/dw o 3T-AT /dz o ~12U'AU=z _ H [/dz eéAzzQ]
K:

N L 1N T)V/2
(Bl - s

(note: the determinant of A is unvariant under rotations, so it can be evaluated with A on
diagonal form, which gives the product of the N eigenvalues).

Due to the symmetry of the integrand in (B.2) under reflection £ — —z, the integral
reduces to zero for f(x) = z;. For f(x) = z;z; we find:

iz A .0 _igp. Azib.
Jdo aiase b0 bidb; ] €

2

> 12U AUz+2.U'b
-1 — |4 z- zZ+z- — i
blféabab-/” ’ " b0 Ob;0b; -

Lyg[e— b)zrl]2+lx1(U*b)2]
= im b, abj [/d” o ‘

2

) 0 LS A Ui Ujb [ _1y,,2
= lim e? Luije=1"e YitIiYit% /dz e a2 ]
b—o0 8[),'8[)]' 6—1_[1

|:/dz e——)\[zz-l-Z(U b)[:|

LN B sy ajete (A*l)‘-w

 VdetA boso 9b;0b; Y VdetA
In particular, by combining the last two results, we find a powerful (and completely general)
relation for Gaussian probability distributions with zero mean & = 0 (the latter one can
always achieve by a simple translation):

(B.4)

Jdx zizje —3x-Az

[da 3 T-AT

If we know that a given distribution is Gaussian, with zero average, we apparently only need
to calculate the correlations (z;z;) to know the full distribution:
e 3T-AT

P(z) Gaussian, with () =0 = P(z) = . with (A7Y); = (wiz;
() () () (2m) V2ot 1 A (A7%)ij = (wizj)
(B.6)

= (A7) (B.5)




Appendix C

The )-Distribution

Definition. There are several ways of introducing the §-distribution. Here we will go for an
intuitive definition first, and a formal one later. We define the §-distribution as the probability
distribution §(z) corresponding to a random variable in the limit where the randomness in
the variable vanishes. If z is ‘distributed’ around zero, this implies

/dm f(x)d(z) = f(0) for any function f

The problem arises when we want to actually write down an expression for §(z). Intuitively
one could think of writing something like

6(2) = lim Ga(s)  Galo) = Ajge‘%’”z/ > (C.1)

This is not a true function in a mathematical sense; d(z) is zero for z # 0 and §(0) = oo.
The way to interpret and use expressions like (C.1) is to realise that d(z) only has a meaning
when appearing inside an integration. One then takes the limit A — 0 after performing
the integration. Upon adopting this convention, we can use (C.1) to derive the following
properties (for sufficiently well-behaved and differentiable functions f1):

d 12
/dm d(z)f(z) = hm /dw Ga(z = Aigh \/—;C_W e 2% f(Az) = f(0)

/d:v () f(z) = lim /dm{ (Ga(z)f(z )]—GA(:v)f’(:v)}

= lim [Ga(z)f(2)]Z,, — f'(0) = —f'(0)

A—0

both can be summarised in and generalised to the single expression:

[z f@) s = ()" B @) (n=0,1.2,..) (C.2)

!The conditions on the so-called ‘test-functions’ f can be properly formalised; this being not a course on
distribution theory, here we just concentrate on the basic ideas and properties

89



90 APPENDIX C. THE ¢-DISTRIBUTION

Equivalently we can take the result (C.2) as our definition of the §-distribution.

Representations, Relations, Generalisations. We can use the definitions of Fourier transforms
and inverse Fourier transforms to obtain an integral representation of the §-distribution:

Fif@) k) )= [do et p)

FLO) s @) fe) = [k )

In combination these relations give the identity:

_ /dk 2miks /dy e~2mkY £ (y)

Application to f(z) = d(x) gives:

/dk) e27rzkx — % ik:c (C3)

A second useful relation is the following one, which relates the d-distribution to the step-
function:

5(z) = %a(gg) (C.4)

This we prove by showing that both have the same effect inside an integration (with an
arbitrary test-function):

[z [3@) - 2-0@)] d(a) = 6(0) ~ timg [“da { 2 (61010 )]—qs'(x)e(x)}

:¢()—11m[q5() —{—hm/dqu

Thirdly we can inspect the effect of performing a continuously differentiable and invertible
transformation f on a variable that occurs inside a J-distribution, giving rise to the following
identity:
0(r —a)
§[f(z)—f(a)] =

f'(a)

Again this is proved by showing that both sides have the same effect inside an integration
(with an arbitrary test-function):

(C.5)

[z gta) {5[f(w)—f(a)] -} = Jan re |52 o1 -ran - £
¢(a) _ ¢(f'(f(a)  4la) _
= J o iy ) i = R
Finally, the followmg generahsatlon is straightforward:
zeRN: d(x) = ﬁ 0(z;) (C.6)



