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Chapter 1

General Introduction

1.1 Neural Information Processing

The brain is a piece of hardware that performs sophisticated information processing tasks,
using microscopic elements and operations which are fundamentally different from the ones
on which present-day computers are based. The microscopic processors in the brain, the
brain cells, or neurons (see figure 1.1) are rather noisy elements which operate in parallel.
They do not execute a fixed ‘program’ on a given set of ‘data’, but communicate signals
trough relay stations (the synapses, or synaptic efficacies), located at the junctions where the
output channel (azon) of one neuron meets an input channel (dendrite) or the cell body of
another. The strengths of the relay stations are continuously being updated, albeit slowly.
The neurons of each given brain region are organised and wired in a specific network, the
structure of which can vary from very regular (especially in regions responsible for pre-
processing of sensory data) to almost amorphous (especially in the ‘higher’ regions of the
brain, where cognitive functions are performed), see figure 1.2. These dynamic relay stations,
or synapses, in combination with some adjustable intrinsic neuron properties, represent both
‘data’ and ‘program’ of the network; consequently, program and data change all the time.

We can roughly summarise similarities and differences between conventional present-day
computer systems and biological neural networks in the following table:

‘ computers ‘ biological neural networks ‘
processors neurons
operation speed ~ 108 Hz operation speed ~ 10%Hz
signal [noise ~ oo signal /noise ~ 1
signal velocity ~ 108m/sec signal velocity ~ 1m/sec
connections ~ 10 connections ~ 10*
sequential operation parallel operation
program & data connections and neuron characteristics
external programming self-programming & adaptation
not robust against hardware failure | robust against hardware failure
cannot deal with unforseen data messy, unforseen and inconsistent data

From an engineering point of view the neurons are clearly extremely poor substitutes for
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Figure 1.1: Left: a Purkinje neuron in the human cerebellum (a brain region responsible
for smooth movement control); Right: a Pyramidal neuron in the rabbit cortex (the region
of cognitive functions). Both pictures are due to Ramon y Cajal (1880), obtained from a
chemical staining method, invented by Golgi. The black blobs are the neuron cell bodies,
the trees of wires fanning out constitute the input channels (or ‘dendrites’) through which
signals are received, sent off by other firing neurons. The lines at the bottom of the pictures,
bifurcating only modestly, are the output channels (or ‘axons’).

processors; they are several orders of magnitude more slow and unreliable. In the brain this
setback is overcome by redundancy: by making sure that always a very large number of
neurons are involved in any process, and by preferably having them operate in parallel. This
is in contrast to conventional computers, where individual operations are as a rule performed
sequentially, i.e. one after the other, so that failure of any part of this chain of operations
is mostly fatal. The other fundamental difference is that conventional computers can only
execute a detailed specification of orders, the program, requiring the programmer to know
exactly which data can be expected and how to respond. Any subsequent change in the
actual situation, not foreseen by the programmer, leads to trouble. Neural networks, as we
know from everyday experience, can adapt quite well to changing circumstances. We can
recognise objects also if they are deformed or only partly visible, our visual system can adapt
to the strangest deformations of the image on our retina (for instance: everything upside
down), we can even rewire the nerve fibres coming from arms and legs and again learn how
to control movements. Finally, there is the robustness against physical hardware failure. In
our brain large numbers of neurons end their careers each day unnoticed. Compare this to
what happens if we randomly cut a few wires in our workstation.

We know what the brain and its neural network building blocks can do, the question now
is: how does it do these things 7 It has been suggested already in 1957 by von Neumann
that, in view of the large number of interacting neurons, (in the order of 10!!, each of which
communicating with roughly 10* colleagues) and the stochastic nature of neural processes,
statistical theories might be the appropriate language for describing the operation of the
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Figure 1.2: Pyramidal neurons in the visual area of the cortex (from Ramon y Cajal (1880)).
Golgi’s staining method colours only a fraction of the neurons, so in reality the network is
more dense than the picture suggests.

brain !. Later such ideas were given a more precise meaning in terms of stochastic processes
and statistical mechanics. Roughly speaking, one can distinguish three types of motivation
for studying neural networks. Biologists aim at understanding information processing in real
biological nervous tissue. Engineers and computer scientists would like to use the principles
behind neural information processing for designing adaptive software and artificial informa-
tion processing systems which can learn and of which the processors can operate efficiently
in parallel. Such devices would clearly be quite complementary to the conventional types
of computers. Theoretical physicists and mathematicians are challenged by the fundamen-
tal new problems posed by neural network models, which exhibit a highly non-trivial and
rich behaviour. Consequently, the types of model studied by the different groups of scien-
tists and the language in which they are formulated, as well as the role of experiments in
guiding and constraining research will be different. Assumptions and approximations which
are fruitful and natural to the biologist can be useless or even forbidden in the context of
artificial systems, and vice versa. Neural networks are rather complex systems to analyse for
several reasons: (7) the large number of interacting elements, (i) the non-linear character of
the operation of the individual elements, (i7i) the interactions between the elements are not
identical, or at least periodic in space, but usually different in strength for each individual
pair of elements, (iv) two given neurons can operate on one another in a different way (there
is not even pairwise symmetry), and (v) the interactions and firing thresholds change all
the time. There are two main strategies to simplify analysis. The first is to look at layered
networks, where no interaction loops are present, so that the states of the neurons can be

!The numbers quoted here are not to be taken too literally, their exponents vary in between textbooks.
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calculated iteratively, layer by layer. The second is to describe the system statistically at a
macroscopic level, of global quantities, and forget about the microscopic details at the level
of the behaviour of individual neurons.

Biological Modelling. Here there is still a huge gap between theory and experiment. It is
not at all clear which are the full microscopic laws. Of those microscopic processes that
have been identified, mostly relating to the operation of individual neurons, we do not know
which degrees of freedom are relevant and which are ‘accidental’ (i.e. non-productive artifacts
of evolution). Last but not least, one often does not know how to quantify the macroscopic
processes, i.e. what to look for. In order to arrive at a level of description where mathematical
analysis becomes possible, specific choices of simplifications have been made in model studies
of neural networks. In the typical model, neuron states are represented by scalar variables?,
which evolve in time stochastically, driven by so-called post-synaptic potentials, which are
usually taken to depend linearly on the states of the neurons. In recurrent networks there
is no simple feedforward-only or even layered operation, but rather the neurons drive one
another collectively and repetitively without particular directionality. In these networks the
interest is in the global behaviour of all the neurons and the associative retrieval of memorised
states from initialisations in noisy representations thereof. They are often referred to as
attractor neural networks®. They are idealisations of parts of the brain, such as cerebral
cortex. The study of this type of model has resulted in a thorough (even quantitative)
understanding of especially the functioning of nervous tissue as associative memories for static
and dynamic patterns, but also in insight into typically biological phenomena like memory
disorders induced by damage, phase-locked neural oscillations and chemical modulation. The
simplifications introduced to arrive at solvable models are more or less ad hoc, motivated
by experience, intuition, and the desire to quantify the problem. However, the last decade
has shown that progress is indeed being made in incorporating more biological detail into
analytically solvable models.

Artificial Neural Networks. Here one is not particularly interested in the chemical and elec-
trical details of neural information processing, but rather in understanding the two building
blocks of learning and massive parallellism, on which the remarkable computational power of
the brain is based. Biological experiments are only relevant in that they might hint at possi-
ble mechanisms for achieving the aim, but play no role as constraints on model ingredients.
Rather than a necessary simplification, to the computer scientists representing neuron states
as binary variables is a welcome translation into familiar language. The preferred architec-
ture of many artificial neural networks for application as expert systems is that of layers.
Here many input neurons drive various numbers of hidden units eventually to one or few
output neurons, with signals progressing only forward from layer to layer, never backwards
or sideways within a layer. The interest lies in training and operating the networks for the
deduction of appropriate few-state conclusions from the simultaneous input of many, possibly
corrupted, pieces of data.

?Especially among psychologists, the scalar information processing units in idealised neural network models
are assumed not to represent individual neurons, but rather groups of neurons.

3They are often abbreviated as ANN, but we avoid this notation since it is also common for artificial neural
networks.
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Figure 1.3: Schematic drawing of a simple neuron, with its dendritic tree (branching from the
cell body), the incoming axons from other neurons (incoming solid lines) with their points of
contact (synapses; dark blobs), and its own axon (outgoing branch at the bottom).

1.2 Biological Neurons and Model Neurons

Some Biology. Neurons come in all kinds of shapes and sizes, but, roughly speaking, they
all operate more or less in the following way (see figure 1.3). The lipidic cell membrane of
a neuron maintains concentration differences between inside and outside the cell, of various
ions (the main ones are Na*, K* and CI™), by a combination of the action of active ion
pumps and controllable ion channels. When the neuron is at rest, the channels are closed,
and due to the activity of the pumps and the resultant concentration differences, the inside
of the neuron has a net negative electric potential of around —70 mV, compared to the fluid
outside.

equilibrium concentrations (mmol/lt) | Na™ | Kt | CI™
outside the cell 143 5 103
inside the cell 24 | 133 7

A sufficiently strong local electric excitation, making the cell potential temporarily less neg-
ative, leads to the opening of specific ion channels, which in turn causes a chain reaction of
other channels opening and/or closing, with as a net result the generation of an electrical
peak of height +40 mV, with a duration of about 1 msec, which will propagate along the mem-
brane at a speed of about 5 m/sec: the so-called action potential. After this electro-chemical
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Figure 1.4: Schematic drawing of a simple synapse. Upper part: terminal of the axon of the
sending neuron, bottom: surface of a dendrite of the receiving neuron (the two are separated
by the so-called synaptic cleft). Circles: pockets of neurotransmitter, to be released in
synaptic cleft upon the arrival of an action potential along the axon.

avalanche it takes a few milliseconds to restore peace and order, during this period, the so-
called refractory period, the membrane can only be forced to generate an action potential by
extremely strong excitation. The action potential serves as an electrical communication sig-
nal, propagating and bifurcating along the output channel of the neuron, the azon, to other
neurons. Since the propagation of an action potential along an axon is the result of an active
electro/chemical process, the signal will retain shape and strength, even after bifurcation,
much like a chain of tumbling domino stones.

The junction between an output channel (axon) of one neuron and an input channel
(dendrite) of another neuron, is called synapse (see figure 1.4). The arrival of an action
potential can trigger the release of a chemical, the neurotransmitter, into the so-called synaptic
cleft which separates the cell membranes of the two neurons. The neurotransmitter in turn
acts to open selectively ion channels in the membrane of the dendrite of the receiving neuron.
If these happen to be Na™ channels, the result is a local increase of the potential at the
receiving end of the synapse, if these are Cl~ or KT channels the result is a decrease. In the
first case the arriving signal will increase the probability of the receiving neuron to start firing
itself, therefore such a synapse is called ezcitatory. In the second case the arriving signal will
decrease the probability of the receiving neuron being triggered, and the synapse is called
inhibitory. The main neurotransmitters are now believed to be glutamate (operating in
excitatory synapses) as well as GABA (gamma-amino butyric acid) and clycine (operating in
inhibitory synapses). However, there is also the possibility that the arriving action potential
will not succeed in releasing neurotransmitter; neurons are not perfect. This introduces an
element of uncertainty, or noise, into the operation of the machinery. A general rule (Dale’s
Law) is that every neuron can have only one type of synapse attached to the branches of its
axon; it either excites all neurons it sends signals to (in which case it is called an ezcitatory
neuron), or it inhibits all neurons it sends signals to (in which case is is called an inhibitory
neuron).

Whether or not the receiving neuron will actually be triggered, will depend on cumulative
effect of all excitatory and inhibitory signals arriving, a detailed analysis of which requires
also taking into account the electrical details of the dendrite. The region of the neuron
membrane most sensitive to be triggered into sending an action potential is the so-called
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hillock zone, near the root of the axon. If the potential in this region, the post-synaptic
potential exceeds some neuron-specific threshold (of the order of —30 mV), the neuron will
fire an action potential. However, the firing threshold is not a strict constant, but can vary
randomly around some average value (so that there will always be some non-zero probability
of a neuron not doing what we would expect it to do with a given postsynaptic potential),
which constitutes the second main source of uncertainty into the operation.

The key to the adaptive and self-programming properties of neural tissue and to being
able to store information, is that the synapses and firing thresholds are not fixed, but are
being updated all the time. It is not entirely clear how this is realised at a chemical/electrical
level. Most likely the amount of neurotransmitter in a synapse, available for release, and the
effective contact surface of a synapse are modified.

Let us conclude with some numbers to get an idea of dimensions:

‘ characteristic time-scales ‘ typical sizes ‘

duration of action potential: ~ lmsec neuron cell body: ~ 50um
refractory period: ~ 3msec axon diameter: ~ luym
synaptic signal transmission: ~ lmsec synapse size: ~ lum
axonal signal transport: ~ bm/sec || synaptic cleft: ~ 0.05um

Model Neurons. Although we can never be sure beforehand to which level of microscopic
detail we will have do descend in order to understand the emergent global properties of
neural networks, there are reasons for not trying to analyse in all detail all chemical and
electrical processes involved in the operation of a given neural system. Firstly, we would just
end up with a huge set of nasty equations that are impossible to handle, and consequently
learn very little. Secondly, the experiments involved are so complicated that the details we
would wish to translate into equations are still being updated frequently.

Let us now first try to construct a simple neuron model. Not all of the simplifications we
will make along the way are strictly necessary, and some can be removed later. Note that
what follows is certainly not a strict derivation, but rather a rough sketch of how various
neuron models can be related to biological reality. Our neuron is assumed to be embedded in
a network of NV neurons, which will be labelled with the index ¢ = 1,..., N. The post-synaptic
potential of our neuron at time ¢ will be called V (¢).

e First of all, we forget about the details of the avalanche creating an action potential,
and concentrate only on the presence/absence of an action potential, denoted by the
variable S € {0, 1}:

=1: mneuron fires an action potential at time ¢ (1.1)
S(t) =0: neuron is at rest at time ¢ '

If we denote the firing threshold potential of our neuron (which can vary) by V*(t), we
can relate the firing state S(¢) to the post-synaptic potential as

S(t) =0[V(t) — V*(t)] (1.2)

with the step function: 8[z] =1 for z > 0, 8[z] = 0 for z < 0 (we can define 6[0] to be
either 0, 3 or 1).
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e The second simplification we make is to forget about the possibility of any sender
having multiple synaptic contacts with any receiver, and neglect the microscopic electro-
chemical details of the conversion at the synapses of arriving action potential into
electric currents. This allows us to represent the synaptic interaction between our
model neuron and any neuron k by a single real number Jj € (—00, 00):

Jir > 0: synapse connecting to the axon of k is excitatory
Jr < 0: synapse connecting to the axon of £ is inhibitory (1.3)
| Jk| : proportional to the magnitude of the resulting electric current

Consequently, J, = 0 represents the case where a synapse is simply absent. Taking into
account the possibility of an arriving action potential failing, the actual electric current
Ii(t) € (~o0, 00) injected into our model neuron, by neuron k at time ¢, can be written
as:

I (t) = pi(t) Je Sk (t—Tk) (1.4)

with
pr(t) € {0,1} : random variable

Tk € [0,00 >:  transmission delay along axon of neuron k (1.5)

If px(t) = 1, an action potential arriving at the synapse at time ¢ is succesful in releasing
neuro-transmitter. If py(t) = 0, it is not.

e Our third approximation is to forget about the spatial extension of the dendrite, as-
suming all synapses to be located near the cell body, and to treat it as a simple passive
cable-like object, the potential of which is reset every time the neuron fires an action
potential. This means that the evolution in time of the post-synaptic potential V()
can be written as a linear differential equation of the form:

d d d

av(t) = av(thassive + av(t)heset (1-6)

The first term represents the passive cable-like electric behaviour of the dendrite:

N
DV (1) pusive =~ + 3 14(1) — pV (1) (1.7
T k=
in which the two parameters 7 and p reflect the electrical properties of the dendrite (7
being the characteristic time for current changes to effect the voltage, p controlling the
stationary ratio between voltage and current), and I represents the stationary currents
due to the ion pumps. Without any input from other neurons, i.e. for Iy(t) = 0, this
term would lead to a simple exponential decay with relaxation time 7/p of the voltage
towards the stationary value V(oo) = I/p. The second term, coming into play only
when the neuron has fired recently, represents a quick reset (relaxation time A < 7/p
towards this stationary value:

d

1 - A
SV Olseser = 5 [F-pV (1) 9[/0 ds S(t—s)] (1.8)
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We may equivalently write I= PViest- In combination we obtain:

T A
Z Iis(t) — p[V (1) = Viest] {1 + Ze[/o ds S(t_s)]} (1.9)

Since only potential differences are important, our equations simplify considerably if,
instead of the potential V() itself, we write everything in terms of its value relative to
the rest potential:

V(t) = Vrest + U(t) V*(t) = ‘/rest + U* (t) (1.10)

This results in
ZIk {1+ 9/ ds S(t— s)]} (1.11)

Putting all ingredients together, keeping in mind that the above equations apply to each of the
N neurons, and assuming all neurons to be identical in their electrical properties {7, p, Viest },

we obtain:
d al A
r
T%Ui(t) = Z Jik:pik(t)sk(t_Tik) - pUi(t) {1 + ZH[/ ds S’i(t—s)]} (1.12)
k=1 0
with
Jir € (—00,00) : synapse connecting k —
Tik, € [0, 00) : time for signals to travel from k — i (1.13)
pik(t) € {0,1} : succes or failure of transmitter release at k — i '

Sk(t) = 0[Ux(t)—Uj(t)] - firing state of neuron k

The above equation still describes many of the neuron characteristics which seem relevant.
However, it contains the noise variables {p;;(t), U;*(t)}, and, although sufficiently simple to
simulate on a computer, it is still too complicated to allow us to proceed analytically.

The next stage in the argument is to work out the effect of the random variables describing
transmitter release {p;;(¢)} and threshold noise {U;"(t)}.

e At each time and each synapse the p;(t) are assumed to be completely indepen-
dently distributed (without correlations with potentials, synaptic strengths, thresholds
or transmission delays), according to

Prob [py;(t) = 1] =

Prob pu(t) = 0] = 1 - p (1.14)

In particular:
pij(t) =p (1.15)
Pij (Opri(t) = poixbji + p° [1—6xbj1] = p* + p(1—p)dikdji (1.16)

where we have used the Kronecker symbol 4;;,

Si=1 ifi=j
0;j =0 otherwise

So we assume all synapses to be identical in their average failure/success rate.
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e Also at each time and each neuron the U (t) € (—00, 00) are assumed to be completely
independently distributed around some average value U/, according to the probability
density P(u):

Prob [U}(t)—U; € [u,u+du)] = P(u)du (0 <du<x1) (1.17)

In particular:

00 Ui(t)-U}
— / " du P)OU(0)—U; —u] = / du P(u) (1.18)

Si(t)Sk(t") = 0k Si(t)Sk(t') + (1—0:x) S (t) Sk(t')

i) Sk @) + b {Si Sk ¥) - S:(0) S } (1.19)

Note that dt.S;(t) = dt. ff];ét)_Ui* du P(u) is precisely the probability that neuron i fires
in the infinitesimal time interval [, ¢+ dt). For situations where the potential U;(t) does
not vary too much wich time (apart from a regular reset due to neuron i itself firing),
this probability can be shown to be roughly proportional to the firing frequency f;(t)
of neuron %:

number of firings in [t—dt,t+dt]  S;(¢).2dt/A 1

filt) = 2dt agr— ~ o) (1.20)

(taking into account the refractory period A).

e For sufficiently large systems, N > 1, the outcome of the summation over k in equa-
tion (1.12) will be described by a Gaussian probability distribution (Central Limit
Theorem?), average and variance of which are given by:

N

N
av. = Y Jupik(t) Sk (t—Tik) Z Tikpir(t) Sk(t—7i) =p Y JirSe(t—7ax)  (1.21)
k=1 k=1

2

N
var. = lz ikDik (1) Sk (t— T,k)] —av.?

N
= Y Jindiupik(O)pie(t) Sk(t—7ik) Se(t—7ie) -
k=1

N
=p° Y Jundu {Sk(t—Tik)Se(t—Tie) — Sk (t—Tir) Se(t—m)}
k1

N
Z t Tik)

4For the CLT to apply, we would in principle have to check whether a few technical conditions are met;
having a sum of a large number of independent random variables is in itself not enough. These subtleties we
will not deal with here.
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N

=p> Ji {Slc(t_"'ik) —pSk(t—Tik)2} (1.22)
k=1

(note that we have used: S;(t) = Sk(t) for all k and ).

e We now use a crude scaling argument to suggest that for densely interacting networks
we can forget about the width of the Gaussian distribution describing the summation
over k in equations (1.12). We assume that each neuron receives input from about A/ of
the N neurons present, where both N > 1 and N > 1. A measure for the uncertainty
in the outcome of the summation, due to the randomness, is:

v/variance

average

relative uncertainty =

- \/EkN_1 J3.Sk(t—Tik) {1—p5k(t—nk)} 1

VP ey TSk (t— i) VN
If the network is sufficiently densely interacting, N/ — oo, then we can apparently
replace the summation in (1.12) by its average, and forget about the uncertainty (in
this case all that remains of the random variables {p;;(t)} describing synaptic operation
is the prefactor p). Note, however, that no such reasoning applies to the probability of
any individual neuron firing.

By replacing the summation in (1.12) by its average over the noise variables, we now obtain
the following simplified dynamic equation:

d N . - A
TEUi(t) :pkgl Jikg (U (t—Tix) —Ug] — pUi(?) {1 + ZG[/O ds Si(t—s)]} (1.23)

with

gle) = [ du P(u)

From here we can obtain directly most of the model neurons, used as starting points of
analytical studies, as specific limits or approximations. We will concentrate on the most
common ones.

A. Graded Response Neurons. Here we forget about the delays, 7;; = 0 for all (4, j), and we
forget about the reset term in (1.23), assuming that the fluctuations of the neuron potential
due to the reset mechanism are not relevant. Our basic equations now become (after a
redefinition of our variables to get rid of irrelevant prefactors):

d il \
Tan(t) = > Jikg [Uk(t) = Ug] — pUi(2) (1.24)
k=1
U-u*
glU-U"] = / du P(u) : proportional to firing frequency (1.25)
-0
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Note that the (nonlinear) function g[z| has the following properties , by construction:

(1) limgp,_wg[z] =0, limy ,glz] =1
(1.26)
(i) g'[z] >0 Vz

Often one adds to (1.24) a noise term, to account for the both the possibility that the
randomness in the potentials U;(t) is not negligible (in cases where the naive scaling argument
is wrong) and for the fluctuations due to the reset mechanism. Contrary to what common
sense would suggest, we will find that having some degree of noise will often improve the
operation of neural networks.

B. McCulloch-Pitts Neurons. Here we forget about delays, reset mechanisms and noise. In
the absence of noise the variables U} (t) reduce to fixed numbers U, i.e. gz] = f[z]. We
also neglect the time it takes for electric currents to build up the post-synaptic potential: we
put 7 — 0 in equation (1.23) (from which the reset term has been eliminated and in which
all 7;; = 0). As a result the postsynaptic potential becomes, after elimination of distracting
prefactors:

N
Ui(t) = > JwSk(?)
k=1

Since we have now lost, in a sense, the intrinsic clock of the system (all time constants have
been thrown out), we have to restore the dynamics by writing the neuron states in terms of
the previous value of the post-synaptic potential, i.e.

Sk(t+A) = 0[Uk(t) - Ug]

Time is now discretised in units of the refractory period A, and we obtain the so-called
McCulloch-Pitts neurons?:

Si(t+A) =6 [i JikSk(t)_Ui*] (1.27)
k=1

In spite of their simplicity, we will see that these neurons are already universal, in that the
operation of any (finite) Turing machine can be emulated by an appropriately constructed
network of such units.

C. Stochastic Binary Neurons. In the case where we do wish to take into account noise in
systems with McCulloch-Pitts type neurons, so that the Uy (t) are really random, it is often
convenient to take them to have the same variance and write them in a form where the
average and the variance are explicit:

* * 1
U (t) =U — §Tzi(t)
with

%TQ O =0F = / du®Pu) @B =0 2@ =1

5In fact the model proposed by McCulloch and Pitts in 1943 was even simpler !
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(the reason for this specific notation will become apparent below). The parameter T' measures
the amount of noise in the system; for 7= 0 we find the deterministic (noiseless) laws, for
T — oo the system behaves in a completely random manner. A second convenient translation
is to redefine the neuron state variables, such that the two neuron states ‘firing’ and ‘rest’
will be represented by the numbers ‘c = +1’ and ‘c = —1’, respectively, as opposed to
‘S = +1" and ‘S = 0’. This allows us to make use of all kinds of symmetry properties and of
a strong similary between neural dynamics and the physics of magnetic materials (although
we need not make this connection explicit, it has led the way in many analytical studies).
The translation is simple:

1 . 1
Si(t) :E[Uz'(t)‘lrl] Ui = E[Zjik_w
k
The stochastic +1 version of the McCulloch-Pitts recipe (1.27) thereby becomes

N
Si(t+A) =146 lz JikSk(t)—Ui*+%Tzi(t)‘|
k=1

Y
1
—[Uz(t+A +1] = 9[ ZJkUk += ’U)Z—I— Tzl( )]

U
oi(t+A) = sgnlhi(t)+Tz(t)] Z Jikox(t) +w; (1.28)
with the sign function sgn[z] = 20[z] — 1 (so sgn[z] =1 for z > 0, sgn[z] = —1 for z < 0;

sgn([0] is usually defined to be 0). The quantity h;(t) is called the ‘local field’.

The probability to find a neuron state o;(t + A) can be expressed in terms of the dis-
tribution P(z) of the remaining (independent) noise variables z;(t). For symmetric noise

distributions, P(z) = P(—z) Vz, this probability can be written in a very compact way:

Prob [o;(t+A) = 1] = Prob [hi(t)+Tz(t) > 0] = [ hit) 1 9% P(2)
Prob [o;(t+A) =—1] = [~ ¥ hOIT gy P(2 fh w1 4% P(2)

so that we can combine the two probabilities into the single expression:
Prob[o3(t+A)] = g [+ A)hi()/T)  olel = [ woodz P(z) = %+ /0 42 P(2)  (1.29)
The function g[z] has by construction the following properties:
() gle]l +gl-2] =1
1

(i)  limg oo glz] =0, gl0] = 3, limg oo g[z] =1 (1.30)

(i1) ¢'[z] = P(z): ¢'[z] > 0Vz, ¢'[—z] = ¢'[z] Vz, lim;,10¢'[z] =0
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A natural choice for the distribution P(z) of the noise variables z; is the Gaussian rule

1,2

P(z) = (2r) e 2"  z=0, 2=1

1 [ dz _1,, 1 (®V2dy ., 1
T =—+/ e 2% =—+ —e % = Z[14erf(z/V2
An alternative, which will simplify considerably many of our subsequent calculations, is to
replace the above function g[z] by the following, similar, one:

glz] = %[1 + tanh(z)] (1.31)

This function satisfies our general requirements (1.30), and corresponds to the noise distri-
bution

Plz) = %[1—tanh2(z)]

In a network of such units, updates can be effectuated either synchronously (in parallel) or
randomly asynchronously (one after the other). In the first case, since all noise variables are
independent, the combined probability to find state o(t+A) = (o1 (t+A),...,on(t+A)) €
{—1,1}* equals the product of the individual probabilities:

N
parallel : Prob[o(t+A)] = H gloi(t+A)hi(t)/T] (1.32)
i=1

In the second case we have to take into account that only one neuron changes its state at a
time. The candidate is drawn at random (each neuron has probability % to be a candidate):

sequential : choose i randomly from {1,...,N}; Prob[o;(t+A)] = g[oi(t+A)hi(t)/T)
(1.33)

D. Coupled Oscillators. One might speculate that, even though the exact details of the action
potentials might not be relevant, going to a description involving only firing frequencies is
too crude an approximation in that the degree of synchrony with with the neurons fire might
be important. This has led to the proposal to study so-called coupled oscillator models.
Essentially one builds in the reset mechanism by saying that the potentials are periodic
functions of underlying phase variables:

Ui(t) = fli(t)] flo + 2n] = fl4]

If all phases ¢;(t) are identical (mod 27), the neurons fire action potentials coherently. In the
absence of mutual interaction all neurons are assumed to oscillate at some neuron-specific
basic frequency w;. Excitatory synapses are assumed to induce a more coherent firing of
the two neurons involved; inhibitory synapses are assumed to lead to incoherent firing. The
simplest phenomenological model to have such properties is

N
Dgu(t) = i+ Y T sinl (1)~ 6:(1) (1.39)
k=1
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Figure 1.5: Evolution in time of the phase difference A¢p = ¢ — ¢y for Ji+Jo = 1 (left)
and J;+Jo = —1 (right). In the first case the two oscillators will always synchronise; their
action potentials will eventually be fired simultaneously. In the second case they will do the
opposite.

In order to see that this model indeed has the desired properties, we just concentrate on
the interaction between a given pair of identical oscillators, say number 1 and number 2
(w1 = we). Here we observe

4 161()~2(8)] = ot o]l (8) 1 (0]

The solution of this equation is shown in figure 1.5, for J; + Jo =1 and J; + Jo = —1. In the
first case the system always evolves towards a synchronised situation, with ¢; —¢9 = 2mm
(m integer); in the second case towards an anti-synchronised state, with ¢1 —¢o = 7+2mn
(m integer). Indeed, for small differences between the two phases, ¢1(t) — ¢2(t) = 2mm + €(t)
le(t)| < 1, we can linearise this equation:

d

7
For Ji2+J21 > 0 the phase difference will decrease further (the coherent state ¢1(t) = ¢p2(t)
is stable), whereas for Jio+J21 < 0 the phase difference will increase (now the coherent state
¢1(t) = ¢2(t) is unstable). As with the graded response neurons, again one often adds to
(1.34) a noise term, to account for the possibility that the randomness in the potentials Uj;(t)
is not negligible.

(t) = —[Jiz+Jn]e(t) + O((t))
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1.3 Universality of McCulloch-Pitts Neurons

The simplest neuron model we arrived at was the McCulloch-Pitts neuron (1.27). Here we
will show that even this model neuron is universal: the operation of any finite deterministic
digital information processing machine can be emulated by a properly constructed network
of McCulloch-Pitts neurons. Since the basic logical units of digital machines can all be built
with McCulloch-Pitts neurons, all theorems of computer science (on computability, Turing
machines etc.) that apply to such digital machines, will apply to networks of McCulloch-Pitts
neurons as well. Here we will not dig too deep, and just prove some simple statements.

Reduction to Single-Output Binary Operations. First of all we show how any such machine
can be reduced to a collection of simpler single-output binary machines:

¢ Finite digital machines can only handle finite-precision representations of real numbers,
ie.
™ — 3.141592653589793238462643
Every finite-precision real number can, in turn, be expressed in terms of integers:
digits decimal point

- ~ ~ ~~
m — ( 3141592653589793238462643 ; 1 )

Every integer can, in turn, be expressed as a string of binary numbers € {0, 1}, e.g.
(10011010111) = 1.2 +0.2% +0.2% +1.2" +1.2° +0.2° + 1.2 + 0.2 + 1.22 + 1.2" + 1.2°
=1024 +128+64+16+4+2+1=1239

e Every finite digital machine can apparently be regarded as mapping finite-dimensional
binary input vectors § € 2 C {0,1}" (representing characters, numbers, keys typed
on a keyboard, images, whatever) onto finite dimensional binary output vectors S’ €
{0, 1}K (characters, numbers, reply text on a screen, control signals for other equipment,
etc.). Deterministic machines will by definition always reply in exactly the same manner
to identical input data. Therefore every finite deterministic digital machine can be
specified in full by specifying the output vector S§’(S) for every possible input vector
S €, i.e. by specifying the mapping M:

M: Q- {0,1}% MS = S'(S) VS € Q

e Finally, we can always construct K independent sub-machines M, (£ =1,..., K), each
of which takes care of one of the K output bits of the full mapping M:

M,: Q—{0,1} M;S = Sy(S) VS € Q

We can therefore concentrate on the question of whether one can perform all of these single-
ouput mappings M : Q C {0,1}V — {0,1} with networks of McCulloch-Pitts neurons.

Reduction to Three Elementary Operations. To do so we proceed to reduce the problem
further. We first introduce a partitioning of the set 2 of input vectors into two subsets,
depending on the corresponding output value:

Q=0TuQ" QO ={SeQ MS=1} QO ={SeQ MS=0} (1.35)
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We now label the elements in Q. The number of elements in QF, denoted by p, cannot
exceed 2V, which is the total number of vectors in {0,1}%.

Ot ={s' 8% .., 81 8} Sk e {0,1}V

Upon introduction of the three logical operators A (AND), vV (OR) and = (NOT), which are
defined by their output tables

A:{0,1}* — {0,1} v:{0,1}*> = {0,1} -:{0,1} = {0,1}
r y|TANy r y|lxzVy

0 0| O 0 0] © z | -z

0 1| 0 0 1| 1 0] 1

1 0] 0 1 0] 1 1|0

1 1] 1 1 1] 1

We can use these basic operations to construct the operator SAME(z,y), which tells us
whether two binary variables have the same value:

SAME(z,y) = (z Ay) V ((=z) A (—y))

The definitions of AND and OR can be extended to cover more than two argument variables
in the usual way:

.’L‘1/\:C2/\---/\.’EL_1/\.’BL::Cl/\(.’L‘Q/\(---/\(.’L‘L_l/\.TL)---))

.’131V£C2V---V.’17L,1V:17L:£C1V(.’132V(---V(.’IIL71V£IIL)---))

Since we can write the operation of each single-output operation M : Q C {0,1}¥ — {0,1}
in the form of a look-up exercise, checking whether or not the input vector S is identical to
any of the vectors S* in the set Q1 (defined above):

MS = (SAME(Sl, S1) ASAME(S5, S3) A -+ ASAME(Sy_1, S%_,) A SAME(Sy, S}V))

V (SAME(S), $?) A SAME(S, $3) A -+ ASAME(Sy_1,5%_1) A SAME(Sy, 5%))

Vv (SAME(Sl, SP~1) A SAME(S,, S271) A -+~ ASAME(Sy_1, S%7') A SAME(S, 5{;1))

V (SAME(S1, S7) A SAME(S5, $8) A-+- A SAME(Sy 1, %_) A SAME(S, %))

and since this expression can be constructed completely with the three basic operations
{A,V,—}, we know that every operation M : Q C {0,1} — {0,1}, and therefore the
operation of every finite deterministic digital machine can be reduced to a combination of
the these three basic operations.

We can reduce the set of operations further, since the operation V (OR) can be written
in terms of = (NOT) and A (AND), as z Vy = =((—z) A (—y)):
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z y|lxzVy | -y | (0z)A(w)
0 0] 0 1 1 1
0 1| 1 1 0 0
1 0| 1 0 1 0
1 1| 1 0 0 0

In fact we can even reduce the set of operations further since the operations {A, =} can. in
turn, be written in terms of a single operation NAND (NOT-AND) as -z = NAND(z, z)
and z Ay = NAND(NAND(z,y), NAND(z,y)):

z y | NAND(z,y) | NAND((NAND(z,y),NAND(z,y))

0 0 1 0 z | NAND(z, z)
0 1 1 0 0 1

1 0 1 0 1 0

1 1 0 1

Elementary Operations via McCulloch-Pitts Neurons. Finally what we have to show is that
the elementary operations can be realised with our McCulloch-Pitts neurons

N
Sit+A) =0 [Z JikSk(t)_Ui*]
k=1
provided we choose appropriate values of the parameters {Jj,U;}. This we do by con-
struction. Note that in order to prove universality we only have to construct the operation
NAND with McCulloch-Pitts neurons, however, by way of illustration we also construct the
operations {A,V, —}:

z yl|lzAy|z+y—3/2|0[z+y—3/2]
0 0] 0 ~3/2 0
0 1| 0 ~1/2 0
1 0] 0 ~1/2 0
1 1| 1 1/2 1
z ylzVy|lz+y—1/2|0[z+y—1/2]
0 0] 0 —1/2 0
0 1] 1 1/2 1
1 0| 1 1/2 1
1 1] 1 3/2 1
z |z | —z+1/2 | 0[—-z+1/2]
0] 1 1/2 1
10| -1/2 0
z y | NAND(z,y) | —z—y+3/2 | 0]—z —y + 3/2]
0 0 1 3/2 1
0 1 1 1/2 1
1 0 1 1/2 1
11 0 ~1/2 0
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1.4 A Brief History and Further Reading

Let us conclude with a brief (biased) overview and crude summary of the history of the field
of the modelling and analysis of neural information processing. The idea that brain operation
and reasoning can in fact be analysed scientifically, with mathematical tools, has for a long
time not been a common one. Especially in this field, due to its interdisciplinary nature, it
often happened that a new impulse or breakthrough constituted of a discovery or idea that
in fact had been proposed already earlier, but at the time went unnoticed.

1888 Discovery of neurons by Ramon y Cajal, using Golgi’s staining method (1880). Until
this stage there had been two camps: neuronists believed the brain consisted of in-
terconnected information processing cells, reticularists saw the brain as a continuous
uninterrupted network of fibres only.

1937 Turing demystified in a way the concept of ‘intelligence’ and proved statements about
computability by machines. This marked the start of the field of ‘Artificial Intelligence’.

1943 McCulloch and Pitts introduced a very simple neuron model, and subsequently proved
its universality.

1949 Hebb introduced the idea that biological neural networks store information in the
strengths of neural interactions. As a consequence, learning is by definition the modi-
fication of interactions, for which Hebb made a proposal.

1961 Rosenblatt and coworkers defined a ‘learning rule’ according to which a McCulloch-
Pitts neuron updates its interaction strengths on basis of examples of input-output
relations, corresponding to a task that it is required to perform. They called their
systems perceptrons, and proved the following ‘convergence theorem’: if the task is
realisable by the perceptron (i.e. if a configuration of interaction strengths exists such
that the corresponding perceptron would perform the task perfectly), then the learning
rule will converge in a finite number of steps to a configuration that performs the task
perfectly.

1969 A thorough mathematical analysis of the potential and restrictions of perceptrons was
carried out by Minsky and Papert. One of the things they showed was that single
perceptrons could not perform all tasks; some tasks require layers of perceptrons, for
which no learning rule was known.

1974 Little introduced concepts from the statistical physics of magnetic systems (such as
‘temperature’). In fact preceded by Cragg and Temperley in 1954.

1974 Kohonen introduced the idea of building associative memories with recurrent neural
networks, where the basic idea is to create specific stable network states by manipula-
tions of the interaction strengths. Earlier proposed by e.g. Taylor in 1956.

1982 Hopfield made the mathematical connection with the statistical mechanics of magnetic
systems explicit, through the introduction of an energy function.
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1985 The first systematic application of mathematical tools from statistical physics to neural
network models was carried out by Amit, Gutfreund and Sompolinsky. They solved
explicitly various generalisations of Hopfield’s neural network model.

1986 Rumelhart and McClelland derived a learning rule for multi-layerfeed-forward networks
of graded-response neurons. Earlier proposed by Werbos in 1974.

1988 Gardner constructed a systematic mathematical procedure to analyse the effect of
architectureal constraints on the information processing potential of neural networks.

The last year mentioned being 1988 does not imply a lack of relevant developments since
then; it merely reflects the time it takes to clearly see which ideas have an impact and open
new doors. At present various complementary tools are used to analyse neural informa-
tion processing systems, involving techniques and jargon from statistics, information theory,
statistical mechanics, computer science, etc.

Some suggestions for further reading are the following books. I have only mentioned those
covering subjects that are also in the present course, thereby excluding some more specialised
and/or advanced ones.

History:

1. Neurocomputing - Foundations of Research, ed: J.A. Anderson and E. Rosenfeld, 1988,
MIT Press. A book containing reprints of original papers from 1890 to 1987. Compiled
from an interdisciplinary perspective, so it does not focus on mathematically oriented
papers only.

2. Perceptrons, M.L. Minsky and S.A. Papert, 1969 (expanded ed. 1988), MIT Press. The
first systematic mathematical analysis of potential and restrictions of a neural network
architecture. A nice book with character.

Textbooks:

1. Introduction to the Theory of Neural Computation, J.A. Hertz, R.G. Palmer and A.S.
Krogh, 1991, Addison-Wesley. A good textbook. Gives a coherent and clear account of
common wisdom in this field up until 1989.

2. An Introduction to the Modeling of Neural Networks, P. Peretto, 1992, Cambridge
U.P. Comparable to the previous one, but here one also finds more on neurobiology and
neurocomputers.

3. Neural Networks: a Comprehensive Foundation, S. Haykin, 1994, MacMillan. Value
for money in terms of volume, but somewhat poor on analysis and biased towards ap-
plications.



Chapter 2

Layered Networks

2.1 Linear Separability

All elementary operations we encountered in the previous chapter could not only be realised
with McCulloch-Pitts neurons, but even with a single, McCulloch-Pitts neuron. The question
naturally arises whether any operation {0,1}* — {0,1} can be performed with a single
McCulloch-Pitts neuron. For K = 1, the trivial case of only one input variable z € {0,1}, we
can simply check all possible operations M : {0,1} — {0,1} (of which there are four), and
see that one can always construct an equivalent McCulloch-Pitts neuron S(z) = 8[Jz — U]:

z | My(z) 0]—1] | My(x) 60—z +1/2] | Mc(z) O[z—1/2] | My 0][1]
0 0 1 1 0 0 1
1 0 0 0 0 1 1 1 1

jam)

For K > 1, however, the answer is no. There are several ways of showing this. The simplest
is to first give a counterexample for K = 2, which can subsequently be used to generate
counterexamples for any K > 2, the XOR operation (exlusive OR):

XOR(z,y)
0
1
1
0

==l
—= O = O

Fact: No set of real numbers {J,, J,, U} exists, such that
0lJoz + Jyy — Ul = XOR(z,y)  V(z,y) € {0,1}°

Proof: By contradiction. Assume the above statement were false, this would imply:

(z,y) =(0,1): J,—=U>0 = Jy>U
(z,9) =(1,0): J,—U>0 = J,>U
(z,9) = (L,1): J,+J,-U<0 = J,+J,<U

23



24 CHAPTER 2. LAYERED NETWORKS

This contradiction shows that the above statement can never be false, which completes
our proof.

For K > 2 we can construct a similar operation M by just applying the XOR operation to
the first two of the K input variables:

M :{0,1}¥ = {0,1} M(z1,...,rx) = XOR(z1, 1)

to which the same proof applies as to the K = 2 case discussed above. As a result we
know that indeed for all K > 2 there exist operations that cannot be performed by a single
McCulloch-Pitts neuron.

We can also give a geometric picture. The set of all possible operations M : {0,1}X —
{0,1} consists of all possible ways to fill the right column of the corresponding table with 1’s
or (’s:

z1 Ty -+ - T Tk | M(x)
0 --- -.- 0 0

10 eer - 0 0

1 1 .- 1 0

1 1 - . 1 1

The total number of possible operations M : {0,1}% — {0,1} is the number of possible ways
to fill the right column of the above table. There are 2X entries in this column, with two
possible values for each, so

number of operations M : {0,1}* — {0,1} = 22"

The set {0, 1} of possible binary input vectors consists of the corners of the unit hypercube
in RX. A McCulloch-Pitts neuron, performing the operation

S:{0,1}* = {0,1} S(x) = o[i Jrzy — U]
k=1

can be seen as dividing the space % in two subspaces which are separated by the hyperplane
Zle Jrzy = U. The information conveyed by the outcome of the operation of a McCulloch-
Pitts neuron, given an input x € {0, 1}K , is simply in which of the two subspaces the corner
x of the hypercube is located. S(z) = 1 if & is in the subspace YK | Jpzx > U; S(z) = 0
if & is in the subspace 21521 Jrxr < U (let us not yet worry about the pathological case
where z is on the separating plane for the moment). Note that this division of {0,1}¥ into
subsets, here separated by a plane, is what we already introduced earlier through the subsets
QF and Q. In terms of the above table, Q¥ is the set of all hypercube corners & € {0, 1}%
for which * = 1; Q= is the set of corners & € {0,1}¥ with *+ = 0. Since each of these 22"
operations is characterised uniquely by the set QT, each can be pictured uniquely by drawing
the hypercube in R in which corners in Q% are coloured black, and corners in Q™ are white.
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For K = 1 the hypercube reduces to a line segment with 2! = 2 ‘corners’. There are
22" = 4 operations M : {0,1} — {0,1}, i.e. 4 ways of colouring the two corners:

o: z€QF, M(x)

K=1: z € {0,1}, zeQ. M)

1
0

For K = 2 the hypercube is a square (with 22 = 4 corners). There are 22" = 16 operations
M :{0,1}2 — {0,1}, i.e. 16 ways of colouring the four corners:

o: £ QF, M(z)=

1
K=2: z € {0,1}?, zeQ M) =0

For K = 3 the hypercube is a cube (with eight corners). There are 22° = 256 operations
M :{0,1}3 — {0,1}, i.e. 256 ways of colouring the eight corners, etc. Of all these operations,
McCulloch-Pitts neurons can only perform those for which the Q7 corners & (the black ones),
can be separated from the Q= corners & (the white ones) with a single plane - J = U. Such
operations are called linearly separable. It is now very clear for the above examples K = 1
and K = 2, simply by looking at the graphs, which operations are linearly separable:



26 CHAPTER 2. LAYERED NETWORKS

K=1
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For K = 1 we recover our result that all operations are linearly separable (i.e. can be

performed by a suitably constructed McCulloch-Pitts neuron). For K = 2 we find that of
the 16 possible operations, two are not linearly separable:

z y | My(z,y) z y | My(z,y)
0 0 0 0 0 1
0 1 1 0 1 0
1 0 1 1 0 0
11 0 11 1

in which we recognise the two operations XOR (as should be) and ~(XOR).

2.2 Multi-Layer Networks

Having seen that a single McCulloch-Pitts neuron cannot realise every mapping M : {0,1}% —
{0,1}, we now set out to demonstrate that every such mapping M can at least be performed
by a two-layer feed-forward network of such neurons, with only one neuron in the second
layer. This will in fact be a specific neural realisation of the look-up table for elements of the
set QF, introduced in demonstrating the universality of McCulloch-Pitts neurons.



2.2. MULTI-LAYER NETWORKS 27

As a simple explicit example of the ‘grandmother’ neuron construction, we will now
illustrate how a multi-layer Perceptron can be designed to perform a linearly non-separable
task such as XOR. Here the set of vectors QF, for which the XOR operation is to give as
output the value 1, is

Qt = {z!, %} with z! = (1,0) x?=(0,1)

al
Wi
T1 Wa1 Ji=1
’
O S(y) =XOR
To Wiz Jo=1
Waa
Y2

The ‘grandmother’ construction is based on our knowledge of Q. For each of the vectors
x in QT there is to be precisely one neuron in the ‘hidden’ layer with the task to ensure the
state of the output neuron to become +1 in the case where & occurs as input. Weights W;;
and firing thresholds V for which this will be achieved are given by the recipe

Wi =202ct —1) =42 Wy =202z -1)=-2 B .
Wor = 2202 — 1) = 2 Wiy — 2(203 — 1) = +2 V=23 ¢

Having set the values of our parameters to the above vaules, one can check that the XOR
operation is now realised:

z=1(0,0): S(y)=0[y1+y2—1/2]=0[0+0—-1/2]=0
z=(1,0): Sy)=0yi+y—1/2]=60[1+0-1/2]=1
z=1(0,0): S(y)=0[y1+y2—1/2]=0[0+1-1/2]=1
z=(1,1): Sy =0[ym+y2—1/2]=0[0+0-1/2] =0

We next give the general construction, which works for arbitrary input dimensions and
arbitrary operations, which then en passant proves that any tramnsformation can be per-
formed by a two-layer feed-forward network. We choose L to be the size of the set Q1 =
{z € {0,1}¥| M(x) = 1}, and construct the neurons y; in the so-called ‘hidden’ layer such
that the operation of each of them is defined as determining whether the input vector
equals a neuron-specific prototype vector from Q7. Such so-called ‘grandmother neurons’ are
constructed easily. First we define the building block G:

z,x* € {0,115 : Glz*;z] =6 §(2xi—1)(2x;~k—1) —-K+1 (2.1)
i=1



28 CHAPTER 2. LAYERED NETWORKS

1
O
X1 >
O
O
- E\
O D\
O
O 0os
E}/’
O
0 /
O K
O yi = O[3 ;1 Wijzj — V]
TK
O S =011, Jiyi — U]
YL

Fact: G[z*;z] =1 if and only if z = x*.
Proof: We first turn to the trivial ‘if’ part of the proof:
K K
Glz;z] =6 Z(2xi—1)2—K+1] =0 lZl—K+1] =1
i=1 i=1
Next we show that G[z*;x] = 0 as soon as & # x*.

; _ *
1 if z; = z;
*

Vi, z; € {0,1} :  (2z; —1)(2z] — 1) = {

-1 if z; # x]
Consequently:
K
Z(Zwi —1)(2z; — 1) = K — 2 X (number of indices 7 with z; # ;)
i=1
so that:

K
vtz = > (25,-1)(2z]-1) < K—-2 = Gz*;x] =0
i=1

which completes the proof.

The expression G[z*;x], interpreted as an operation performed on the variable & (for fixed
x*), is clearly of the McCulloch-Pitts form:

K K
Glz*; 2] =0 2> (22;—1)z; — 2>z} +1
=1

=1
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We can now construct our two-layer network from these building blocks.
O ={z € {0,1}¥| M(z) =1} = {z!,2?,..., el =L}

Vi € {1, e ,L} . Yi: {07 1}K - {07 1}7 Yi = G[mlam]

The required operation of the output neuron S, finally, is to simply detect whether any of
the hidden layer neuron states y; equals one. Our final result is the following network:

K L 1
yi(z) = 9[2 Wijz; = V]  S(y) = 9[2 vi = 5] (2.2)
K
Wi =2(225-1), V=2 zi—1 (2.3)

This construction will exactly perform the required operation. The state of each hidden
neuron states whether (y; = 1) or not (y; = 0) element number 7 of the set Q% equals the
actual input z; output neuron S subsequently tells us whether (S = 1) or not (S = 0) there
is a +1 state in the hidden layer, i.e. whether x is in the set Q.

Since the size of QT can scale exponentially in K, this is usually not an efficient way of
realising the operation M with McCulloch-Pitts neurons, but that was not our aim. At least
we know now that a two-layer feedforward architecture is capable of realising any operation,
if properly contructed.

2.3 The Perceptron

Here we turn to the question of how to model and understand the process of ‘learning’. In
the relatively simple context of a McCulloch-Pitts neuron S(z) = 0[J - © — U] this means
the adaptation of the set of connections {J;} and the threshold U, in order to improve the
accuracy in the execution of a certain task M : Q C {0,1}¥ — {0,1}. We assume that we do
not know the task M explicitly; we only have examples given by some ‘teacher’ of ‘questions’
(input vectors & € {0,1}%) with corresponding ‘answers’ (the output values M(x)).

The starting point of the training session is a neuron with, say, randomly choosen pa-
rameters {J;} and U. A so-called ‘on-line’ training session consists of iterating the following
procedure:

step 1: Draw at random a question & € €
step 2: Check whether teacher and student agree on the answer:

M(x) = S(x) : do nothing, return to 1
M(x) # S(x) : modify parameters, then return to 1

modify parameters:

J — J+AJJ,U;z,M(x)]
U - U+ AUJ,U;z, M(x)]
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Student (Neural Network)
S(x)
S(@) = 0[5 Jiwi — U]
Teacher
M(z)
?

The input vectors & need not all have the same probability of being drawn. The ultimate
goal is to end up with a neuron that has ‘learned’ to perform the task M perfectly, i.e.
M(x) = S(x) = 0]J - x — U] V& € Q (which, of course, is only possible if the task M is
itself linearly separable). The problem is how to choose an appropriate recipe (AJ, AU) for
updating the neuron’s parameters that will achieve this.

A Perceptron is defined as a McCulloch-Pitts neuron, learning in an on-line fashion,
according to the following rule for updating its parameters:

{ M(z) =0, S(x) AT =—z, AU=1

Perceptron Learning Rule : (2.4)

=1:
M(z)=1, S(z)=0: AJ=z, AU=-1
This recipe is rather transparent. If S(xz) = 1, but should have been 0, the effect of the
modification is to decrease the local field h = J - & — U so that the next time question x
appears the Perceptron is more likely to give the (correct) answer S(x) = 0. Conversely, if
S(x) = 0 but should have been 1, the modification causes an increase the local field so that
the Perceptron is more likely to give the (correct) answer S(xz) = 1 in the future.

Perceptron Convergence Theorem. The nice and powerful property of this specific recipe is
the existence of the following Perceptron Convergence Theorem:

Fact: If the task M is linearly separable, then the above procedure will converge in a finite

number of modification steps to a stationary configuration, where V& € Q : S(z) =

Proof: We first simplify our equations by introducing an additional dummy input variable,
which is simply constant: zg = 1. This allows us, together with the identification
Jo = —U, to write the perceptron and its learning rule in the compact form

S(z) = 0[J - x|, x = (z9,21,...,05) € {0, 1} 5T J = (Jy, J1,...,Jg) € RET!

M(z) =0, S(x)

Learning Rule : M(z) =1, S(x)

AJ =—x
J—a — AJ =)2M(z) — 1]z

1:
0: A
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The new set Q now consists of all vectors (zg,z1,...,2x) with £ = 1 and with
(x1,--.,zk) in the original input set.

e The first step of the proof is to translate the linear separability of the operation
M into the following statement:

IW € RET! such that Ve € Q: M(x) = (W - ]
and, since the argument of the step function can therefore never be zero:

36 >0: such that Ve € Q: |W -x| > ¢

Student Perceptron
S(x)
S(x) =0[J - x]
Teacher Perceptron
M(z)
M(x) = 0[W - x|

We may consequently view the task operation M as generated by a ‘teacher percep-
tron’, equipped with weights/threshold W. Since |W| can be rescaled arbitrarily
without affecting the associated operation M, we may choose |W| = 1.

e A modification step, where J — J' = J+AdJ, obeys the following two inequalities:
J -W=J-W+[(2M(z)—1llz- W
=J W+ 20z - W]—-1z - W
=J W+ |z -W|
>J - W+4 (2.5)

and
I[P = [J + 2M () - 1]z]?

=J? + 2 sgn[W - z|J -« + z*
<J?*-2sgn[J-z]J -z + K +1
<J’+K+1 (2.6)

After n such modification steps, repeated usage of the above inequalities gives:

J(n)-W > J(0) - W +nd |J(n)|* < |J(O) + n(K+1) (2.7)
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e We now define
J-W

||
Due to the Schwarz inequality |z - y| < |z||y| we know that |w| < |W| = 1. After
n modifications we have

W

J(n)-W> J(0)-W +né
|J(n)| VIJO)]2 +n(K+1)
From this we conclude that there can be only a finite number of modification steps

n, the algorithm will have to stop at some stage, since otherwise we would run
into a conflict with |w(n)| < 1:

w(n) = (2.8)

lim w(n) > & JO)-W+né
n—00 n—)oo \/| |2_|_n K+1)

If no more modifications can take place, the system must by definition be in a
configuration where M(x) = S(x) V& € Q, which completes the proof.

The perceptron convergence theorem is a very strong statement, as it depends only on the
linear separability of the task M being learned. In particular it doesn’t depend on the
probability distribution of the input vectors . An upper bound 1,y for the number n of
modification steps required can be obtained by checking at what stage we actually run into
conflict with |w(n)| < 1:

[J(0) - W + nmaxd]?

|J(0)[2 + Tmax (K +1)
For zero initial connections, J(0) = (0,...,0), we obtain:

K+1
nmax:(s—Q

=1

Although this is of limited practical value, as we usually have no information about §, it is
consistent with our geometrical picture of the linearly separable operations: the more compli-
cated the operation M, the closer the separating plane will be to the corners of the hypercube,
the smaller §, and therefore the larger the number of adaptation steps the perceptron needs
to obtain perfect performance.

Note that the number 7 is not the same as the number of times we have to present an
example input vector &, but the number of actual parameter modifications. It could happen
that the number of times we need to draw at random a question @ is still very large, simply due
to the small probability of some particular relevant questions to be selected. Alternatively,
we could also draw the example vectors « in a fixed order, since the perceptron convergence
theorem does not require them to be drawn at random. In the latter case the number of
times we present a question x will also be bounded. However, since, as we will see later,
the number of randomly drawn questions € {0,1}* needed to obtain convergence (for a
linearly separable task) scales linearly with K for large K, it is usually more efficient to draw
the examples at random (note: making a single full sweep through the set {0, 1} of possible
questions involves 2% trials).

Ising Perceptrons. The only property of the input vector space  C {0,1}¥ that is actually
used in proving convergence of the perceptron learning rule is the existence of an upper bound
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for the norm of x:
3C : such that Vz € Q: 22 < C

(the constant C will then simply replace the factor K +1 in equation (2.7)). In particular,
we can therefore apply the same procedure to € Q C {—1,1}". If we also transform the
perceptron output and the task definition in the familiar way from the {0,1} representation
to the so-called ‘Ising spin’ variables {—1, 1}, we obtain the Ising perceptron:

task : T:QC{-1,1}" — {-1,1}
(2.9)
Ising perceptron: o:Q C{-1,1}" = {-1,1}, o(z)= sgn[J -z + w]

with the learning rule
step 1: Draw at random a question x € 2
step 2: Check whether teacher and student agree on the answer:

T(x) =
T(z)

o(x): do nothing return to 1

o(x): AJ =T(x)xr, Aw=T(x) then return to 1

Note that this learning procedure (as the original {0,1} version) can be written in an even
more compact way, without the explicit check on whether or not perceptron and teacher give
the same answer to a given question . With the convention zy = 1 V& € Q and Jy = w (the
dummy variable zo as before takes care of the threshold) we may write:

1
Draw at random an x € €, AJ = 3 [T'(x)— sgn(J -x)]x (2.10)

We can now run through the perceptron convergence proof. We simply replace M(z) —
[T (x) + 1] and use for the extended input vector & € {—1,1}VT! the inequality > < N+1.

The advantage of the {—1,1} formulation over the previous {0,1} one is a significant
simplification of subsequent calculations. For instance, for randomly and uniformly drawn
vectors & = (z1,...,zy) we find the expectation values:

T € {0, l}N (iEZ) = % <$Z$J> = % + %51]

we {11} (z)=0 (ziz;) =0y

The Continuous Time Limit. With the familiar convention zy = 1 V& € Q we can write the
learning rule of the original {0, 1} representation of the perceptron in the compact form

Draw at random an x € (), AJ =ex[M(z)—6(J - x)] (2.11)

without the need for checking explicitly whether M(x) = 6(J - ). We have inserted a
prefactor €, with 0 < € < 1, which controls the rate at which the parameters J change.
Note that with this e the perceptron convergence theorem still applies. We will derive, in a
specific limit, a differential equation to describe the evolution in time of the parameters J. A
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more thorough derivation requires elements from the theory of stochastic processes; here we
will restrict ourselves to a reasonably simple derivation. The resulting differential equation is
considerably more convenient to describe the learning process than the above iterative map
(2.11).

We now measure our time in units of €, so
AT =J(t+e) —J(t)

After a modest number n < e ! of iteration steps the vector J will have changed only a
little,
J(t + ne) = J(t) + O(ne)

For intermediate stages £ < n we may therefore write:
J(t+Lle+e)—T(t+ Le) = exy [M(xp)—0(JT(t) - o+ O(ne))]

in which &, denotes the input vector that is drawn from €2 at iteration step £. We now sum
the left- and the right-hand side of this equation over the iteration index £ =10,...,n—1:

n—1 n—1 n—1
SN J(t+lete) =Y Jt+Lle) =€ o [M(zg)—0(J(t) - g+O(ne))]
£=0 =0 £=0

which gives
J(t+ ne) —
ne

n—1
J@) _ % 3" @ [M(0)—0(I (1) - &g +O(ne))]
£=0

We now take a limit where ne — 0 and n — oo (e.g. n =€ 7 with 0 <y < 1). As a result
the left-hand side of the above equation becomes a temporal derivative; in the right-hand
side we obtain an average over the input set :

%J(t) = (@ [M(z)—0(J(t) - z)])a (2.12)
with (f(x))a = > gecop(x)f(x) and with p(x) denoting the probability that input vector x
is drawn from Q during the learning process. This equation (2.12) is valid for times measured
in units of the learning rate ¢, in the limit € — 0.

If we apply this derivation to the Ising perceptron (2.9,2.10), we find the same continuous
time equation for J(¢), now written in the form

LI0) = 3@ [T(@)~ sen(I () 2)a (213)

At first sight it might seem that the continuous time equation is weaker than the discrete
time one, as it is derived in a specific temporal limit and involves only averages over the
distribution . Nevertheless we can still prove that, provided the task is linearly separable,
the continuous time equation will converge towards the desired state. This can even be shown
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to happen in a finite time. We restrict ourselves for simplicity! to discrete and finite input
sets €2, and we define the constant K > 0 as

K = minp(z)|W - |

Fact: If the task M is linearly separable, then equation (2.12) will converge to a fixed-point
J such that 0(J - ) = M(x) Vo € Q.

Proof: First we show that the dynamic equation (2.12) must lead to a fixed-point. Then
we show that this fixed-point corresponds to a state where the perceptron performs the
task M perfectly.

e Since M is linearly separable, 3W such that M(xz) = O(W - z) Vz € Q. Note
that we can write the differential equation (2.12) as a so-called ‘gradient descent’

equation:
=2 B B =T @) BT 0 —0W o)) (214)
' aJ; '

(which can be verified easily by explicit derivation). As a result we know that
during the process (2.12) the quantity E can only decrease:

OF d

%E[J] ZBJ dt ’:_Xi:{a_JiFSO

e In fact we can establish a positive lower bound for |4 E[J]| which holds for as long
as E > 0, using the general inequality y? > (W - y)? (this immediately follows
from the Schwarz inequality, in combination with |W| = 1):

2
4 gl = - [%J] = —(@[o(W - z) — 0(J - z)])’

~((W-2)[B(W - z) — (] - 2)))?

| X W a0l )W )|

reQ

2
S—{ min _ p(z )IW-wI}

e (J)

in which Q*(J) = {x € Q| (J - z)(W -x) < 0}. This set is not empty if £ > 0.
We now immediately arrive at

2
E[J]>0: %E[J] < —{gcnemp( )W - a:|} K2 (215)

! A similar proof can be set up for the case where the input set is not discrete; here one will needs some
additional assumptions such as (36 > 0) : |W - | > §|z| for all z € Q.
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e Apparently the error E(t) = E[J(t)] obeys
E(t)<0 for t> E(0)/K?

On the other hand, we can prove that E is bounded from below (using 6(z) =
3l sgn(z) +1]):

B(J) = 5{(J @) [ sgn(J @) — sen(W -a)])o

= 2(J -al[1 ~ sen(J @) sen(W )]0 > 0

As a consequence we know that E(t) = 0 for ¢ > E(0)/K?, which, in turn, implies
that £.J; = 0 Vi as soon as t > E(0)/K?. Therefore the vector J(t) evolves in a
finite time towards a fixed-point. 2

e Finally we show that any fixed-point will have the stated property. A fixed-point
J satisfies
(x| sgn(W -x)— sgn(J -x))a =0

Taking the inner product with the ‘teacher’ vector W gives:
(W -z) [ sgn(W -z)— sgn(J - z)])a = 0

(W -z|[1 — sgn(W -z) sgn(J -z)])a=0
so, since |W - x| > 0 Vo € Q:

VeeQ: sgn(W.z)= sgn(J-x)
which is equivalent to saying M (x) = 0(J - ) Vo € Q. This completes our proof.

The quantity E(J) (2.14) that is found to be minimised by the process (2.12) has a clear
interpretation. By using the identity 2[1 — sgn(A) sgn(B)] = §[— AB], we can write E(J) as

E(J) = (J - 2|0[-(J 2)(W - z)])a (2.16)

Apparently E(J) measures the average distance to the separating plane J - = 0 of all those
input vectors & € ) that are at the wrong side of this plane. Minimising F is therefore
equivalent to moving the plane in such a way that this average distance goes down. At the
minimum of E indeed the number of vectors at the wrong side of the plane is zero.

This interpretation of the learning rule as a gradient descent minimisation of some error
measure (at least in the continuous time limit (2.12)) is an important one. Firstly, it allows
us to build systematically other learning rules for our perceptron, by specifying alternative
error measures, deriving the corresponding gradient descent equation, and subsequently per-
forming the translation from the continuous time formulation back to the original discrete
time formulation. Secondly, this interpretation also allows us to derive learning rules for the
more complicated layered networks.

2A function E of a dynamical variable with these properties, bounded from below and descreasing mono-
tonically with time, is called a Lyapunov function.
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2.4 Learning in Layered Networks: Error Backpropagation

For feed-forward layered networks, where the state of any neuron cannot feed back to influence
its input, the difference between graded response neurons and McCulloch-Pitts neurons is not
too large. Consider two subsequent layers of graded response neurons, {U;} (i = 1,...,K)
and {U]'} ( =1,...,L), respectively. If the states in the first layer {U;} are stationary, the
equations for the second layer are solved easily:

d

TEU{ Z JixglUx — Ug] = Uj(t)

Uj(t) = U} (0)e -t/wzJ,kg[Uk—UkJ [1-e77],  Ul(oo =3 JuolUs ~ U]

Therefore, if we simply walt until all layers have relaxed towards thelr stationary state
{U/(o0)}, one layer after the other, then for both McCulloch-Pitts neurons and graded re-
sponse neurons the effective equations can eventually be written in the general form

Si=g [Z JikSk — UZ*] (2.17)
k
with McCulloch-Pitts neurons just corresponding to the special choice g[z] = 6[z].

Single-Output Feed-Forward Two-Layer Networks. We now build a two-layer feedforward
network of such units:

al
O
T
O
O
O
O D\
O
> ‘D S
EI/(
O
O
O K
O i = g[X =1 Wijzj — Vil
TK
O S = g[>ic, Jiyi — U]
YL

By using the familiar trick of adding the dummy variables zo = yo = 1 and defining W;g = —V;
and Jy = —U, we can write our equations in their simpler form

K L
9> Wijz;] S =g[>_ Jii (2.18)
=0 i=0
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or, in combination:
L K
S(@) =g |>_ Jigl)_ Wija,] (2.19)
=0 =0

The operation M to be learned need no longer be formulated in terms of binary variables,
since the neurons produce real-valued output, so we write more generally:

M:QCRE 5 0,1] (2.20)

Note, however, that the universality proof of two-layer feed-forward networks was given only
for binary input- and output variables. The aim of a learning procedure is to achieve S(z) =
M(x) Vo € Q. In the spirit of the situation we encountered with the continuous time version
of the perceptron learning rule, we now define the dynamics of the weights by gradient descent
on an error surface E(W,J) for which one usually chooses

B(W, ) = 5 ([S() - M(@))n (221)

Clearly E is bounded from below; its minimum E = 0 corresponds to the desired situation
where S(x) = M(x) Ve € Q. The learning rule thereby becomes:

d 19} d 0
W= —— E(W,J ZJi=——FEW,J 2.22
dt Y BWij ( ’ ) dth (9.]1 ( ’ ) ( )

which guarantees

2
d OE d O d OF 9B 2
°E= W ] = — — < 2.23
" " 2wy a2 Z{aWij} 2 {aJ,-} <0 0w

ij

The overall error £ will always go down, however, we have no guarantee that we will end
up at the absolute minimum F = 0. A simple one-dimensional example will illustrate what
could happen:

f(z)

There are three local minima of f(z) (indicated by e), of which one is the global minimum,
with two unstable fixed-points (indicated by o). Nevertheless, the dynamic equation %x =
—% f(x) will lead to the desired minimum only for initial values z(0) in a restricted segment
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of the z-axis. If 2(0) happens to be close to one of the other two local minima, the system
will evolve towards a sub-optimal local minimum instead.

We can now simply use the chain rule for differentiation to work out the learning rules
(2.22). We introduce the output error A(x) = M(x) — S(x) the network makes upon pre-
sentation of input vector & € ), which allows us to write

L
4= (ZE A@)a = (IS T @a (220
L
%sz = (%S;I(,Z]) (g [Z Jryk] Z Jo aaWyf]

g [Z Jkyk Z Jé(szfg [Z Wém-rm xjA(w»Q

k=0 =0
L K
= (gD TewrlJig [ Y Wimzm]z;A(x))a (2.25)

Usually the choice made for the nonlinear function g[z] is something like g[z] = 3[1+tanh(z)]
or g[z] = erf(z), both of which have the property that the derivative of g[z] will be some
simple function of g[z] itself, so ¢'[z] = G[g[z]], in which case the learning rule simplifies to:

& i = (GIS@) b @) (2.26)
d
dt

We can now run backwards the derivation of the continuous time equation from the discrete

modification rule, as discussed in the case of a perceptron, and turn this so-called batch-

learning (2.26,2.27) into an on-line learning process:

Wij = (G[S(2)]iGlyi(@)]z;A(z))o (2.27)

Tt + ¢) = Ji() + eG[S(@)]y: Aw) (2.28)

Wij(t + €) = W;;(t) + eG[S ()] J;Glyi(x) |z Ax) (2.29)
§ (=)

i = (GS@)wA @) (2.30

D,y = (8@ 0@ M) (2.31)

In the on-line equations (2.28,2.29), the vectors z € Q are drawn at random at each iteration
step. This discrete formulation, with the understanding that ¢ < 1, is called ‘learning by
error backpropagation’. The term stemming from the property that, for the on-line formu-
lation (2.28,2.29), by performing the chain rule differentiations, we are essentially linking all
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variations in parameters appearing in an earlier layer of neurons to the resulting changes in
the error A(x) in the outside layer.

Generalisation to Arbitrary Feed-Forward Networks. The above construction can be gener-
alised easily to an arbitrary number of output variables and an arbitrary number of hidden
layers, as long as the structure remains of a strictly feed-forward nature.

We imagine a structure with K input variables and L output neurons. In between are
m hidden layers, labelled by £ = 1,...,m, each of which containing N, neurons, the states
of which are written as yf (t=1,...,Ny). The weight connecting neuron j in layer £ — 1 to
neuron ¢ in layer £ is denoted by ij. The equations giving the neuron states then become
(with the convention of the extra dummy neurons to take care of thresholds):

M:QCRK = 0,1]" S:QCRE 5 j0,11" (2.32)
K Ny_1
vi=g [Z Jfﬂj] : yi=g [Z f;yf_ll (£>1) (2.33)
j=0 Jj=0
Nm
Si=g [ JiTJ’-LHy;-n] (2.34)
§=0
yi y
O
O O
T O O o St
O O
O O =
O O O O
O O
O 0 0 O
O [
O - - O
O O
O O O
O - - [
O O
TK O O o Sy
O O
O
YN, YN,

The overall error measure is now defined as the sum of the squared errors of the L individual
output neurons:

E(J) =

N —

L
> ([Si(@) — Mi(z)])a (2.35)
i=1
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FE is bounded from below; its minimum E = 0 corresponds to the desired situation where

Si(z) = Mi(z) Ve € Q and Vi € {1,...,L}. The gradient descent learning rule generalises
to:

d , 0 .

—J;=———=E(J A 14 2.36

7%= g P V60 (2.30

which guarantees
2
OF d gt
:ZZaJE dt U_ ZZ{@J{Z} — (2'37)
ij

To work out the learning rules (2.36), we again define output errors A;(x) = M;(x) — Si(x)
(of which there are L). We also simplify our equations by writing ¢'[z] = G[g[z]]. This allows
us to write for £ =m + 1:

d m+1 _ < 8S’€

75T = 2 G Ana = (AGISI e (2.38)

k=1 1]
for 1 <2 <m:
d , <, 08
—J. = —A
dt i g(ajzg] k)Q
- —1 v 4
k=1i;=0  im=0 9y;, Oyin oy;, 9J;;
L Ny Nm, . .
=3 > Y AMGISHIE Ly 1 - Glyi 1, Gl )0, ys e
k=11,=0 im=0
L Ny N

=3 > - Y (AGISHIGE Gy 1T Gl T, Gl e (2:39)

k=ligp1=0 =0
and, finally, for £ =1 we only have to change the last derivative in the previous chain:

L N»

dt Z] Z Z Z AkG[Sk JT+1G[yZm] Imim—1 ’ G[yZZ] ZzZlG[yll]l‘j)Q (240)
k=142=0 im=0

The discrete-time on-line version of this procedure is obtained in the by now familiar manner.
The average over the set () is removed and at each iteration step an input vector & € € is
drawn at random instead:

TEH (4 €) = JPH(E) + eAGISTyT (2.41)
for1 <4 <m:
L Ngp , . )
Tht+e) = J;t)+ed. > - Z ARGISKTEH Gy T, G[yiill]‘]wizlG[yf]yj_l

k= 12[_;,_1—0 Zm—O
(2.42)
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and for ¢ = 1:

L N3 N,

Tht+e)=T5+ed Y > MGISKTE T Gy 1T - Gyl Jh, Glyi )z (2.43)
k=lia=0  im=0

with the learning rate ¢ < 1. The above equations illustrate more clearly than in the two-layer
case the suggestion of errors propagating backwards through the network to the parameter
that is being modified.

2.5 Dynamics of Learning in Large Perceptrons

Here we show how for large perceptrons and simple probability distributions for the input
vectors & € ) the dynamical equation for the connections J(t) can be reduced to just two
coupled non-linear differential equations, which contain all the relevant information on the
learning process and the performance of the perceptron at any time. In particular, we will
find the generalisation error of the perceptron as a function of time (i.e. given the desired
reliability of the system’s operation, we know the required duration of the learning stage).

Macroscopic Observables. Our starting point is the Ising perceptron described by the
continuous time equation (2.13), with the linearly separable task T'(xz) = sgn(W - z). By
taking the inner product in both sides with J and W we obtain the following two equations:

d d

EJQ =2J- EJ =((J z)[ sgn(W - z)— sgn(J - z)])a
S(W ) = (W -2) [sen(W -2)~ sen(J @)

We now put J = JJ, with |[J| = 1, and w = W - J. Using relations like (W - J) =
J %W%J we obtain the following two equations in terms of the two macroscopic observables

J and w:
d 1

%J = 5((:7 -x) [sgn(W ) — sgn(J - m)]>Q
J%w = %([(W ) —w(J - :1:)] [sgn(W -x)— sgn(J - :c)])g

Note that the statistics of the input vectors & enter into these equations only through the
two quantities u = W - & and v = J - &, so that we can write

%J = %/dudv P(u,v)v [ sgn(u)— sgn(v)]
J%w = %/dudv P(u,v) [u—wv] [ sgn(u)— sgn(v)]

in which P(u,v) denotes the joint probability distribution for the variables u = W - & and
v =J -x, where z €  with probability p(x). This distribution depends on time through
the evolving vector J.
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By working out the effect of the sgn() functions for the various integration regimes, the
above differential equations can be written in the simple form

%J =— /Ooo/ooodudfu v [P(u, —v)+P(—u,v)] (2.44)

d

T
Clearly %J < 0 and %w > 0 at all times. In order to quantify the degree to which the
perceptron has learned the task at hand, and to interpret the dynamic equations (2.44,2.45),
we can define and calculate some error measures. The quantity E(J) (2.14), for instance,
can be rewritten in terms of the above variables as

— %/Ooo/owdudy [u4wv] [P(u, —v)+ P(—u,v)] (2.45)

E—J /0 - /0 * dudv v [P(u,—v) + P(=u,v)] (2.46)

Another popular quantity is the so-called generalisation error E,4, defined as the total prob-
ability of finding an input vector & € €2 such that sgn(W - ) # sgn(J - ). Its definition
E, = ([—(W - z)(J - x)])q translates immediately into

Eg:/0 /0 dudv [P(u,—v) + P(—u,v)] (2.47)

All these equations are still completely general. The specific details of the task, of N and
the distribution of input vectors are contained in P(u,v). The length J of the evolving
vector J always decreases monotonically. As soon as J = 0, we will have to define in the
original dynamical rules what we want sgn(0) to be (the same, of course, occurs in the original
perceptron learning rule); the usual and most natural choice is sgn(0) = 0.

Large Perceptrons with Uniformly Distributed Input Vectors. The three important effects of
studying the limit of large perceptrons, N — oo, and uniformly distributed input vectors,
Q = {-1,1}" with p(z) = 27V Vz, are (i) that we can calculate P(u,v), (i) that P(u,v)
turns out to be a rather simple function, and (4i7) that P(u,v) depends on time only through
w. This means that the two equations (2.44,2.45) close, i.e. their right-hand sides can be
expressed solely as functions of (w, J). Instead of N coupled nonlinear differential equations
(for the N components of the wheight vector J, where N — 0o0) we have reduced the problem
to just two coupled nonlinear differential equations, which in fact can subsequently be further
reduced to only one. Not all of the properties assumed here to arrive at this simplification
are, strictly speaking, necessary. In fact we only need N — oo and p(x) = []; pi(z;) to play
the game, and we can even apply the same ideas to multilayer networks, but here we will just
illustrate the simplest case.

For N = oo and Q = {—1,1}" with p(z) = 27 Vz € Q (so that all components of
x are distributed independently according to p(z;) = % for z; = +£1), we can try to apply
the central limit theorem to the two stochastic quantities v = W - and v = J- x, which
would suggest that they are described by a Gaussian probability distribution P(u,v). This
will usually be true, but not always (one simple counterexample is the case where W or
J has only a finite number of nonzero components). The precise condition for an inner
product W - & to acquire a Gaussian probability distribution for N — oo, with statistically
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independent random components z; € {—1,1} (with equal probabilities), is rather subtle (see
e.g. W. Feller, 1966, ‘An Introduction to Probability and its Applications IT’, Wiley, New
York). A sufficient condition is

N N
. 2 2
: 2 - 2.4
Ve > 0 J}%EQ[WZ ekz_:ka] 0 (2.48)
A necessary condition is
N w4
lim Wi (2.49)

N—roo [Ezgil W12]2 a

(for a derivation of these conditions see Appendix A). Both conditions state that for large N
the inner product W - & should not be dominated by just a small number of components of
Ww.

In the generic case both conditions (2.48,2.49) are fulfilled , and P(u,v) is a Gaussian
distribution. In appendix B we derive some general results for Gaussian distributions of more
than one variable. For the present problem we can calculate directly the first few moments
of P(u,v) (note: (z;)q =0, (ziz;)0 = di;):

Jdudv u P(u,v) = (uyq =N, Wilz)a =0

Jdudv v P(u,v) =) =XV, Jiz)ae =0

Jdudv v?P(u,v) = (@u?q =37 WiWj(zzj)o =S Wi=1 (2.50)
Jdudv v2P(u,v) = (wtq =YN_ JiJizz))e =28, J2=1

[dudv uwv P(u,v) = (uw)o = LN Widimz)a =N, Widi=w

Using the results of Appendix A, we know that the values of the moments (2.50) completely
determine the distribution P(u,v):

1 CRAWYES
p<u,v)zvie“‘e <) () A1:<<u2> <uv>>:<1 “f)

™

All we need to do is to invert the matrix A~!, which gives the desired result:

1 1 —w 1
A_l—w2<—w 1 ) detA_l_w2

P(’u,’U) - - e—%[u2+v2—2wm}]/(l—w2) (2'51)

Without having to calculate integrals, we can already draw important conclusions on the
solution of the differential equations (2.44,2.45), by simply exploiting the property that (2.51)
is invariant under the permutation u <> v, leading to the identities P(u, —v) = P(—u,v) and

/Ooo/ooodudv v [P(u, —v)+P(—u,v)] = /Ooo/ooodudfu u [P (u, —v)+P(—u,)]
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)

Figure 2.1: The relation between J(t) and w(t) during the training of large perceptrons with
small learning rates, on linearly separable tasks. Different curves refer to different initial
conditions (w(0),J(0)). The flow through these trajectories is from the left to the right.

As a result we can simplify (2.44,2.45) to
d d 1+w

—J=— —w=—"K 2.52
1= ke  Lo="Y (2.52)
dudv 2,2 2

[u +v*4+2wuv]/(1—w?) 2.53
/ / ™1 — w2 ( )

Elimination of K (w) from the two equations (2.52) gives (1 + w)*I%w + J*I%J =0, or
d{lo (1+w)+1o (J)}—O N (O (2.54)

ap | 0BV T s = T 1tw(t) '

in which the constant can be determined by inserting the details of the initial state: C' =
J(0)[1 + w(0)]. The curves (2.54), for various values of C, are shown in figure 2.1.

In order to go further, and calculate the values of the macroscopic observables as functions
of time, we calculate in Appendix A the integral K(w) (2.53). The result is

l-w
K(w) =
) V2
with which we obtain for (2.52)
1— 1—w?
by 1w 4, 1-w (2.55)

dt V2or dt JV2m

Finally we can use the relation between J and w (2.54) to reduce the set (2.55) to just a single
equation for w(t). We simply substitute J(¢) = J(0)[1 + w(0)]/[1 + w(t)] into the differential
equation for w(t):

d

W= —[1 + w][1 — w?] D = J(0)[1 +w(0)]v2r (2.56)
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Figure 2.2: The generalisation error E, as a function of time, following a random initial
weight configuration, i.e. E4(0) = 3. The different curves refer to J(0) =2, 3, 1, 3

y 29 4y 9 (fI‘OI’Il
top to bottom).

This equation is somewhat nasty to solve. The inverse equation for %t, in contrast, is solved
easily:

d,_ D D [1 N 1]
do  [l4+uwl—w?] 2M+w|ll+w 1-w

1 1 1
—-D
2 [[1+w]2+1—w2]

_1D[ 2 1 1]
4T [[14w? 14w 1-w
1_d 2
—-p 22 L logll +w] —logll —
1 dw{ T4 o 7108l +wl —log] w]}
So that

t=J(0)[1 +w(0)]\/§{1og H J_r Z]% L A} (2.57)

14w

with the constant A determined by initial conditions:

A

1 1+ w(O)] > (258)

RE R e

In particular, for the simple and common case where the initial student vector J(0) is drawn
at random, we typically have w(0) = 0. The solution (2.57) now takes a simple form:

w(0) =0: t:J(O)\/g{logEi‘Z]%+ lj:w} (2.59)
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Figure 2.3: Evolution in time of the macroscopic observables J = |J| and w = J - W

for a numerical simulation of the standard discrete-time perceptron learning rule (with a
randomly drawn task vector W and learning rate e = 1), initialised randomly. In each
picture: J(0) € {2, 3,1, 3}.

For large perceptrons we can also work out the precise relation (2.47) between w and the
generalisation error E, (2.47) (see Appendix A), which gives

1
E, = ;arccos(w) w = cos(mEy) (2.60)

This one-to-one relation enables us to write the equations for w (2.56,2.57) in terms of E,.
For instance, by using standard relations like cos(2a) = cos?(a) — sin?(«), we can transform
the result (2.59) (referring to w(0) = 0, E,4(0) = 1) into:

1 /=

_ 1 /x a2t my 1 }
t=3 2,1(0){1 tan’(; ;) — 2log tan(;wEg) (2.61)

(drawn in figure 2.2).

2.6 Numerical Simulations

We end this chapter with some numerical simulations of the various learning procedures and
architectures. We will illustrate some general trends and, were possible, make comparisons
with theoretical results.

Numerical Simulations of Perceptrons. We first simulate numerically the original discrete
perceptron learning procedure (2.4), for different choices of the input space dimension N and
the initial length J(0) = |J(0)| of the student vector. For simplicity we choose Q = {—1,1}¥,
p(x) = 27N Vx € Q, and a randomly drawn teacher vector W. The results are shown in
figure 2.3. Several conclusions can be drawn from such experiments (keeping in mind that
for specifically constructed pathological teacher vectors the picture might be different):
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1. The duration of the learning process scales linearly with N.

2. If viewed on the relevant N-dependent time-scale (as in the figure), the fluctuations
in w (due to the randomness in the selection of input vectors &) become negligible as
N — oo (this is in fact the property which enabled the derivation of the deterministic
continuous-time equation).

3. In contrast to the situation with small learning rates, for ¢ = 1 all differences in the
initial length J(0) which are of order O(1) are irrelevant (clearly: they can be wiped
out in just a few iteration steps).

Next we show how for N — oo and € — 0 the learning dynamics is indeed described by
equation (2.57). We have to keep in mind that in the derivation we have taken the two limits
in a specific order: lim,_,( followed by limy_, .. The required € therefore may depend on N:
e = €(N). Since € defines the unit of time in the process J(t + €) = J(t) + eAJ(...), and
since the learning time is found to scale linearly with N, we are led to the scaling relation

e(N) =éNL, ekl (2.62)

According to the simulation experiments for small €, as shown in figures 2.4 and 2.5 this
is indeed the appropriate scaling. Note that the time can here no longer be identified with
the number of iteration steps (as in the € = 1 case), for € < 1 the relation is t = ngepse.
Equivalently,

Ngteps = N t/ €

Note also that the roles played by the two limits N — oo and € — 0 are different. Decreasing
€ moves the experimental curves towards the theoretical ones; increasing N reduces the
fluctuations (mainly in initial conditions).

Numerical Stmulations of Error Backpropagation. In the case of multi-layer networks, trained
with the on-line version of error backpropagation (i.e. the version where at each iteration
step an input vector is drawn at random), there is little theory to compare with (apart from
results on the so-called ‘committee machines’; two-layer networks in which only the weights
feeding into the hidden layer evolve in time). Therefore we will just show how the procedure
works out in practice, by measuring as a function of time, for a network with two layers and
a single output neuron, the output error E = £([S(z) — M (z)]?)q for two simple tasks: the
parity operation (in +1 representation) and a linearly separable operation (with a randomly
drawn teacher vector):
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Figure 2.4: Evolution of w in an Ising perceptron (with N = 1000 and a randomly drawn
task vector W), for eN € {1, 0.1, 0.01}, following random initialisation. In each picture:
Solid lines = numerical simulations; dashed lines = theory (J(0) € {2, %, 1, %}, from top to
bottom).
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Figure 2.5: Evolution of w in an Ising perceptron (with € = 0.01/N and a randomly drawn
task vector W), for N € {10, 100, 1000}, following random initialisation. In each picture:
Solid lines = numerical simulations; dashed lines = theory (J(0) € {2, %, 1, %}, from top to
bottom).
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p task T: M(z) =[1K,z; € {-1,1}
zeQ={-11} (2.63)
task IT: M(z) = sgn(W - z) € {—1,1}

to be learned by the two-layer network
L K
S(z)=g lz Jiyi(m)] yi(z) =g | Y Wijz, glz] = tanh(z) € (-1,1)  (2.64)
i=0 j=0

with the usual dummy variables o = yg = 1. Perfect performance would correspond to
E = 0. On the other hand, for a task M(z) € {—1,1} a trivial perceptron with zero
parameters (weights and thresholds) throughout, would give E = (M?(z))q = 3.

The results are shown in figures 2.6, 2.7 and 2.8 (all these results involve four indepen-
dent trials for each parameter combination and each task). For the on-line version of error
backpropagation to approach the learning equations involving averages over the input set
(the ‘batch’ version, corresponding to gradient descent on the error surface), we again have
to take the limit € — 0 for every (K, L) combination, so we should expect € = ¢(K, L). The
simulation results indicate

e(K,L) =¢K 1, i1 (2.65)

We have to be careful, however, in drawing conclusions about whether the network succeeds
in solving the problem from experiments such as the ones in figures 2.6, 2.7 and 2.8. A
learning procedure can involve several distinct stages and time-scales (possibly dependent
on initial conditions). For instance, the experiments done in the time window 0 < ¢ < 100
suggest that the network does not succeed in performing the parity operation for (K, L) €
{(10,10),(10,15)} (whereas we know it is capable of doing so for L > K). However, if we
enlarge our time window we do find a certain fraction of our trials being succesful (one just
has to wait longer), as is illustrated by figure 2.9. The system apparently spends a significant
amount of time in a transient so-called ‘plateau’ phase, where the error E does not change
much, before it discovers the rule underlying the training examples.
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Figure 2.6: Evolution of the overall error E in a two-layer feed-forward network, trained by
error backpropagation (with K = 15 input neurons, L = 10 hidden neurons, and a single
output neuron). The results refer to independent experiments involving either a linearly
separable task (with random teacher vector, lower curves) or the parity operation (upper

curves), with eK € {1, 0.1, 0.01}, following random initialisation.
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Figure 2.7: Evolution of the overall error E in a two-layer feed-forward network, trained
by error backpropagation (with eK = 0.01, L = 10 hidden neurons, and a single output
neuron). The results refer to independent experiments involving either a linearly separable
task (with random teacher vector, lower curves) or the parity operation (upper curves), with

K € {2, 10, 15}, following random initialisation.
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Figure 2.8: Evolution of the overall error E in a two-layer feed-forward network, trained by
error backpropagation (with eK = 0.01, K = 10 inputs, and a single output neuron). The re-
sults refer to independent experiments involving either a linearly separable task (with random
teacher vector, lower curves) or the parity operation (upper curves), with L € {2, 10, 15},
following random initialisation.
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Figure 2.9: Evolution of the overall error E in a two-layer feed-forward network, trained by
error backpropagation on the parity operation (with eK = 0.01, K = 10 inputs, L = 10
hidden neurons, and a single output neuron), following random initialisation.



Chapter 3

Recurrent Networks with Binary
Neurons

We now turn to recurrent networks of binary (Ising) neurons o; € {—1, 1}, with fixed synaptic
interactions {J;;} and fixed thresholds {w;}. Although we still have explicit (stochastic) rules
(1.28) that determine the evolution in time of our system

N
oi(t+A) = sgn[hi(t)+Tzi(t)] hi(t) = Z Jip o (t) +w; (3.1)
k=1

(with the independent random noise variables z;(t)), in contrast to the situation with layered
networks, we can no longer write down some final state of our neurons in terms of given
input signals, due to the feed-back present. Recurrent systems operate and are used in a
manner fundamentally different from layered ones. We really have to solve the dynamics.
Written in terms of probabilities, with P(z) denoting the distribution of the noise variables,
our dynamical rules become

Prob [o;(t4+A)] = g [oi (t+ M) hi(8)/T]  gla] = [ ;dz P(2) (3.2)

For recurrent systems we also have to specify in which order the neurons states are updated
(for layered networks the update order did not make a difference). We restrict ourselves to
two extreme cases for the update order, and find for symmetric noise distributions, i.e. where
P(z) = P(—=):

N
parallel : Prob[o(t+A)] = H gloi(t+A)hi(t)/T]
=1

choose i randomly from {1,..., N}

sequential :
Prob [o;(t+A)] = g[oi(t+A)hi(t)/T]

so that upon making the simple choice

eil?

T2 cosh(x) (3:3)

P(z) = %[1—tanh2(z)] = glz] = %[1 + tanh(z)]

53
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we get, using cosh(—z) = cosh(z):
e2_i Oi(tHAhi ()/T

parallel : Problo(t+A)] = [1; [2 cosh[h;(t)/T7]

(3.4)

choose i randomly from {1,..., N}
sequential : (3.5)
Prob [o;(t+A)] = 3[1+0;(t+A) tanh[h;(t) /T7]

The particularly simple dependence in the above expressions on the state variables o;(t+A),
as a result of the choice (3.3), will enable a detailed analysis later.

In order to obtain an idea of what to expect for such systems, however, we first turn to
the deterministic (noiseless) case, T = 0.

3.1 Noiseless Recurrent Networks

Let us forget for the moment about the pathological case where for certain system states the
post-synaptic potentials h; can become zero. In such cases, h;(t) = 0, we have to take the
limit 7" — 0 in the stochastic laws, which means that o;(t+A) is choosen at random from
{—1,1} with equal probabilities. The dynamical rules now reduce to:

parallel : oi(t+A) = sgn[z Jijoi(t)+w;] (Vi) (3.6)
j

choose i randomly from {1,..., N}
sequential : (3.7
oi(t+A) = sgn[y,; Jijo;(t)+wi]

For parallel dynamics we generate a deterministic chain of successive network states
o(0) - o(A) - 0(2A) - o(3A) — ...

Since the number of different configurations is finite (2"V), at some stage we must obtain in this
chain a configuration o* that has already appeared earlier. Since the process is deterministic
the subsequent configurations following o* will be exactly the same ones that followed o*
after its earlier occurrence. Result: the deterministic network with parallel dynamics will
always evolve into a limit cycle with period < 2.

For sequential dynamics with random selection of the neuron to be updated the above
statement will not be true (a repeated occurrence of any state o* does not permit more than
probabilistic statements on the expected future path). However, if we were to choose the
neurons to be sequentially updated in a fixed (as opposed to random) order, the dynamics
becomes deterministic, so that the reasoning above applies and we know again that the system
will evolve into a limit cycle with period < 2%V.

Simple Model Ezamples with Parallel Dynamics. We start with looking at (and solving) a
number of simple recurrent model examples with parallel dynamics, of increasing complexity.
The system is prepared in some initial microscopic state o(0). For simplicity we choose A =1
(the duration of the elementary time-steps), so ¢t € {0,1,2,...}.
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Example (i): J;; =0, w; #0
The dynamics (3.6) becomes:

oi(t+1) = sgafw] (Vi) (V¢ >0)

which gives the trivial solution o;(t) = sgn[w;] (V¢ > 0). In one time-step the system
moves into a unique fixed-point attractor. Associated with an attractor is an attraction
domain D: the set of all initial configurations ¢(0) that are attracted by it. The size
|D| is the number of configurations in D. Here D = {-1,1}V, |D| = 2V.

N
TN

Example (ii): Jij = &, w; =0

We choose N to be odd (so that the average activity can never be zero). The dynamics
(3.6) becomes:

oi(t+1) = sgn[J] sgn[ ZO'] (Vi) (Vt > 0)

We introduce the average activity m(t) = + >, 0j(t), in terms of which the dynamics
simplifies to
m(t+1) = sgn[J] sgn[m(t)] (Vi) (Vt > 0)

We have to distinguish between the two cases J > 0 and J < 0:

J>0: m(t) = sgn[m(0)] (Vt > 0)
J<0: m(t) = (1) sgn[m(0)] (Vt>0)

Note that m(t) = 1 implies o(t) = (1,...,1), and that m(t) = —1 implies o (t) =

(-1,...,-1). For J > 0 the system moves in one time-step into one of two fixed-
point attractors: ot = (1,...,1), with DT = {o € {-1,1}| 3 3;0; > 0}, and
o =(,...,-1), with D = {o € {-1,1}V| £+ 3,0, < O}:

RN N
ZOZ

For J < 0 the system moves in one time-step into a unique period-2 limit cycle attractor,
ot w0~ w0t w0 — .., withD={1,1}":
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<o N N7
A N

< 4

Example (iii): J;; = %, w; =w #0
In order to make sure that the thresholds will not completely dominate the behaviour,
we choose |w| < |J|. The dynamics (3.6) becomes:

oi(t+1) = sgn[%Zaj(t)—l-'w] (Vi) (V¢ > 0)
J

In terms of the average activity m(t) = & >_;04(t) we then find:
m(t+1) = sgn[Jm(t)+w] (Yt >0)

Let us again distinguish between J > 0 and J < 0:

m(0) >—w/J: m(t)=1 (t>0)
J>0: m(t+1) = sgn[m(t)+w/J]
m(0) <—w/J: m(t)=—1 (t>0)

For J > 0 the system again moves in one time-step into one of two fixed-point attractors:
ot =(1,...,1), with Dt = {0 € {-1,1}"| £ 3,0, >—w/J}, and 0~ = (1,...,-1),
with D~ = {o € {-1,1}"| % ¥;0; <—w/J}. Note, however, that the boundaries and
relative sizes of the two attraction domains are now controlled by the quantity w/J
(only for w = 0 do we recover the previous situation where the two attractors were
equally strong).

J>0: >I\ T\
For J < 0, on the other hand, we find:

m(0) >—w/J : m(t) = (=1)" (¢t >0)
J<0:  m(tl) =—sgn[m(t)w/|J|]
m(0) <—w/J: m(t) = ) (¢t >0)

For J < 0 the system again moves in one time-step into the period-2 limit cycle attractor
ot -0~ w0t = o7 — ..., with D= {-1,1}. The only difference is that we are
now more likely to enter the attractor in one point than the other (controlled by w/J).
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Example (iv): J;; = 2, w; € {~w,w}, w # 0

In order to make sure that the thresholds will not completely dominate the behaviour,
we choose |w| < |J|. For simplicity we assume that one half of the neurons in the
system have w; = w, and the other half have w; =—w. The dynamics (3.6) becomes:

J .
oit+1) = sgn[5= > oj(t)+w] (Vi) (V£ >0)
J
In terms of the average activity m(t) = + >, 04(t) we then find:
1 1
m(t+1) = 5 sgn[Jm(t) +w]+5 sgn[Jm(t)—w] (V¢ > 0)
We distinguish between J > 0 and J < 0:

J>0: m(t+1) =1 sgn[m(t)+w/J]+ %[ sgnim(t)—w/J]

m(0) > |w/J|: m(t)=1 (¢t>0)
|m(0)] < |w/J]: m(t)=0 (¢t>0)
m(0) <—w/J|: m(t)=—1 (t>0)

Note that for the stationary situation m = 0 we find (from the dynamic laws) o; = sgn[w;]
(a microscopic fixed-point, to be denoted by ). For J > 0 the system moves in one
time-step into one of three fixed-point attractors: ot = (1,...,1), with DT = {o €
{1, 1}V %Zi o; > |lw/J|}, % with D° = {o € {-1,1}"] |% i oil < |w/J|}, and
o~ =(1,...,-1), with D™ = {0 € {-1,1}"| + 3, 0s <—|w/J|}. The boundaries and
relative sizes of the three attraction domains are now controlled by the quantity w/J;
the two m = %1 attractors are always equally strong. For w — 0 the attractor o© is

removed, and we return to the previously studied case with only two attractors.

J>0: ALA >~.L4 >\_L4
2 P D NZ N
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For J < 0, on the other hand, we obtain:

J<0: m(t+1) =—% sgn[m(t)+w/J]— 35 sgn[m(t)—w/J]

m(0) > |lw/J|:  m(t) = (1) (> 0)
0

Im(0)| <[w/J|: m(t) (t>0)

m(0) <—w/J|: m(t) = 1) (¢t >0)

For J < 0 the system moves in one time-step either into the period-2 limit cycle
attractor o7 — 0~ 2 0T = 07 = ..., with D = {o € -1, 1}| | £ 3, | > jw/J|}, or
into the fixed-point attractor o, with D® = {o € {-1,1}"]| |+ 3, 05| < |w/J|}. The
boundaries and relative sizes of the two attraction domains are again controlled by the
quantity w/J. For w — 0 the attractor o is removed, and we return to the previously
studied case with only the limit-cycle attractor.

N PN N

Example (v): Ji; = 4 (&—§5), wi =0

For simplicity we choose &; € {—1,1} (Vi), such that half of the neurons in the system
will have & = 1 and the other half will have {; =—1. The dynamics (3.6) becomes:

1 1 .
oi(t+1) = senléie Y o3(0)— 1 Y goy ()] (Vi) (Ve > 0)
J J
The relevant macroscopic quantitities to inspect now turn out to be
1 1
mit) = % Yoit)  malt) = 1 3 o0
J J

with which we can write:
mi(t+1) = 5 ¥, sgnl&ma(t) —moa(t)]
= 5 sgu[m(t) —ma(t)] — 5 sgulmi (t)+ma(t)]
ma(t+1) = 3; sgufma (t)—E&ma(t)]

= 5 sgn[m1(t) —ma(t)]+ 5 sgn[m (t)+ma(t))

(¥t > 0)

At this stage it is convenient to switch to the new variables:

my(t) =mai(t) £ma(t),  mi(t) = %[m+(t)+m—(t)], ma(t) = 5 [m. () —m-(t)]
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which leads to the simple equations:
my(t41) = sgufm_ ()]  m_(t+1) = sgnlm. (¢)]

From this it follows, in turn, that:
mewgz_<wm”w> N mewgz<%wag
m—_(t+2) sgn[m_(t)] m_(t+4) sgn[m_(t)]
my(t+8)\ [ my(t+4)
= <mi—(t+8)) N (mj(t—l-él))

In at most four time-steps the system will have entered a period-4 limit cycle solution.
If m4(0) # 0 and m_(0) # 0, this solution is

() ()= 0)-0G)- ()= 0)--

Translated back into m; and mg this implies:

) (-0 () ()

Note that m; = +1 means o0 = +0© = +(1,...,1), and that my = +1 means o =
+€. As a result we find that at the microscopic level we have the period-4 limit-cycle
attractor:

ot ¢ - —ot—» —¢ 50t >

The remaining periodic solutions, obtained when at least one of the m_(0) is zero, turn
out to be unstable. The resulting picture is therefore

N/
NN

N/
b

<)

NN/
/NN

Example (U’i): Jij = (SW( s Wy = 0

i).J
Our final simple example illustrates the occurrence of even larger periods. Here 7 is a
mapping on the set of neuron indices:

m: {1,...,N} —» {1,...,N}
The dynamical rules (3.6) reduce to

oi(t+1) = sgnog)(t)] = ox@y(t) (Vi) (V& >0)
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At each time-step each neuron 7 determines its new state by simply copying the present
state of some specific colleague m(i). One can find quite a wide range of periods, by
variation of the index operation 7. Some examples:

e (i) = k (Vi). All neurons copy their new state from the same location k. This

leads to

oi(t+1) = or(t) (Vi) = o04(t) = ox(0) (Vi) (Vt > 0)
The system ends up in one of two fixed-point attractors: o = (1,...,1), with
Dt = {o € {1,1}] ox(0) = 1} and o= = (-1,...,-1), with D~ = {o €

{-1,1}| ox(0) =—1}.
e 7(i) = N+1—i (Vi). Note that m now obeys 7(7 (7)) = 7(N+1—i) =i (Vi). As a
result the dynamics is itself 2-periodic:

. oi(t) = 0;(0) (Vi) (Yt > 0 even)
oi(t+1) = onp1-i(t) (Vi) =
oi(t) = on4+1-i(0) (Vi) (V& > 0 odd)

There are many fixed-points (corresponding to initial states with o;(0) = on41-4(0)
for all i), and period-2 cycles, which together cover the whole state space {—1,1}".

e 7(i) =i+1 (mod N) (V7). This is just an (N-periodic) index shift. One finds
oi(t+1) = 0;41(t) (1: mod N) (Vi) = oi(t) = 0444(0) (Vi) (Vt > 0)

Here we find many limit cycles with periods up to N (some have smaller periods
due to periodicities in o(0); for instance, o(0) = (1,...,1) gives a period 1).

The Role of Synaptic Symmetry: Lyapunov Functions. It is clear that the diversity in the
possible modes of operation in these systems is quite large. If we were to repeat the above
exercise of solving simple models for the case of sequential dynamics, we would again find
qualitative differences. We clearly need some tools for classification. It turns out that a
rather relevant feature by which we should distinguish between various systems is whether
or not the matrix of synaptic interactions is symmetric, i.e. whether J;; = Jj; for all (4, j).
As always we exclude the pathological cases where local fields h;(o) can be ezactly zero.

Fact: If the synaptic matrix J is symmetric, i.e. J;; = Jj; for all (ij), then the quantity

L(o) :_Z|2Jij0j+wi|_z ow; (3.8)
ig i
is a Lyapunov function for the deterministic parallel dynamics

oi(t+1) = sgn[z Jijoj+w;] (Vi) (3.9)
j

and the system will evolve into a period-2 limit-cycle.
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Proof: Clearly L(o) is bounded from below: L(o) >—3";; |Jij| —23; |wi|- The non-trivial
part of the proof is to show that it decreases monotonically with time, and that it implies
evolution towards a period-2 limit cycle. Consider a transition o — o', described by
the dynamical rules (3.9). The resulting change in L is given by:

AL = L(o') — L(o) ==Y_ | Y Jioi+wi|+ D" | Jijoj+wi+ > wiloi—oj]
i i i

use (3.9):

AL = —Z | Z Jija}+wi|+z Ué [Z Jijoj+w;

+Z wilo;—or)
7

= —Z | Z Ji]’O';- +w¢|+z U;Jij0j+z W;0;
i ij i
use interaction symmetry:

AL ==Y "|>" Jijos+wil+)_ oijoi+) wio;
4 J ij i
:_Z|2Jij‘7;'+wi\+z of lz Jz‘jU}eri]
i J i j

==>_1D_ Jijoj+wi| {1—@ sgn[) Jija;-+wz~]} <0 (3.10)
b j

i
Note that AL # 0 implies that AL < —k, where

K= n}:’l-nnliln| ;Jijoj +w,~| >0

So L decreases monotonically until at some time ¢* < oo a stage is reached where
L(o(t+1)) = L(o(t)) Vt > t*. From then onwards it follows from (3.10) that

Vi, Vt > t: Ui(t) = sgn[z Jijdj(t—l-l)—l—’wi] = O'Z'(t—i-2)
J

which completes the proof.

For sequential dynamics we find that, apart from requiring synaptic symmetry, we need to
impose an additional requirement to construct a Lyapunov function: J; > 0 (Vi). Under
these conditions we can prove the following:

Fact: If the synaptic matrix J is symmetric, i.e. J;; = Jj; for all (ij), and if J;; > 0 for all
1, then the quantity

1
L(o) = —5 E UiJijO'j_E ow; (3.11)
ij i
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is a Lyapunov function for the sequential dynamics

O'i(t—i—l) = sgn[zj Jijaj(t)+wi]
op(t+1) = ox(t) (Vk # 1)

(3.12)

and the system will evolve into a fixed-point. The sites i(¢) to be updated at time ¢ can
be drawn at random or in a fixed order (the order is not relevant for the proof).

Proof: Clearly L(o) is bounded from below: L(o) > —3 >ij |ij|=>2; lwi|. If the neuron to
be updated does not change its state, o = o;, then L will obviously remain the same.
Now, on the other hand, consider a transition o — o', described by the dynamical
rules (3.12), in which o] =—0;:

O';c = Uk(1_25ik) g; :—sgn[z JijUj +wi] (3.13)
J

The resulting change in L is given by:
1
AL = L(o') — L(o) = —3 Z Jyi [o,0]—0okai] —Z wi o), — o]
kl k

use (3.13):
1
AL = —5 Z Jklo'ko'l [(1—2(5119)(1—2(510—1] + 2w,~0,~
kl

=07 Y Juoi+ 03 Y Jkiok — 2Jii + 2wo;
I k

use interaction symmetry and sign restriction on self-interactions:

—2Ji; = —2| Z Jijaj+wz~| —2J; <0 (3.14)

AL = 20; [Z JijO'j—I—’wi
j J

J

Note that AL # 0 implies that AL < —k, where

H:2IIg_nH1iln{|;Jij0'j+wi| +Jii} >0

So L decreases monotonically until at some time t* < oo a stage is reached where
L(o(t+1)) = L(o(t)) Vt > t*. From then onwards it follows from (3.14) that for every
site ¢ to be updated: o} = o;, which implies

Vi, VE >t :  oy(t) = sgn[z Jijo;(t) +w;]
J

which completes the proof.
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One might think that the need for excluding negative self-interactions in the above proof is
just an artifact of the particular Lyapunov used, and that one might in principle also be able
to prove that sequential systems with negative self-interactions evolve to a fixed-point (by
using an alternative method). This is not the case, as a simple example illustrates. Consider
neurons with negative self-interactions only: J;; = Jé;;, J <0, w; = 0.

oi(t+1) = sgn[J]oi(t)
op(t+1) = ox(t) (Vk # 1)

Since J < 0, each update will result in a state change o, =—o;, for all times. Therefore the
absence of negative self-interactions is indeed a relevant factor in determining whether or not
the sequential systems will evolve towards a fixed-point.

Information Processing in Recurrent Neural Networks. Let us now turn to the question
of how recurrent networks can actually be used to process information. The basic recipe
is the creation of attractors in the space {-1,1}" of network states, through appropriate
modification of synaptic interactions and thresholds (i.e. through ‘learning’). The previous
model examples gave us an impression of which types of dynamical behaviour can be obtained
upon making specific choices for the system parameters. Now we are interested in the inverse
problem: given a required operation, how should we choose (or modify) the parameters ?

The simplest class of attractors are fixed-points. Let us first illustrate how, through the
creation of fixed-point attractors, recurrent networks can be used as so-called ‘associative
memories’, for storing patterns (words, pictures, abstract relations, whatever). The basic
ideas generalise in a natural way to the more general case of creating limit-cycle attractors
of arbitrary length, in order to store pattern sequences.

e Represent each of the p items or patterns to be stored (pictures, words, etc.) as an
N-bit vector & = (&,..., &) € (-1, 1}N, u=1,...,p.

o Construct synaptic interactions {J;;} and thresholds {w;} such that fixed-point attrac-
tors are created at the p locations of the pattern vectors £€* in state space.

e If now we are given an input to be recognised, we choose this input to be the initial
microscopic network configuration o (0). From this initial state the neuron state vector
o(t) is allowed to evolve in time autonomously, driven by the network dynamics, which
will by definition lead to the nearest attractor (in some topological sense).

e The final state reached o(0c0) can be interpreted as the pattern recognised by network
from the input o (0).

It is far from clear a priori whether this can actually be done. For such a program to work,
we need to be able to create systems with many attractors with non-zero attraction domains.
Furthermore, in biology (and to some degree also in engineering) we are constrained in our
choice of learning rules, in the sense that only ‘local’ rules will be realisable and/or cost-
effective. Local rules are modification recipes that involve only information available at the
junction or neuron that is updated:

Adi; = FlJdij, 04,053 hiy; wi, wy] Aw; = Gloi; hi; w]



64 CHAPTER 3. RECURRENT NETWORKS WITH BINARY NEURONS
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Figure 3.1: Information storage and retrieval in recurrent neural networks through the cre-
ation of attractors in phase space. Patterns &* to be retrieved: e. If the interactions are
choosen to be symmetric, the attractors will be fixed-points or period-2 limit-cycles.

Finally, it is clear that the basic idea will in due course need some refinement. For instance,
if only the p patterns to be stored are attractors, each initial state will eventually lead to
pattern recognition (also nonsensical or random ones), so we will also need an attractor to
act as a rubbish bin (attracting all initial states we would not like to see recognised).

To illustrate the fundamental features of the idea, let us first consider the simplest case
and try to store just a single pattern & = (£1,...,&x) € {—1,1}" in a noiseless fully recurrent
network with tabula rasa initial wiring, J;; = 0 (Vij), and uniform thresholds. A biologically
realistic rule for interaction modification is the so-called Hebbian rule:

Adij ~ &i&; (3.15)

In words: if two neurons are required to be in the same state ({; = &;) we increase their
mutual interaction strength J;;, otherwise (§; =—;) we decrease J;;. The rule is also similar
to the perceptron learning rule, the only difference being that in the case of the perceptron
we only modify if the system makes an error. The resulting network is (with appropriate
scaling):

1
Jij = Nfzfj w; = w < 0, (3.16)

We introduce new variables 7; = §;0; and v; = §w, in terms of which the parallel dynamical
laws can be written as

4+ A) = Sgn[%ZTj(t)—H}i] (Vi) (3.17)
J

with v; € {~w,w}. This is precisely example (iv) studied earlier, with J = 1. If the fraction
of neurons with & = 1 equals the fraction of neurons with £ = —1, we can use the result
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Figure 3.2: Information storage and retrieval in recurrent neural networks through the cre-
ation of attractors in phase space. Sequence of patterns £€” to be retrieved: e. In order to
store pattern sequences of length > 2, the interactions will have to be non-symmetric.

obtained for example (iv). Translated back into the original variables o; this leads to, with
m= 4 ¥,y

m(0) > |w|: m(t)=1 (t>0)
|m(0)| < |w|: m(t)=0 (t>0)
m(0) <—w|: m(t)=—1 (t>0)

For m = +1 we have o; = £&; (Vi); for m = 0 we have, according to the dynamic laws,

0; = sgn[w] =—1. At a microscopic level the picture thereby becomes:
% > &i0i(0) > |w] : o(t)=¢ (t>0)
ol < £ 5i60i(0) < ol ot) = (1,...,1) (t>0)
¥ 2i&ioi(0) <—w] : o(t) =—¢ (t>0)

The system can indeed reconstruct dynamically the original pattern £ from an input vector
o(0). Note that the system only reconstructs the pattern if the initial state shows a sufficient
resemblance; a random initial state will lead to an attractor with zero activity. What we also
note, however, is that en passant we have created an additional attractor: the state —§.

The boundaries and relative sizes of the three attraction domains are controlled by the
threshold w; the two m = +1 attractors are always equally strong (this will be different if
the fraction of neurons with & = 1 is different from the fraction with ¢ =—1). For w — 0
the ‘rubbish bin’ attractor (—1,...,—1) is removed. For sequential dynamics the picture is
qualitatively the same, the only difference is that the various attractors are not reached in a
single time-step, but are approached gradually.
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Finally, let us investigate what happens if we attempt to store more than just a single
pattern and apply the Hebbian learning rule (3.15) to a set of p patterns {€"}, with &* =
(&, ..., &%) (uw =1,...,p). Let us, furthermore, assume for simplicity that these patterns

are mutually orthogonal:
1
i

(which obviously requires p < N). Let us choose sequential dynamics and remove the self-
interactions (J; — 0), the resulting model is the so-called Hopfield model (for simplicity we
take w; = 0 Vi):

1 p
Tij = 3 1=0) 3 €S w; =0 (3.18)
u=1

We can now show that all p patterns must be stationary states of the dynamics. The Lyapunov
function(3.11) can be written as:

1

He) ‘5—%§ﬂ¢—2ﬁ4

We can choose the normalised pattern vectors as orthogonal and normalised basis vectors in
the space RV, e = \/Lﬁgu, and use the general relation & > Suler x]? to obtain a lower
bound for the Lyapunov function:

1 1

L ——o’=_[p—-N

(0)2 50— 50° = o~ N

On the other hand, if we choose o to be one of the patterns, o = &* for some u, we satisfy
exactly the lower bound:

L(E") = 3lp— N

Since any state change would decrease the value of L (which here is clearly impossible), we
find that each of the patterns must correspond to a fixed-point of the dynamics. It will turn
out that they are also attractors. However, we will find that additional attractors are created
by the Hopfield recipe (3.18), which correspond to mixtures of the p patterns. These can be
eliminated by adding noise to the dynamics.

3.2 Stochastic Recurrent Networks

Simulation Examples. We will first illustrate with numerical simulations the functioning of
the Hopfield model (3.18) as an associative memory, and the description of the pattern recall
process in terms of so-called overlaps:

_ % Z o, (3.19)

Our simulated system is an N = 841 Hopfield model, in which p = 10 patterns have been
stored (see figure 3.3) according to the prescription (3.18). The two-dimensional arrangement
of the neurons in this example is just a guide to the eye; since the model is fully connected, the



3.2. STOCHASTIC RECURRENT NETWORKS 67

Figure 3.3: Information storage with the Hopfield model: p = 10 patterns represented as
specific microscopic configurations in an NV = 841 network.
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Figure 3.4: Dynamic reconstruction at 7" = 0.1 of a stored pattern from an initial state which
is a corrupted version thereof. Top row: snapshots of the microscopic system state at times
t =0,1,2,3,4 iterations/neuron. Bottom: the corresponding values of the p = 10 overlap
order parameters as functions of time.

spatial organisation of the neurons in the network is irrelevant. The dynamics is a sequential
stochastic alignment to the post-synaptic potentials h;(o), as defined by the rule (3.5), for
noise level 7' = 0.1.

In figure 3.4 we show the result of letting the system evolve in time from an initial state,
which is a noisy version of one of the stored patterns (here 40% of the neurons were flipped).
The top row of graphs shows snapshots of the microscopic configuration as the system evolves
stochastically in time. The bottom row shows the values of the p = 10 overlaps m,, (defined
in (3.19)), measured as functions of time; the one which evolves towards 1 correponding to
the pattern being reconstructed.

Figure 3.5 shows a similar experiment, here the initial state is simply drawn at random.
The system subsequently evolves towards some mixture of the stored patterns. Note that the
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Figure 3.5: Evolution towards a spurious (mixture) state at 7" = 0.1 from a randomly drawn
initial state. Top row: snapshots of the microscopic system state at times ¢ = 0,1,2,3,4
iterations/neuron. Bottom: the corresponding values of the p = 10 overlap order parameters
as functions of time.

patterns involved are significantly correlated (see figure 3.3).

Description as a Stochastic Process. Both microscopic equations (3.4,3.5) can be transformed
directly into equations describing the evolution of the microscopic state probability p.(o).
Both take the form of a so-called Markov chain:

peri(o) =D W [o;0'] pi(o’) (3.20)

o-l

For the parallel dynamics equation (3.4) we obtain the form (3.20) directly by averaging over
the possible states at time ¢. The transition matrix is now found to be

N eBoihi(T”)

W [o;0'] = 4% 2 cosh[Bhi(o")]

(3.21)

with 3 = T~! (the inverse noise level, 8 = co corresponds to zero noise).

For sequential dynamics there are two types of randomness. We first have to take into
account the randomness in the site to be updated. If each site is equally likely to be selected
we obtain

1N
piy1(o) = N Z H Oc;,05(t)
i=1 | [j#i
Note that the term [];, (5%%. (1) Precisely dictates that at time ¢ only component o; is allowed

to be updated. If, instead of o (¢), the probability distribution p;(o) is given, this expression
is to be averaged over the possible states at time ¢, with the result:

% 1+ 0 tanh[ﬂhi(ﬂ(t))]]}

1 &1 1 L1
pi(o) =+ ) 5 [Ltoitanh[Shi(o)l p(o) + - > 5 [1+oitanh[Ghi(Fio)] p(Fio)
i=1 i1

(3.22)
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in which Fj is the i-th neuron-flip operator, defined as
E@(O‘) = @(0’1, 9051y —04,0441y .- ,O'N)

The result (3.22) can be written in the form (3.20), with the transition matrix

w [‘7;0'] do,or + = Z{wz FU)éo'Fa" —wi(o )50',0"} (3.23)
wi(@) = 7 [1-0; tanh [3hy(o)] (3.24)

(with 0,67 = [1; 05;,07), since insertion of (3.23) into (3.20) indeed gives (3.22).

From Discrete to Continuous Times. The formal method to go from any discrete-time Markov
process of the form

pn+1 ZWUU]pn( )

to a continuous-time equation, is to assume in addition that the duration of each of the above
discrete (sequential) iteration steps is a continuous random number. The statistics of these
random durations are contained in the function ,,(¢), which is defined as the probability
that at time ¢ precisely m iteration steps have been made. Our new Markov process will now
be described by

pi(@) = D Tm(B)pm(0) = D Tm ZW po(o’)

m>0 m>0

and time has become a continuous variable. For 7, (t) we make the choice

Tm(t) = 1 (f)m et (3.25)

m! \ 7
(a Poisson distribution), with the properties

d 1 d 1

e Tmso() = — [T 1() — (0] Lmo(t) = ——mo(?)

From (m), = t/7 it follows that 7 is the average duration of a single discrete iteration step.
The above choice for m,,(t) allows us to write for the temporal derivative of p;(o):

T pt Zwm1 ZWmaa]po( Z ZW po(o’)

m>0 m>0
= —pi(o) + Z W [o;0'] pi(o”)
o-l

which has the form of a so-called master equation.
This procedure can immediately be applied to the Markov chains (3.21) and (3.23). If
for the sequential case in particular we also choose 7 = % then in one unit of time each
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neuron will on average have been updated once, and the master equation corresponding to
(3.20,3.23) acquires the form

N
%pt(a) =D _{wi(Fio)p(Fio) — wi(o)pi(o)} (3.26)
i=1

In this equation the quantities w;(o), defined in (3.24), have come to play the role of transition
rates. If, instead of the rule (3.25) we just choose each sequential iteration step to have
duration 7 = 1/N, it can be shown that equation (3.26) will describe the system state for
t> % and N — oc.

3.3 Macroscopic Analysis of Sequential Attractor Networks

In this section we show how for sequential dynamics one can calculate from the microscopic
stochastic evolution equations (at the level of individual neurons) differential equations for
the probability distribution of suitably defined macroscopic state variables. For mathematical
convenience our starting point will be the continuous-time master equation (3.26), rather
than the discrete version (3.20,3.23). We will obtain conditions for the evolution of these
macroscopic state variables to (a) become deterministic in the limit of infinitely large networks
and, in addition, (b) be governed by a closed set of dynamic equations. We then turn to
certain classes of models and show how the macroscopic equations can be used to understand
the dynamics of attractor neural networks away from saturation.

A Toy Model. Let us first illustrate the basic ideas with the help of a simple toy model:

J
Jij = Nmfj w; =0 (3.27)

(the variables 7; and &; are arbitrary, but may not depend on N). The interaction matrix is
non-symmetric as soon as a pair (ij) exists, such that 7;€; # n;&. The local fields become
hi(o) = Jnim(o) with m(o) = % 34 &0k Since they depend on the microscopic state o
only through the value of m, the latter quantity appears to constitute a natural macroscopic
level of description. The probability of finding the macroscopic state m(o) = m is given by

Pi[m] = Y _pi(e)d [m—m(o)]

Its time derivative is obtained by inserting (3.26):

%Pt[m] =Y ipt(a)wk(a') {5 [m—m(a)+%§k0k] —0 [m—m(a)]}

g k=1

_d 5 Tm— 2 5 O(N!
= ;pt(a) [m m(U)]ngléko'kwk(U) +O0(NT)

Inserting the expression (3.24) for the transition rates and the local fields gives:

< pim = -L 1P L S~ ¢ tanhln A7
7 t[m]_% +[m] m—ﬁkzzjlfk anh[ngBJm]

} +O(NY)
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In the thermodynamic limit N — oo only the first term survives. The solution of the resulting
differential equation for P;[m] is:

Pyfm] = / dmo Polmold [m—m*(t)]

im = lgn — Z & tanh[ng BJIm*] — m*(0) = my (3.28)

which can simply be verified by insertion into the differential equation for P;[m]. This solution
describes deterministic evolution, the only uncertainty in the value of 1 is due to uncertainty
in initial conditions. If at ¢ = 0 the quantity m is known exactly, this will remain the case
for finite timescales; m turns out to evolve in time according to (3.28).

Arbitrary Synaptic Interactions. Let us now allow for less trivial choices of the interaction
matrix and try to calculate the evolution in time of a given set of macroscopic state variables
Qo) = (QU(o),...,2,(0)) in the limit N — oco. The probability of finding the system in
macroscopic state €2 is given by:

Zpt )8 [Q2—(o)]

The time derivative of this distribution is obtained by inserting (3.26). If in those parts of the
resulting expression which contain the operators F; we subsequently perform transformations
o — F,o, we arrive at

%mg Zzpt o) {6 [Q—Q(F;o)] - [Q—Q(o)]}

Upon writing Q,(Fio) = Qu(o)+ A;u(o) and making a Taylor expansion in powers of
{A;u(0o)}, we finally obtain the so-called Kramers-Moyal expansion:

—Pt[n] ; : Zl Zl O an (PR F. o [92:4]} (3.29)

which is defined in terms of conditional averages (f(o))q., and the ‘discrete derivatives’
Aju(o) = W(Fjo)—Qyu(0):

N
Fp(b?---uz [€2; 2] Z Bjuy (o) - Ay (0)) oyt
_ 2o pi(0)8§[Q2-0(0)] f(o)
<f(a))ﬂ;t - Z;pt(0)5 [Q—Q(0)]

The expansion (3.29) is to be interpreted in a distributional sense, i.e. only to be used in
expressions of the form [dQP;(2)G(S2) with sufficiently smooth functions G(£2), so that all
derivatives are well-defined and finite. Furthermore, (3.29) will only make sense if the discrete
derivatives A;,, which measure the sensitivity of the macroscopic quantities to single neuron
flips, are sufficiently small. This is to be expected: for finite N any state variable (o)
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can only assume a finite number of possible values; only in the limit N — oo may we expect
smooth probability distributions for our macroscopic quantities (the probability distribution
of state variables which only depend on a small number of neurons, however, will not become
smooth, whatever the system size). Retaining only the first (I = 1) term in the series (3.29)
leads us to a Liouville equation which describes deterministic flow in €2 space, driven by the
flow field F(1). A sufficient condition for the set (o) to evolve in time deterministically in
the limit N — oo is therefore:

lim Z T Z z Z [Ajur (o) - Bjyy (o )|)Q;t =0 (3.30)

N
TS =1 y=1=1

Note: since the partial derivatives 0/02, in the Kramers-Moyal expansion are defined in a
distributional sense, i.e. in any calculation of expectation values (f[€2]) they will be moved
to the function f[€2] via integration by parts, they need not occur in the condition (3.30). In
the simple case where all ‘derivatives’ A;, are of the same order in the system size N (i.e.
there is a monotonic function Ay such that A;, = O(Ay) for all ju), the above criterion
becomes:

lim nAyvVN =0 (3.31)
N—oo

If the condition (3.30) is satisfied we can for large N describe the evolution of the macroscopic
probability density by the Liouville equation:
0
= = _ M 10
m = z o (P10 FO (24}

the solution of which describes deterministic flow:
PR = [ P )5 (-9 (1)

Cow=FO@a] 0= (3.52)
In taking the limit N — oo, however, we have to keep in mind that the result is obtained
by taking this limit for finite t. According to (3.29) the [ > 1 terms do come into play for
sufficiently large times t; for N — oo, but these times diverge by virtue of (3.30).

Equation (3.32) will in general not be autonomous; tracing back the origin of the explicit
time dependence in the right-hand side of (3.32) one finds that in order to calculate F()
one needs to know the microscopic probability distribution pi(e). This, in turn, requires
solving the master equation (3.26) (which is exactly what one tries to avoid). The way out
is to choose the macroscopic state variables €2 in such a way that there is no explicit time
dependence in the flow field F() [Q;4] (if possible). According to the definition of the flow
field this implies making sure that there exists a vector field ® [€2] such that

lim Z wj(o = ® [Q(0)] (3.33)

N—)oo

(with A; = (Aj1,...,4j,)) in which case the time dependence of FU drops out and the
macroscopic state vector evolves in time according to:

d
— Q=3[0
o [€2]
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For this method to apply, a suitable separable structure of the interaction matrix is required.
If, for instance, the macroscopic state variables 2, depend linearly on the microscopic state
variables o (i.e. Qo) = + Z;—v:l w,;0oj), we obtain (with the transition rates (3.24)):

N 1N
Jim > us(@)As(e) = Jim 3w tanh(hy () ~ 2
in which case it turns out that the only further condition necessary for (3.33) to hold is
that all local fields hjy must (in leading order in N) depend on the microscopic state o only
through the values of the macroscopic state variables Q (since the local fields depend linearly
on o this, in turn, implies that the interaction matrix must be separable).

Next we will show how the above formalism can be applied to networks for which the
matrix of interactions J;; has a separable form (which includes most symmetric and non-
symmetric Hebbian type attractor models). We will restrict ourselves to models with w; = 0;
the introduction of non-zero thresholds is straightforward and does not pose new problems.

Separable Models: Description at the Level of Overlaps. At the macroscopic level of descrip-
tion of the pattern overlaps m, (o) = % > & o; one will find an autonomous set of dynamical
laws if the interaction matrix is bilinear, i.e.

p
T AL &= ) (334

uv=1

Jz’j =

The Hopfield model corresponds to choosing A4,,, = d,, and &' € {—1,1}. The local fields hy
can now be written in terms of the overlap order parameters m,:

N
my (o) = ¥ Z{#ai hi(o) = & - Am(o) m = (mq,...,mp) (3.35)

Since for the present choice of macroscopic variables we find A, = O(N7!), the evolution
in time of the overlap vector m becomes deterministic in the limit N — oo if (according to
(3.31)):

lim — =0

p__
N—o0 \/N -
Condition (3.33) holds, since

N N
ij(a')Aju(a') = % Z &, tanh [B€, - Am] —m
j=1 k=1

In the limit N — oo the evolution in time of the overlap vector m is governed by an au-
tonomous set of differential equations; if the vectors £, are drawn at random according to
some distribution p(&) these dynamical laws become:

Gm=(Etanh[5E - Amle ~m (0@ = [dE pO2E) (330

Symmetry of the interaction matrix is not required.
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T=0.1 T=0.6 T=1.1

S
RS

[ R
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-

Figure 3.6: Flow diagrams obtained by numerically solving the deterministic overlap equa-
tions for p = 2. Upper row: A,, = d,, (the Hopfield model); lower row: A = ( _11 11 ) (for

both models the critical noise level is T, = 1).

N=1000 N=3000 Theory

Figure 3.7: Comparison between simulation results for finite systems (N = 1000 and N =

3000) and the analytical prediction (flow equations) with respect to the evolution of the
overlaps (m1,mo); p=2,T =0.8 and A = ( _11 11 )-
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Figure 3.6 shows in the mj, mo-plane the result of solving the macroscopic laws (3.36)
numerically for p = 2, randomly drawn pattern bits ¢! € {—1,1}, and two choices of the
matrix A. The first choice (upper row) corresponds to the Hopfield model; as the amount
of noise increases, the amplitudes of the four attractors (corresponding to the two patterns
&" and their mirror images —£*) continuously decrease, until at the critical level T, = 1
they merge into the trivial attractor m = (0,0). The second choice corresponds to a non-
symmetric model (i.e. without detailed balance); at the macroscopic level of desciption (at
finite timescales) the system clearly does not approach equilibrium; macroscopic order now
manifests itself in the form of a limit-cycle (provided the amount of noise T is below the
critical level T, = 1 where this limit-cycle is destroyed). To what extent the laws (3.36) are in
agreement with the result of performing the actual simulations in finite systems is illustrated
in figure 3.7.

3.4 Stationary States of the Hopfield Model

For the simplest separable model, the sequential Hopfield model (3.18) with finite p, we
obtained in the limit N — oo:

%m = (£ tanh [€ - m])g -m (3.37)

We also know that the sequential dynamics laws drive the system to an equilibrium state.
The stationary values of the overlaps are the solutions of

m = (€ tanh [B€ - m])€ (3.38)

Analysis of Stationary Overlap Equations: Mizture States. We will restrict our further dis-
cussion to the case of randomly drawn patterns, so

<q>(£)>£ =2"" Z @(5), <£,u£u>€ = 5,uu
Ee{-1.1}»

(generalisation to correlated patterns is in principle straightforward). We first establish an
upper bound for the noise level T = 1/ for non-trivial solutions m to exist, by writing (3.38)
in integral form:

1
my = (e (€-m) [ dx [L— tank? (B3¢ - m)])g
from which we deduce
0 =m? = f((&-m)” [ydA[1 — tank? (BAE - m)])¢
>m’® - B((§-m)’)g =m’[1 - ]

For T > 1 the only solution of (3.38) is the disordered state m = 0. At T' = 1, however, a
continuous bifurcation occurs, which follows from expanding (3.38) for small |m| in powers
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of r=0—-1:

my = (1+7)mu - % El/p)\ mvmpm)\<§u§1/§p§)\)£ + O(msa ng)

=my [1 +7-—m?+ %mi] + O(m5,7m?)

The bifurcating non-zero solutions of (3.38) scale as m,, = m,,7'/2 + O(r3/2), with for each
w

[SCR )

=0 or 0=1-m’+>m

The solutions are of the form 7, € {—m,0,m}. If we denote with n the number of non-zero
components in the vector m, we derive from the above identities:

- ~ 3 12

my,=0 or m,=xd=% [37?,—2]
These are called mizture states, since they correspond to microscopic configurations correlated
equally with a finite number 7 of the stored patterns (or their negatives). Without loss of
generality we can always perform transformations on the set of stored patterns (permutations
and reflections), such that these mixture states acquire the form

n times p—n times 3 1
D e P 2
m=m,(1,...,1,0,...,0) mn:[gn_Q] B-1D"+. .. (3.39)

These states (3.39) are indeed solutions of (3.38):

w<n: my = (€, tanh [/an Zugn fu])g
p>n:  0=({tanh [ﬁmn 2v<n fu])g

The second equation is automatically satisfied since the average factorises. The first equation
leads to a condition determining the amplitude m, of the mixture states:

my = ( [% Z fu] tanh [ﬂmn Z 51/] )E (3.40)

p<n v<n

Stability. The relevant question at this stage is whether these solutions are also stable. Here
we will determine the stability for the sequential dynamics case only (for parallel dynamics a
similar analysis can be performed, with identical results). Note that the macroscopic dynamic
laws, describing the evolution of the overlaps, can itself be written as a gradient descent on
a surface f(m):

G g m) flm) = g~ Sogcosh g -mg (341
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Stability of a stationary state is therefore equivalent to this state being a local minimum of
f(m). The second derivative of f(m) is given by

0%f(m)

om,0m,,

= b — &by [1 — tanh” [6€ - m]] )¢ (3.42)

(a local minimum corresponds to a positive definite second derivative). In the trivial saddle
point m = 0 this gives simply 6,,[1 — ], so at T" = 1 this state destabilises. In a mixture
state of the type (3.39) the second derivative becomes:

Dl(ﬁ) = O — BEuéy [1 — tanh? lﬁmn ; §p] ] )¢ (3.43)
pn

Due to the symmetries in the problem the spectrum of the matrix D™ can be calculated.
One finds three distinct eigenspaces:

Eigenspace : Eigenvalue :
I: x=(0,...,0,zp41,...,2p) 1-6[1-Q)]
Im: z=(1,...,1,0,...,0) 1-8[1-Q+(1—n)R)

m: == (z1,...,2,,0,...,0), >,7,=0 1-p[1-Q+R]
with
R = (@1€s tanh? [Bmn 5,0 o )g
Eigenspace III and the quantity R only come into play for n > 1. To find the smallest

eigenvalue we need to know the sign of R. With the abbreviation M, €= > p<n &p we find:
nin—1)R = (Mé tanh? [ﬂmnMEbg — n{tanh? [ﬁmnMg])g

_ <M§. tanh? [,anMg] )§ — <M§>£<tanh2 [,anME] )g
>0

We may now identify the conditions for an n-mixture state to correspond to a local minimum
of f(m). For n =1 the relevant eigenvalue is I, now the quantity @ simplifies considerably.
For n > 1 the relevant eigenvalue is III, here we can combine () and R into one single average
(which reduces to a trivial expression for n = 2):

n=1: 1-4 [l—tanhz[ﬁml]] >0
n=2: 1->0

n>3: 1= [1—(tanb?[Bm, S5 4 &,e] > 0
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Figure 3.8: Left picture: Amplitudes m,, of the mixture states of the Hopfield model as a
function of the noise level T'. From top to bottom: n =1,3,5,7,9,11,13. Solid: region where
they are stable (i.e. local minima of f). Dashed: region where they are unstable. Right
picture: corresponding values f,. From bottom to top: n =1,3,5,7,9,11,13. Dashed line:
value fy for the disordered state m = 0 (for comparison).

The pure n = 1 states, correlated with one pattern only, are the desired solutions. They
turn out to be stable for all T' < 1, since partial differentiation with respect to 8 of the n =1
amplitude equation (3.40) gives

my [1 —tanh? [,Bml]]

om1 /0B >0

mi = tanh[fm;] — 1-7 [l—tanhZ[ﬁml]] =

(clearly sgn[m;] = sgn[@m;/00]). The n = 2 mixtures are always unstable. For n > 3
we have to solve the amplitude equations (3.40) numerically to evaluate their stability. The
result is shown in figure 3.8, together with the corresponding values f, of the Lyapunov
function f(m) (3.41). It turns out that only for odd n will there be a critical temperature
below which the n-mixture states are local minima of f(m). From figure 3.8 we can also
conclude that, in terms of the network functioning as an associative memory, noise is actually
benificial in the sense that it can be used to eliminate the unwanted n > 1 mixture attractors
(whilst retaining the relevant ones: the pure n = 1 states).

In fact the overlap equations (3.38) do also allow for stable solutions different from the
n-mixture states discussed here. They are in turn found to be continuously bifurcating
mixtures of the mixture states. However, for random (or uncorrelated) patterns they come
into existence only near 7' = 0 and play a marginal role; state space is dominated by the odd
n-mixture states.



Appendix A

Conditions for the Central Limit
Theorem to Apply

We first give a simple necessary condition for a random variable to have a Gaussian prob-
ability distribution. Lindeberg’s Theorem gives a sufficient condition for an infinite sum of
independent random variables to have a Gaussian probability distribution. We apply both to
expressions of the form S Wiz;, in which the z; € {—1,1} are independent zero average
random variables.

Moment Condition

Counsider a zero average random variable Y, described by a Gaussian probability distribution

1
P(Y) = 27Te_%Y2/‘72

All odd moments are zero, i.e. (Y2™*1) =0, due to the symmetry P(Y) = P(-Y). All even
moments (Y2™) can be expressed in terms of o. For instance

(V?) = / W y2o-3v2/0" ~ 2no”1 3 lim  [dy Y2
oV

27 z—1/202

d 2 1
= 210?73 i —/Y oY’ — 976?72 lim — -
[ﬂ'O’] 21‘—>11I/%(72 dz dY e [ﬂ'O’] 2$—>111/%(72 d.’E\/_x :

(where we used [dy ¢35V = V2w, see Appendix B). We obtain in a similar way:

(Y4 = / Y _yag-4veyer _ = 270?27 lim [dY Yie ¥’

oV 2w z—1/202

= [2#02]_% lim /dY [2%02]_% \/_ac 3 = 302

x—1/202 dI2 :45—)1/2(72 d.’L'2

A necessary condition for Y to have a Gaussian probability distribution is thus (Y*) = 3(Y2)2.
We now choose Yy = SN | Wiz Z-Iij WJZ]_%, where the z; € {—1,1} are independent
random variables with (z;) = 0. A necessary condition for Yy to have a Gaussian probability

79
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distribution for N — oo is apparently
Yijki—1 WiW;Wi Wi @iz z)20)

A}im . 5 =3
o (S w7
With the help of the identity <.’IIZ'.’IIj.’L'k.’L'l) = 5’ij5kl+5ik5jl+5z'l5jk_25ij5kl‘sz'k this gives
4
lim 7213 Wi (A1)
N—00 [Z WQ]

Lindeberg’s Theorem

Let X 1,X2, X3, ... be a sequence of independent random variables such that (X;) = 0 and
(X2) = 0. Let pk( ) denote the distribution function of X and put S, = Y7 ; X, so that

(Sn) =0 sn={Sh) =oi+os+oi+ - +oy
Suppose that the Lindeberg condition is satisfied i.e.

for each t > 0: Jim — 2 Z /$>tsnda: zpr(z) = 0 (A.2)

Then the distribution of the normalised sum S, /s, tends to the zero average and unit variance
Gaussian distribution as n — oo. For the proof of this theorem see W. Feller, 1966, ‘An
Introduction to Probability and its Applications I, Wiley, New York.

We now choose X; = W;z;, where the z € {—1,1} are independent random variables
with (zx) = 0. Thus o2 = W} for each k. Lindeberg’s condition (A.2) now reads:

SN OWROW| — t /N W2
for each t > 0 : lim = 1 WOlIWi] =1 ]] =0

NS00 Zf\i W2

We can simplify this condition further. Upon defining v, = Wj/ ,/E W2 our condition
for asymptotically Gaussian behaviour can be written as

. 201, 2
for each e > 0 : Nh_I)noo;vZ-H[vi —€=0
Since all non-zero terms in this sum obey v;2 > €, and since v, < 1, it follows that
N N N
EZ Olv — €] < Z vEfvE — €] < Z O[vi — €]
k=1 k=1 k=1
This tells us that here the Lindeberg condition is equivalent to:
for each € > 0 : lim ZG[U —€=0

N—)oo

In terms of the original variables W; this reads:

N—>oo

for each € > 0 : lim 29 [ —eZWk] = (A.3)



Appendix B

Gaussian Integrals

In this appendix we derive some properties of symmetric positive definite matrices A, and
their associated Gaussian integrals in R/:

I= /d.’z: f(m)e_%m'Aw

(for simple functions f), as well as calculate explicitly some integrals of this form, with specific
choices of the matrix A, that we encounter in the lectures.

Real, Symmetric, Positive Definite Matrices. The symmetric N x N matrix A is assumed to
be positive definite, i.e. & - Az > 0 for all z € RV with |z| # 0. The eigenvalue polynomial
det [A — AI] = 0 is of order N, so A will have N (possibly complex) solutions A (some may
coincide) of the eigenvalue problem

Az =z, z#0 (B.1)
We denote complex conjugation of complex numbers z in the usual way: z = a+1ib, 2 = a—1b

(a,b € R), and |z|? = 2*z € R. We denote the unit matrix in Y with I, so I;; = d;;.

Fact 1: All eigenvalues of the matrix A are real.

Proof: In (B.1) we take the inner product with the conjugate vector &*, which gives

N N
Dz Az =AY |zl
ij=1 i1

We use the symmetry of A, and substitute A;; — %[Aij + Ajil:

5= EZU .CL‘;([A,LJ + Aji]:cj _ 12” AZ][J?:‘.TJ + .Tzw;]
2 Zi]il EAR 2 Zi]il EAR

" = ziz} + z}z; = z}z; + 7,7, the above fraction is entirely real-

*

Since [z]z; + T}

valued, so A € R.
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Fact 2: All eigenvectors can be chosen real-valued.

Proof: For a given eigenvalue \ the corresponding eigenvectors & are the solutions of (B.1).
We separate real and imaginary parts of every eigenvector:

1 1
z = Rex + ilmz Rex = 5[:1: + ¥ Imz = 2—[:1: —z]
i

with Rex € RY and Imz € RY. Taking the complex conjugate of equation (B.1) gives
Ax* = Mx* (since A is real). Apparently, if & is an eigenvector with eigenvalue A,
so is ¢*. By adding/subtracting the conjugate equation to/from the original equation
(B.1) it follows, in turn: if & and z* are eigenvectors, so are Rex and Imz. Complex
eigenvectors always come in conjugate pairs, and, since the space spanned by  and =*
is the same as the space spanned by Rex and Ima, we are always allowed to choose the
equivalent real-valued pair Rex and Imz.

Fact 3: All eigenvalues A are positive.

Proof: From the eigenvalue equation (B.1) we derive this property by taking the inner
product with z: A = (z - Az)/(z?) > 0, since A is positive definite and x is real and
nonzero.

Fact 4: For every linear subspace L C %" the following holds:
if ALCL thenalso ALt CL*

in which L+ denotes the orthogonal complement, i.e. RY = L ® L*.

Proof: For each ¢ € L we find (z - Ay) = (y- Az) = 0 (since Az € L and y € L.
Therefore Ay € L+, which completes the proof.

Fact 5: We can construct a complete orthogonal basis in Y of A-eigenvectors.

Proof: Consider two eigenvectors x, and x; of A, corresponding to different eigenvalues:
Az, = Mz, Axy = Mz Ao F N
We form:
0= (zq- Axp) — (4 - Axp) = (o - Axp) — (xp - Azy)
= Xo(Ta " Tp) — Aa(@p - Ta) = (A — Ap) (T - Tp)

Since A\, # Ay it follows that x, - &y, = 0. Eigenspaces corresponding to different
eigenvalues are mutually orthogonal. If all eigenvalues are distinct, this completes the
proof, there being N eigenvalues with corresponding eigenvectors & # 0. Since these
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are proven orthogonal, after normalisation  — z/|z| they form a complete orthogonal
basis.

To deal with degenerate eigenvalues we need Fact 4. For every symmetric NV x N matrix
we know: if Az = Az, then Vy with ¢ -y = 0: (Ay) - « = 0. Having found such an
eigenvector for a given eigenvalue A (not unique in the case of a degenerate eigenvalue),
a new reduced (N —1) x (N —1) matrix can be constructed by restricting ourselves to
the subspace . The new matrix is again symmetric, the eigenvalue polynomial is of
order N — 1 (and contains all the previous roots except for one corresponding to the
eigenvector just eliminated), and we can repeat the argument. This shows that there
must be N orthogonal eigenvectors, which we can normalise and use as a basis in V.

Final result: there exist a set of vectors {&'} (A =1,..., N) with the properties:
Aét = )@ NER, A>0 e e RV, &&= 4 (B.2)

We can now bring A onto diagonal form by a simple unitary transformation U, which we
construct from the components of the normalised eigenvectors é: U;; = é!. We denote the

transpose of U by Uft, U;rj = Uj;, and show that U is indeed unitary, i.e. vltv=vuf=1

S (UU)ya; = Y UMUa; =Y el = Y dijaj =
ik 7

J jk
S (UUY)ijz; = Z UkUjpa; =Y efeiz; = éf(e-z) =
J ik k
(since {&f} forms a complete orthogonal basis). From U being unitary it follows that U and
U' leave inner products, and therefore also lengths, invariant:

Uz - Uy=z-UUy=z-y Uz Uly=z -UUly==z-y

We can see explicitly that U indeed brings A onto diagonal form:

N N
(UTAU)Z']' = Z U;Ak:lUlj == Z ekAkl67 = A Z 6 ék =\; 51] (B.3)
kl=1 kl=1

Note that the inverse A~! of the matrix A exists, and can be written as follows:
Lgk Ak
)ij = Z Ay (B.4)

To prove that this is indeed the inverse of A, we just work out for any & € RY the two
expressions

N
(AA lz); = ZA“CZ)‘E eke T = Ze é
kj=1 =1

(again since {&‘} forms a complete orthogonal basis), and

N N

N
(A" Az); = 3 > Nl Az = Y& (€
=1

kj=1¢=1
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Gaussian Integrals. We now turn to the associated Gaussian integrals

I= /da: f(a:)e_%m'Am (B.5)

/d:v e 2% = Vo

(for a proof see the last part of this appendix). For f(z) = 1 we can do the integral (B.5) by
using the previous results on the diagonalisability of the matrix A. We put £ = Uz (since
U leaves inner products invariant: de = dz):

N
/d.’B e——.’B Az /dz e_lz UTAUZ H [/dz e—%/\zzz]

N N N/2
1 2
= H — [/dz e_%ZQ] = (2) (B.6)
Ve VdetA
(note: the determinant of A is unvariant under rotations, so it can be evaluated with A on
diagonal form, which gives the product of the N eigenvalues).

Due to the symmetry of the integrand in (B.5) under reflection & — —a, the integral
reduces to zero for f(x) = z;. For f(x) = z;z; we find:

/dm xiwjefém'Aw /dm e*_w'A$+b'w

The simplest such integral is

_ 1zU'AUz+2.U'b
e 86 ab; / dz e
D - U'b
= lim [/dz e 3z +z( )e ]
b—o abzab]

y 0 ﬁ [/d Ale—U'byx; ]2+1A;1(U*b);]
= lim ——— 2 e 2
b0 0b;0b; ;-

2

N
1 N -1
= lim 9 65 Zi]’l:l Ay “UiebiUjebj H [/dz e—%/\zz2]

et b—>0
( )N/2

= (A"
( Vi VdetA
In particular, by combining the last two results, we find a powerful (and completely general)

relation for Gaussian probability distributions with zero mean z = 0 (the latter one can
always achieve by a simple translation):

(B.7)

Jdx z;z;e —3z-Az

fd:c e_zm Az (A_l)ij (B:8)
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If we know that a given distribution is Gaussian, with zero average, we apparently only need
to calculate the correlations (z;z;) to know the full distribution:
o sTAT

P(x) Gaussian, with (z) =0 = P(x) = . with (A1) = (z25
(z) (z) (z) (2n)V2der 3 A (A7)ij = (zizj)

(B.9)

Specific Integrals. Finally we calculate explicitly the Gaussian integrals we encountered in
the lectures.

Integral 1:

I= /dz e 2% =\2r (B.10)

Proof: Write the square of the integral as a single integral in 2, and switch to polar coor-
dinates, (21 = rcos ¢, zo = rsin¢). The Jacobian of this coordinate transformation is

simply 7.
2T 0
= /dz1d22 e"3%° :/ d¢/ dr re"3"" = 2 [—e_%’"Q]zo =27
0 0

Therefore I = +/27.

Integral 2:

o0 dudv 1,21 02 2 l—w
I = / / — 5w tvi+2wun]/(1-w?) _ B.11
V1 — w? e V2m ( )

Proof:

j 1-— / / duduv ve — 3 [u4v2+2wur]

l—w / dv ve— 5 /due Hutwo]?+ Lw?e?

1,2

/dvve ;”/ du e 2%
wv /V1-w?

=—1/Oodv{ge_%”2}/oo du e~ 2%
™Jo o0v wv/V1-w?

__1 e 3v /oo du e_%uz + = / dv e s 2—/ du e 2%’
™ wv/V1-w? wv/V1-w?

1 / dv e—%v ——v 20?2 ) (1-w?)
\/ s 7r\/1 —
1 2 2
— _ d -1y /(1—w*)
V2r 7r\/1 —w /0 ve’
1 w 1l—w

T Var Ve Vo
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Integral 3:

- / / jilldie%[u2+v2+2wuv]/(lw2) — laICCOS((U) (B.12)
V1 — w2 T

Proof:

2
I— \/ 1l—w / / dudv 6_5 u?+v2 +2wuv]

We introduce polar coordinates (u = r cos ¢, v = rsin ¢):

I = 1;(‘)2 /ﬂ-/zdgb /Oodfr re_%r2[1+wsin(2¢)]
7T 0 0

\/1—0.)2 1.2

/ / dr re 2"
1+wsm

\/l—w

1,.2700
—re 2" ]

/ 1—I—wsm </>) [
m

/ 1+wsm ()

The ¢ integral can be found in I.S. Gradshteyn and I.M. Ryzhik (1980), ‘Table of
Integrals, Series and Products’, Academic Press, London:

V1 — w? 2 arctan | ¢ + tan(3¢) "
2m — w? V1—w?

I =
0

)

Finally, using cos[§ — 1] = sin1), we find

I=—
Warccos(w)



Appendix C

The )-Distribution

Definition. There are several ways of introducing the §-distribution. Here we will go for an
intuitive definition first, and a formal one later. We define the §-distribution as the probability
distribution §(z) corresponding to a random variable in the limit where the randomness in
the variable vanishes. If z is ‘distributed’ around zero, this implies

/dm f(x)d(z) = f(0) for any function f

The problem arises when we want to actually write down an expression for §(z). Intuitively
one could think of writing something like

(o) = Jim Gale)  Gale) = e (€.1)

This is not a true function in a mathematical sense; é(z) is zero for z # 0 and 6(0) = oo.
The way to interpret and use expressions like (C.1) is to realise that (z) only has a meaning
when appearing inside an integration. One then takes the limit A — 0 after performing
the integration. Upon adopting this convention, we can use (C.1) to derive the following
properties (for sufficiently well-behaved and differentiable functions f1):

d 1,2
/dm d(z)f(z) = hm /dw Ga(z = Aigh \/—;C_W e 2% f(Az) = f(0)

/d:v §(x)f(z) = lim /dm{ (Ga(z)f(z )]—GA(:v)f’(:v)}

= lim [Ga(z)f(2)]Z,, — f'(0) = —f'(0)

A—0

both can be summarised in and generalised to the single expression:

[z f@) s = ()" B ) (n=0.1.2,..) (C.2)

!The conditions on the so-called ‘test-functions’ f can be properly formalised; this being not a course on
distribution theory, here we just concentrate on the basic ideas and properties

87
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Equivalently we can take the result (C.2) as our definition of the §-distribution.

d(z) as Solution of the Liouville Equation. Here we prove that the d-distribution can be used
to represent the solution of the so-called Liouville equation:

2 Ps) = — o [P F(@)] (©3)

The general solution of (C.3) is
Py(z) = / dzo Po(x0)d[z — 2* (£ 20)] (C.4)

in which z*(¢; z¢) is the solution of the ordinary differential equation

d * _ * * —
7% (@) =F("(t) 2*(0) = o (C.5)

In particular, if Py(zo) is a d-distribution in zg, the general solution will remain a §-distribution
in z for all times: Py(z) = d[z—z*(¢; zo)]. The proof that (C.4) is true consists of showing that

both sides of (C.3) give the same result inside integrals, if we insert the proposed solution

(C.4):
/dm f(z) {%Pt(m) + a% [Pt(w)F(w)]}

= % / dz f(z)Py(z) + [f(z) Py(z)F (x)]%, — / dz Py(z)F(z)f (z)
= [dan Ryteo) {%f (2 (t; w0)) — F (2 (t 20)) (2 (#; xo))}

= [z Pofao) " (t50)) { o (t20) ~ Fla*(t50)) } =0

Representations, Relations, Generalisations. We can use the definitions of Fourier transforms
and inverse Fourier transforms to obtain an integral representation of the §-distribution:

Fif@) i) fH) = [doe i)

~

FUf) o f@) fa) = [dk e

In combination these relations give the identity:
f(.’L') _ /dk’ 627rz'kz /dy 6—27rik:yf(y)

Application to f(z) = 6(x) gives:

Sa) = [ar mike = [ 5 ke (C.6)
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Another useful relation is the following one, which relates the J-distribution to the step-
function:

5(z) = %9(:5) (.7)

This we prove by showing that both have the same effect inside an integration (with an
arbitrary test-function):

[z @) - $0@)] 1@) = £0)  ting [ da{ 0@ @)~ @o@)}

e—0 ) _¢

= £(0) ~ lim [f()~0] + lim ["da f'(z) =0
€—> =0 Jo

Finally, the following generalisation is straightforward:

zcRY: d(x) = H 0(z;) (C.8)
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Appendix D

Exercises

1. Higher Order Synapses

It is known that there also exist synapses which operate in a more complicated way than
the simple ones discussed so far. We now try to see how our equations would change if
we were to take into account so-called higher-order synapses, like the one in the drawing:
The new type of synapse requires the simultaneous arrival of two action potentials to release

Figure D.1: Schematic drawing of a higher-order synapse. Upper part: terminals of the axons
of two sending neurons, bottom: surface of a dendrite of the receiving neuron.

neurotransmitter, so that equation (1.4) will be replaced by:

N
TIi(t) = pe(t) TSkt — 7)) + Y Pra(t) ISk (t — 7o) Si(t — 71)
=1
in which the new variables have the following meaning: py;(¢) is a random variable deciding
whether two simultaneously arriving action potentials from neurons k and [ are succesful
in releasing neurotransmitter, Ji; defines the resulting current induced by the second order
synapse, if transmitter release takes place. Assume Ji = 0 for all k.

91
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e Which will be the new equation to replace equation (1.12), if we take into account the
existence of the above type of higher order synapse ?

e Assume (without proof) that the simple scaling argument again applies, which allows
us to replace all summations over different current contributions by their noise averages.
Which equation do we find to replace (1.23) 7

e Perform the simplifications that lead to the graded response neurons. What will these
equations be now ?

e The same question for the McCulloch-Pitts neurons.

2. Graded Response Neurons

Consider two identical coupled graded response neurons, without self-interactions, with 7 =
p=1

d . d %

%Ul(t) = Jag[UQ -U ] — U1 £U2(t) = Jbg[Ul -U ] — U2

e Assume g[z] > 0 Vz (like for instance g[z] = 3[1 + erf(z)]). Show:
(a) if J, = Jp there exists a solution of the form U; (t) = Us(t) Vt.
(b) if J, # Jp there does not exists a solution of the form U (t) = Usx(t) V.

Now choose g[z] = 0[z] (no noise), J, = Jp = J # 0. Simplify the equations by tranforming
to new variables:
U1 :JU1 UQZJ’U,Q U)k :Ju*

so that the new equations become

d d
Eul(t) = Olug — u*] —uy aug(t) = Olu; — u*] — ug

e Solve these equations for the four relevant regions of the (u1,uz) plane, (I) u1 > u*, ug >
w* (II) uy < u*, ug > u* (III) uy < u*, ue < u* (IV) up > u*, ug < u*, and draw the
trajectories in the (ui,u2) plane, for u* < 1.

e Do the same for u* > 1.

e What can you conclude about the dependence of the system’s behaviour on the height
of the neural threshold ?

3. Coupled Oscillators

Consider three coupled oscillators, without self-interactions:
91(8) = wn + ipsinlo(t) — $a(8)] + Jus simls (1) — 1 (4]
%@ (t) = w2 + Jor sin[¢1(t) — ¢a(t)] + Jos sin[ps(t) — da(?)]

%453 (t) = w3 + J31sinfé1(t) — ¢3(t)] + Ja2 sin[ga(t) — P3(2)]
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Explain the significance of the quantities which arise in these eugtions.
From now on assume that w; = wy = w3 = w. Show that the above system of equations
admits solutions such that

B3(t) — o(t) =mm, m=0,+1,£2,...

if and only if J3; = (—1)™J5;. What do these solutions represent in terms of firing coherence.
Assume that the above condition holds for some even integer m, and that J; = J for all ¢, k.
Show that

L rom) =30 (g1 —s) = ~3Jsin(1 — )

Finally, suppose that J > 0 and that initially ¢1 — ¢ is not a multiple of 7. Show, by
considering the phase diagram pertaining to the above differential equation for ¢; — ¢, or
otherwise, that as t — oo all three oscillators will fire coherently, i.e. synchronously. What
happens if J <07

4. Elementary Operations and Model Neurons

Consider the task f : {0,1}*> — {0,1} given by

flz1,m2,23) =4 1,  (z1,%2,73) = (1,1,1)
0, otherwise

e Show, by geometrical considerations, or otherwise, that f can be realised by a single
McCulloch-Pitts neuron. Give suitable values for weights and threshold explicitly.

If we take into account higher order synapses, the operation of a McCulloch-Pitts neuron
becomes somewhat more sophisticated:

St+A) =00 Jyzp + Y Juzkz — U]
P k1

e Can we perform the XOR operation (z1,z2) — XOR(z1,x2) with (z1,z2) € {0,1}?,
which a McCulloch-Pitts neuron cannot realise, with a single neuron like this 7
5. The Parity Operation
Define the parity operation

M0, 1)K 5 {01} M(z) = % 14 (—1) D

M indicates whether (M = 1) or not (M = 0) the number of +1 components of the input
vector x is even.

e Show that for K = 2 we find M(z1,z2) = ~XOR(z1, z2).

e Prove that for K > 2 the parity operation cannot be performed by a single McCulloch-
Pitts neuron

K
=1
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6. Symmetries

We know that a two-layer feed-forward network of McCulloch-Pitts neurons, with L = [QF| <
2K neurons in the ‘hidden’ layer can perform any transformation M : {0,1}¥ — {0,1},
provided all connections and thresholds are properly choosen. Here || denotes the number
of vectors in the set Q. However, in the case where there are symmetries in the operation M,
the number of hidden neurons L can be considerably less. An example of such an operation is
the Parity Operation (see above). Here the operation M is invariant under all permutations
of the indices {1,..., K} of the input vector x.

e We take K = 2. QF = {(0,0),(1,1)}, so the upper bound for L is 2. Construct a
two-layer feed-forward network of McCulloch-Pitts neurons with L. = 2 that performs
the parity operation, not as a realisation of a look-up table, but by using the fact that,
due to the permutation symmetry, M (x) can be written as a function only of z; + z5.
Hints: write y;(x) = 0[z1 + z2 — U;], and use a graphical representation of what the
output neuron S(y1,y2) is required to do in order to find its separating plane.

e Choose K = 3. Since O = {(0,0,0),(0,1,1),(1,0,1),(1,1,0)} the upper bound for
L is 4. Construct a two-layer feed-forward network of McCulloch-Pitts neurons with
L = 3 that performs the parity operation.

e Give the network construction for general K > 2 (without proof), by generalising the
results obtained for K = 2,3. Show that we need only K hidden neurons.

e A tough one: give the corresponding proof, for general K, that the construction per-
forms the task M.

7. Learning the Unlearnable

We now study what happens when a perceptron is being trained on a task that is not linearly
separable, like XOR(z1,z2). In +1 representation, and with the convention zy = 1 (the
dummy input), the task 7' and the Ising perceptron o are defined as

T:{-1,1}> - {-1,1}, T (zo,21,%2) = —T122

o {-1,1}" > {-1,1}, o(zo, 21, 22) = sgn[J - ], J = (Jo, J1, J2)

with Q@ = {@ € {-1,1}3| 20 = 1} and p(z) = } V& € Q (note: there are four input vectors

in ). In the limit of small learning rate ¢ — 0 the learning process is described by equation
(2.13):

%J — %(m [T(x) — sgn(J - z)])a

Calculate (zT'(x))q.

Prove that |J| decreases monotonically with time.

Show that the dynamic equation (2.13) is a gradient descent on a surface E(J). What
is the meaning of E(J) ?

Prove that limy_, |J(t)| = 0.
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8. Application of the CLT to W -«

A sufficient (although not necessary) condition for the inner product W - x to acquire a
Gaussian probability distribution in the limit N — oo, with & € {—1,1}" and p(z) = 2=V
Ve € {—1,1}¥ (i.e. for the the Central Limit Theorem to apply), is Lindeberg’s Condition:

Ve>0: lim ZG[WQ—GZW,C]—O

N—oxo

A necessary (although not sufficient) condition for the inner product W - & to acquire a
Gaussian probability distribution in the limit N — oo is

4
lim 71 1 Wi =0
N—oo [Zz 1 WQ]
Here we will look more closely at trivial and non-trivial teacher vectors W = (Wy,...,Wy)

for which the CLT does not apply.
e Show that both conditions are violated if Wiy =1 and W; =0 Vi > 1.

e Same question for W; = 1 for i < n and W; = 0 Vi > n, for every fixed n > 1 (fixed
means: not dependent on N).

e Same question for W, = e~*.

e Same question for Wy, = 1/k.
e Show that both conditions are sastisfied for Wy, = 1/v/k.

You may use:

Z (2] <), 2_2:_7T’ 2—4: 7Ta d =
k=1 k=1 k=1

9. Forgetful Perceptrons

Consider a perceptron o with N ordinary input variables in +1 representation and with the
convention of the dummy input zo = 1, learning a task 7"

T:{-1,1}V* 5 {—1,1}

o:{-1, 1}V 5 (1,1}, o(zgy--.,zn) = sgn(J - x)

Assume Q = {z € {-1,1}"¥*| 2y = 1} and p(x) = 27" Vz € Q (note: there are 2V
input vectors in ). In the original perceptron learning rule we add a decay term for the
interactions, which tends to erase information previously accumulated:
1
AJ = o [T'(x) — sgn(J -x)] —nJ

e Introduce a learning rate e in the usual way: J(t +¢) = J(t) + eAJ. Derive the
corresponding continuous-time equation to replace (2.13), by taking the limit ¢ — 0.
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e Show that this equation describes gradient descent on a surface E(J), and prove that
E(J) is bounded from below.

e Assume that 7T is linearly separable, i.e. T(x) = sgn(W - &) V& € Q. Show that
limy_yo0 W - J(t) > 0.

From now on consider only linearly separable tasks and perceptrons without thresholds, i.e.
Wy = Jp =0, and choose |W| = 1.

e Define, following the analysis in section 2.5, the two quantities J = |J| and w = J- W,
with J = JJ. Derive the differential equations that replace (2.44) and (2.45). Note
that (2.45) is not affected by the decay term.

e Assume the two inner products u = W - & and v = J -« to have a Gaussian joint
probability distribution, and find the equations that replace (2.51) and (2.52).

e Show that (2.54) is replaced by e J(t)[1 + w(t)] = J(0)[1 + w(0)].

e Show that the evolution in time of the macroscopic observable w, following w(0) = 0,

is now given by
1
1 I 14+wl2 w
n[e ] J(0) 2{og 1—w +1+w

e Show how for n < 1 and times t K 7 > we recover the old result (2.59). Hint: use the
expansion e” = 1 + z + 12% + O(z?) for small z.

e Show that for any n > 0: limy,,w(t) = 1 and limy_,o J(¢) = 0. Which are the
advantages and disadvantages of forgetting by weight decay ?

10. Examples for Noiseless Parallel Dynamics

Consider noiseless recurrent networks with parallel dynamics. Assume that the post-synaptic
potentials h; = Ej Jijoj+w; are always non-zero.

e Consider example (i7) in the lecture notes: J;; = w; = 0. Write the Lyapunov
function L (3.7) in terms of the average activity m(o) = & 32, 04, and verify that L
decreases monotonically. Which values for L are obtained in the different attractors ?

J
N
(o

e Same questions for example (ii7) in the lecture notes: J;; = %, w; =w # 0.

Now turn to example (iv) in the lecture notes: J;; = 4, w; € {~w,w}. Define the two
sub-networks I, = {i| w; = w} and I_ = {i| w; = —w}, assume them to be equally large:
11| = |I_| = LN. Define also the corresponding average activities
2 2
my(o) = — Zai m_(o) =— Zai
N . N .
i€l el

e Calculate m4 (t) and m_(t) for t > 0 (along the lines of the lecture notes)

e Write the Lyapunov function L (3.7) in terms of the two average activities m4 (o) in
the sub-networks, and verify that L decreases monotonically. Which values for L are
obtained in the different attractors 7
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11. Examples for Noiseless Sequential Dynamics

Consider noiseless recurrent networks with sequential dynamics. Choose J;; = %, w; = 0 and
N odd. The average activity in the system is defined as usual: m(t) = £ 3, 0;(t). Assume

m(0) # 0.
e Show that for J > 0: m(co) = limy_oo m(t) = sgn[m(0)] (as for parallel dynamics)

e Show that for J < 0, on the other hand, the behaviour is completely different from the
corresponding system with parallel dynamics.

e Calculate limy_, o m(o0) for J < 0.

12. Lyapunov Functions

Consider networks with anti-symmetric synaptic interactions, i.e. J;; = —J;; (Vig), with
w; = 0 (Vi) and parallel deterministic dynamics.

e Show that L(o) (3.7) is also a Lyapunov function for networks with anti-symmetric
interactions.

e Prove that anti-symmetric networks will always evolve into a period-4 limit-cycle.

13. Information Storage Through the Creation of Attractors

Consider noiseless recurrent networks with parallel dynamics: o;(t+1) = sgn[>; Jijo;(t)] (V4).
The p vectors & = (&,...,&8) € {-1,1}" (u = 1,...,p) represent patterns (information)
to be stored and retrieved. Assume these patterns to be mutually orthogonal and that p to be
finite. We define the p pattern overlaps m, (o) = % > &fa; € [-1,1]. Choose the synaptic
interactions

1 p
Jij = N > &l
pn=1

e Give a condition on the initial overlaps {m,,(0)} sufficient to guarantee that o'(1) = ¢*.

e Show that for N — oo all pattern vectors £* are fixed-point attractors, by demonstrat-
ing that the above condition is fulfilled for a set of states close to these patterns.

Now choose
152 1
o } : ptlep | 2 plep
JZ] - N IL:l éz é-] + Né-’t 6_7

e Give a condition on the initial overlaps {m,,(0)} sufficient to guarantee that o(1) = €*.

e Show that for N — oo there exists a stable period-p limit cycle attractor of the form
I N s ¥ LI LGy
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14. Detailed Balance
Consider the general Markov chain (3.20).

e Show that from p;(o) being a probability distribution it follows that the transition
matrix must have the property Y5 W{o;0'] =1 for all o'

e Show that a distribution p(o) satisfying the so-called detailed-balance condition
Wlo;o'lp(a’) = Wo'solp(a)  (Vo,o’)
gives a stationary state of the Markov chain.

e Show that for the stochastic parallel dynamics networks (3.21) with symmetric inter-
actions the stationary state is given by

poo(o) = C.€P 2, oiwi H cosh ﬂ[z Jijoj+w;)
i J

(where C is a constant), by showing that it satisfies the detailed balance condition.

e Show that for the stochastic sequential dynamics networks (3.23) with symmetric in-
teractions and Jj; = 0 (Vi) the stationary state is given by

1 Y S P
- 0 T i

(where C' is a constant), by showing that it satisfies the detailed balance condition.

15. Analysis of Attractor Models by Mean Field Approximation

Consider the attractor models

1
hi(o) =Y Jijo; Tij = 37 D& Aty
7

uv

Define pattern overlaps m, (o) = + 3, 0, and averages (f(0)): = Yo pi(0)f(o) (o €
{~1,1}"V). The mean field approximation consists of replacing all local fields by their averages,
giving hi(o) = X, &' Ay (m, (). Define the continuous-time sequential dynamics:

“nle) = X (wilFoln(Fo) —wilolp(o)}  wilo) = 5[1-oi tanhiBhi(o)]] (D.1)

(with the neuron flip-operation Fj;).
e Derive for the process (D.1) the general relation

%(f(d))t = (Z wi(o) [f(Fio)—f(o)]):
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e Apply the above result to the overlaps m, (o) and use the mean-field approximation to
derive the macroscopic laws

d

Cm(t) = % S el tanh(B Y. Ay ()] — () with mu(t) = (mu(o))e
k Av

Now turn to discrete-time parallel dynamics:
- S W] Wioia'] =[] _ oo D
;o = 2
pt+1 o;0 ]pt( ) [Ua o ] : 9 COSh[ﬁhi(O”)] ( )

a'l

e Derive for the process (D.2) the general relation:

Boihi(O")
Nevt = ZH 2coshﬂh Zf 1:[6

e Prove the identity (for {A;} not dependent on o):

Zak H % = tanh(Ay) H [2 cosh(A4;)]

e Apply the above results to the overlaps m, (o) and use the mean-field approximation
to derive the macroscopic laws

my(t+1) = Zg,g tanh[ﬂz@@AMmu t)] with my,(t) = (my (o))

16. Attractor Models with Unequal Embedding Strengths

We apply the results of the previous exercise to the special case where patterns are stored
according to a Hebbian rule, but with different (positive) embedding strengths w,: A, =
Wy 0y, OF

1
= 2wl
I
Assume random patterns and consider large networks (N — o).

e Show that the macroscopic laws have (pure) solutions of the form m,(t) = m(t)é,,,
what do they represent 7 Show that the stationary value m = limy_,o, m(t) is a solution
of the transcendental equation m = tanh(Bw,m).

e Show that the previous result implies that there exists a critical value for the noise level
T = 3~ ! above which only the trivial pure stationary state m = 0 is possible, what is
this value ?



