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Gaussian process regression for survival data
with competing risks

James E. Barretta∗† and Anthony C. C. Coolena

We apply Gaussian process (GP) regression, which provides a powerful non-parametric probabilistic method of
relating inputs to outputs, to survival data consisting of time-to-event and covariate measurements. In this context,
the covariates are regarded as the ‘inputs’ and the event times are the ‘outputs’. This allows for highly flexible
inference of non-linear relationships between covariates and event times. Many existing methods, such as the
ubiquitous Cox proportional hazards model, focus primarily on the hazard rate which is typically assumed to
take some parametric or semi-parametric form. Our proposed model belongs to the class of accelerated failure
time models where we focus on directly characterising the relationship between covariates and event times without
any explicit assumptions on what form the hazard rates take. It is straightforward to include various types and
combinations of censored and truncated observations. We apply our approach to both simulated and experimental
data. We then apply multiple output GP regression, which can handle multiple potentially correlated outputs for
each input, to competing risks survival data where multiple event types can occur. By tuning one of the model
parameters we can control the extent to which the multiple outputs (the time-to-event for each risk) are dependent
thus allowing the specification of correlated risks. Simulation studies suggest that in some cases allowing for
potential dependence between different risks can lead to more accurate risk-specific predictions. Copyright c©
2010 John Wiley & Sons, Ltd.

Keywords: Gaussian process regression; survival analysis; accelerated failure time model; competing
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1. Introduction

In this work we will develop an accelerated failure time model where the event times are written as an unknown (and
noise corrupted) function of the covariates. Gaussian process (GP) regression [1] is used to infer the unknown function
in a flexible and non-parametric manner. By specifying different kernels in the GP prior we can probabilistically infer a
wide range of qualitatively different functions. From this point of view the event times are considered ‘outputs’ and the
covariates ‘inputs’ in a regression model. We argue that this approach is a more direct way of connecting the quantities that
we have experimental access to, namely the covariates and the event times. Many existing methods of analysing survival
data focus on the hazard rate. Cox’s proportional hazards model [2] is arguably the most popular such approach. These
methods typically assume that the hazard rate splits into two components, one that captures the time effects and one that
captures the covariate effects. Cox’s model further assumes that the covariate effects combine linearly. It is not obvious
however that this factorisation is always appropriate. Hazard rate models take a more indirect route that needs to capture
both the time and covariate effects on survival outcomes whereas our approach need only capture the covariate effects,
and consequently fewer assumptions are required.

The event times are transformed such that they take negative and positive values. Model parameters consist of the ‘noise-
free’ function values and these are inferred in a Bayesian manner. We compute the maximum a posteriori (MAP) solution
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by numerically maximising the posterior density over parameters. The hyperparameters control qualitative features of the
kernel function and the overall noise level. We construct the Laplace approximation of the marginal likelihood and use
that to numerically compute the MAP solution for hyperparameters.

Our model can incorporate any type of censored and truncated observations relatively easily. In addition, we obtain
estimates of when the event would have occurred to individuals that were censored. We perform several simulation studies
which illustrate the model’s ability to infer non-monotonic relationships between the covariates and event times. We
compare our model to more traditional models such as the Cox proportional hazards model, the Weibull proportional
hazards model and a third model that is also based on GP regression but assumes a hazard rate similar to the Cox model
but with non-linear covariate effects. We also apply our approach to experimental gene expression data.

We extend our model to the competing risks scenario by using multiple output GP regression [3]. Multiple output GP
regression was originally developed for situations where multiple outputs are available corresponding to given inputs. The
outputs may be statistically dependent. Again, we regard the time-to-event for different risks as the ‘multiple outputs’
and the covariates as the ‘inputs’. In general, multiple output GP regression can be applied to data where each input
has corresponding measurements of all (or some) of the outputs. There are two features of competing risks data that
are interesting in this regard. Firstly, at most one output is available for each individual (since we only measure one event
time). Secondly, once one of the outputs is observed we know that the remaining outputs must be greater than the observed
output. This is because we know that remaining events would have occurred after the first reported event time. Despite
these differences we will show that multiple output GP regression performs well on competing risks data.

The model can assume either independent risks or dependent risks by tuning the value of one hyperparameter. Of
course, the identifiability problem [4] means we cannot conclude whether the risks are truly independent or not in reality.
Nevertheless, within the framework of the model we will infer the value of the parameter that best explains the observed
data. If the assumption of dependence has a higher probability then the model will follow this, and as we will show, exploit
it to potentially make more accurate predictions. Consider, for example, two strongly dependent risks. If there is a region
of the covariate space where only the first event has been observed we can still make accurate predictions of when the
second type of event would occur for new individuals. This is because we know the second risk will behave similarly to
the first risk. We also examine the issue of what happens in the hypothetical scenario where we ‘disable’ or ‘switch off’
one or more risks. The joint event time density takes a particularly convenient form in our model since the event times
are conditionally independent given the underlying noise-free function values. Quantities such as the marginal survival
probabilities are straightforward to compute.

Existing approaches to analysing competing risks survival data commonly assume parametric or semi-parametric cause
specific hazard rates. This is useful to establish whether a certain covariate is associated with a particular risk. It may be
less clear, however, how a covariate is related to overall survival probabilities in the presence of competing risks since the
survival function is a function of all the cause specific hazard rates. An alternative approach is to model the cumulative
incidence function, using for example a form similar to a proportional hazard model [5]. Shared frailty models [6], random
effects models [7], and the concepts of pseudo-values [8] and relative survival [9] are other ways to analyse competing
risks data. However, all of these approaches contain some parametric or semi-parametric components. Our approach
differs from these strategies since we essentially focus on modelling the joint event time density in a non-parametric
fashion. Similarly to the case of a single risk this avoids imposing unnecessary structural assumptions on what form the
data take.

This rest of this paper is structured as follows. In Section 2 we apply GP regression to survival data with a single risk
and independent censoring. We will develop our GP model, outline how to infer parameters and hyperparameters, and
explain how to make predictions. This model is then applied to interval censored data. In Section 3 we extend our model
to competing risks data. We apply our model to both experimental and simulated data and present the results in Section 4.
We finish with discussion in Section 5.

2. GP regression with a single risk and independent censoring

We firstly define a general non-linear transformation model from which several existing models can be recovered under
different assumptions. This will serve as a natural starting point for our GP regression model and offer an intuitive way
to compare it to existing approaches. Survival data are D = {(τi,∆i)}i=1...,N where τi > 0 is the time until the first event
for individual i, the indicator variable ∆i = 1 means the primary event occurred first whereas ∆i = 0 indicates individual
i was censored, and N is the total number of individuals. In addition, we acquire a vector of covariate measurements
xi ∈ Rd for each individual. A general transformation model assumes

φ(τi) = f(xi) + ξi for i = 1, . . . , N (1)
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where φ is a monotonically increasing transformation of the event times, f(xi) is some function of the covariates, and ξi
is a noise random variable with a probability density function pξ.

Under different assumptions of φ, f and pξ several existing models, including our GP model, can be derived as special
cases of (1). For example, linear transformation models [10] assume φ is unspecified and f(x) = β · x where β is a vector
of regression weights. Various procedures for estimating the regression parameters in such models have been proposed in
[11] and [12]. Recently [13] considered the case where f(x) is an unspecified smooth function and proposed a boosting
estimation method based on the marginal likelihood.

If we pick pξ(s) = exp(s− es) and φ(τ) = log Λ0(τ), where Λ0(τ) is the integrated baseline hazard rate, we recover
models with a hazard rate similar to Cox’s model:

π(τ) = λ0(τ)e−f(x). (2)

The baseline hazard rate is λ0(τ). When f(x) = −β · x we recover Cox’s original proportional hazards model. Frailty
models [14] can be retrieved by assuming f(x) = −β · x + w where w is a frailty term. Generalised additive models
[15] assume f(x) = β · x +

∑d
µ=1 gµ(xµ) where gµ are non-linear functions of the covariates. See [16] and [17] for

recent implementations of such models. Alternatively, a GP prior can be assumed for f(x) as shown by [18] and [19].
Viewed in this order these models seek to accommodate increasingly complicated covariate effects through more flexible
and sophisticated functions of the covariates. For completeness we note that accelerated failure time models can be
recovered by assuming φ(τ) = log(τ) and f(x) = β · x. Assuming different distributions for pξ results in a wide variety
of accelerated failure time models (see Section 2.6 of [20]).

2.1. The GP accelerated failure time model

We let t = φ(τ) denote the transformed event times. We could choose the traditional t = log(τ) but instead we choose

t = φ(τ) = log(eτ/γ − 1). (3)

This transformation has some desirable features. Provided γ < mini(τi) then the transformation is effectively linear. A
t = log(τ) transformation would be non-linear and this will become particularly apparent for large τ since we may have
two large values of τ that once transformed are rather similar to each each other. This may make it difficult for the model to
make accurate inferences for large values of τ . Since we will assume Gaussian noise the uncertainty associated with large
event times will be the same as for short event times but with a non-linear transformation this is not desirable. Therefore
(3) is preferable. The distortion due to the non-linear component of the transformation (when τ < γ) becomes apparent
only during predictions. When t takes negative values they are ‘squashed’ towards the positive half of the real line. A plot
of the transformation is given in the Supporting Information.

The transformation of the output variables in GP regression has been explored by [21]. They examine a variety of
parameterised monotonic transformations and regard any transformation parameters as hyperparameters to learn during
training. Their procedure infers the most appropriate transformation such that the transformed outputs can be modelled
using a Gaussian process. It might be useful to apply this method in future work.

GP regression provides a powerful non-parametric probabilistic method for relating inputs x to outputs t. It is assumed
that any finite collection of the noise-free outputs f(x) are Gaussian distributed. For compactness we write fi = f(xi).
The covariance is given by the kernel function, k(xi,xj) = 〈(fi − 〈fi〉)(fj − 〈fj〉)〉, which roughly tells us how ‘similar’
xi and xj are. We will also require the mean function 〈fi〉 = m(xi). An excellent introduction to GP regression can be
found in [1]. We can construct a GP regression model from (1) by assuming a GP prior for the noise-free function values:

p(f |X,θ) =
e−

1
2 (f−η)·K−1(f−η)

(2π)N/2|K|1/2
(4)

where [f ]i = fi, [η]i = η with η constant, [K]ij = k(xi,xj) is the kernel matrix, θ is a vector of hyperparameters, and
X denotes the set of xi for i = 1, . . . , N . In this work we have used the squared exponential kernel which is defined by
k(xi,xj) = σ exp(−(xi − xj) · L(xi − xj)/2) where σ > 0 is a hyperparameter controlling the variance of the outputs.
The matrix L = diag(l) where the components of l = (l−2

1 , . . . , l−2
d ) are known as automatic relevance determination

(ARD) parameters and roughly tell us how important each covariate is. This is because lµ defines a characteristic length
scale over which the output associated with covariate µ varies. If the output varies a lot with a particular covariate then it is
‘important’. These hyperparameters are analogous to the weights in a linear regression model or the regression coefficients
in Cox regression.

For the noise variable in (1) we pick p(ξ) = G(0, β2), where G(0, β2) denotes a Gaussian distribution with mean 0 and
variance β2. It follows that the event time density for individual i is

p(ti|f(xi)) = G(f(xi), β
2). (5)
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This is convenient since the conditional event time density has a simple form with all of the non-linear covariate effects
captured by p(f |X,θ). From this we can derive the survival function and hazard rate:

S(τ) =

∫ ∞
τ

ds p(s|fi) and πi(τ) =
p(τ |fi)∫∞

τ
ds p(s|fi)

. (6)

For the present section we will consider only right censoring. Interval censoring will be considered in Section 2.2. We
infer the function values f ∈ RN using Bayes’ theorem:

p(f |X, D,θ) =
p(D|f ,θ)p(f |X,θ)∫

df ′ p(D|f ′,θ)p(f ′|X,θ)
(7)

with p(D|f ,θ) =
∏N
i=1 P (ti,∆i|fi) where P (ti,∆i|fi) is the likelihood contribution made by individual i and depends

on what type of censoring or truncation has occurred [20, Section 3.5]. In this case non-censored individuals contribute
with the event time density evaluated at the reported event time, P (ti,∆i = 1|fi) = p(ti|fi), and a censored individual
contributes the probability that the event occurred after the reported event time, P (ti,∆i = 0|fi) = S(ti|fi). We
determine the maximum a posteriori (MAP) solution by numerically minimising the negative log likelihood L(f) =
−N−1 log p(f |X, D,θ):

L(f) = − 1

N

∑
i:∆i=1

log p(ti|fi)−
1

N

∑
i:∆i=0

logS(ti|fi) +
1

2N
(f − η) ·K−1(f − η) +

1

2N
log |K|. (8)

Numerical optimisation is performed using a gradient based optimiser in Matlab. Partial derivatives are given in the
Supporting Information. Hyperparameters are determined by optimising the Laplace approximation of the marginal
likelihood

∫
df ′ p(D|f ′,θ)p(f ′|X,θ). We do this by firstly expanding L(f) to second order around the minimum f̂ using

a Taylor expansion L(f) ≈ L(f̂) + 1
2 (f − f̂) ·A(f − f̂). The matrix A contains second order partial derivatives and is

defined by Aij = ∂2/∂wi∂wjL(f)|f̂ . We now write the marginal likelihood as

p(D|θ) ≈
∫

dw e−NL(f̂)−N2 (f−f̂)·A(f−f̂)

= p(D|f̂ ,θ)p(f̂ |θ)(2π)N/2|(NA)−1(θ)|1/2. (9)

We take the negative log of this

Lhyp(θ) = L(f̂)− 1

2
log 2π +

1

2N
log |W + K−1| (10)

where the diagonal matrix is defined by Wii = −∂2/∂f2
i log p(D|f ,θ) (given in the Supporting Information) and

numerically minimise with respect to θ. Note that each evaluation of the negative hyperparameter log likelihood requires
determining f̂ .

2.1.1. Predictions, hazard rates and survival curves Having trained a GP regression model (by inferring the function
values f and hyperparameters θ) we may wish to predict the event time τ∗ for a new individual with covariates x∗. The
predictive distribution for a test output f∗ corresponding to a test input x∗ is Gaussian with mean and variance

µ̂ = k∗ ·K−1f̂ (11)

κ̂ = k(x∗,x∗)− k∗ · (K + W−1)−1k∗ (12)

where [k∗]i = k(x∗,xi). These expression are similar to the usual GP predictive mean and variance except in this case we
include additional variance due to the uncertainty in f̂ (see Section 3.4.2 of [1]). The corresponding density for (the noisy
prediction) t∗ is G(µ̂, κ̂+ β2). Finally, we need to transform back to the original time variable τ∗:

p(τ∗|x∗,X, D) =
e
− 1

2(κ̂+β2)
(log(eτ

∗/γ−1)−µ̂)2

(2π(κ̂+ β2))1/2

eτ
∗/γ

γ(eτ∗/γ − 1)
. (13)

Once the predictive event time density has been obtained we can compute the primary hazard rate and survival function
if desired. It may also be desirable to make a specific prediction of when the event will occur. This can be done by
numerically computing the mean of the event time density:

〈τ∗〉 =

∫ ∞
0

ds sp(s|x∗,X, D). (14)

The variance
〈
(τ∗)2

〉
− 〈τ∗〉2 can also be computed as gives us a measure of uncertainty regarding our prediction.
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2.2. GP regression with a single risk and independent interval censoring

Existing methods for interval censored survival data are typically based on parametric or semi-parametric models. The
advantage of parametric models is that expressions for the survival function can be obtained in closed form and hence
the exact likelihood can be constructed for right, left or interval censored observations. See [22] for a discussion and
comparison of several parametric models. Weibull accelerated failure time models are considered in [23, 24, 25]. A family
of parametric models that can handle time dependent covariates is presented in [26]. Most semi-parametric models are
adaptations of Cox’s model. The partial likelihood argument cannot be used so usually the full likelihood is numerically
optimised with respect to parameters. Some representative examples can be found in [27, 28, 29]. Another strategy is to
impute the event times [30] by taking the midpoint or the end of the interval for instance [31], and then applying standard
methods to the imputed event times.

Our GP model can readily be extended to accommodate interval censored observations. Now ∆ = 1 corresponds to an
interval censored observation and ∆ = 0 a right censored one. We observe upper and lower times that define an interval†

(tli, t
u
i ) and we have P (tli, t

u
i ,∆i = 1|fi) = S(tli|fi)− S(tui |fi). Taking the negative log of the posterior (7) and ignoring

terms independent of f we get

L(f) = − 1

N

∑
i:∆i=1

log[S(tli|fi)− S(tui |fi)]−
1

N

∑
i:∆i=0

logS(ti|fi)−
1

N
log p(f |X,θ). (15)

As above, we find f̂ by numerically minimising the negative log likelihood. Hyperparameters are determined using the
Laplace approximation of the marginal likelihood (10) but with a different matrix W. Inference and predictions proceed
as above.

2.3. Weibull proportional hazards model (WPHM)

For the purposes of comparison we will use a Weibull proportional hazards model. This model assumes a more traditional
hazard rate (2) with a baseline hazard rate λ0(τ) = (ν/ρ)(τ/ρ)ν−1 where ρ > 0 is a scale parameter and ν > 0 is a shape
parameter. The cumulative base hazard rate is Λ0(τ) = (τ/ρ)ν . We infer the optimal parameter values by minimising the
negative log data likelihood

L(β, ρ, ν) = − 1

N

∑
i:∆i=1

[log λ0(τi) + β · xi] +
1

N

N∑
i=1

Λ0(τi)e
β·xi . (16)

Predictions for new individuals with covariates x∗ can be made by computing the mean (and variance) of the event time
density (using optimal parameters β̂, ρ̂, ν̂)

〈τ〉 =

∫ ∞
0

ds sλ0(s)eβ̂·x
∗

exp(−Λ0(s)eβ̂·x
∗
). (17)

3. Multiple output GP regression with competing risks and independent censoring

We extend the transformation model from the case of a single risk (1) to the case of two competing risks (this can easily
be generalised to more than two):

φ(τ1
i ) = f1(xi) + ξ1

i and φ(τ2
i ) = f2(xi) + ξ2

i for i = 1, . . . , N . (18)

Each event time is related to the same covariates via two different functions corrupted with two different noise random
variables. In the case of competing risks the event times may be correlated so we will use multiple output GP regression
to capture dependency between outputs. Multiple output GP regression was first introduced to the machine learning
community in [3] who built on work developed in [32] which illustrated that a Gaussian process can be obtained from
a convolution of a Gaussian white noise process. We will follow their approach closely in this section. The noise-free
outputs are written as f1(x) = u1(x) + s1(x) and f2(x) = u2(x) + s2(x) where u1 and u2 are GPs unique to each output
and s1 and s2 are ‘shared’ GPs obtained by convolving the same Gaussian white noise process. Dependency between
outputs can be captured via the shared components.

†Note that we are still working with the transformed event times t = φ(τ) defined by (3).
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The covariance between the noiseless outputs is (terms such as 〈ur(xi), sq(xj)〉 vanish)

〈fr(xi), fq(xj)〉 = 〈ur(xi), uq(xj)〉+ 〈sr(xi), sq(xj)〉 . (19)

Following the example of [3] we have

〈ur(xi), ur(xj)〉 = πd/2σ2√
|Σr|

e−
1
4 d·Σrd 〈s1(xi), s2(xj)〉 = (2π)d/2ω2√

|Ω1+Ω2|
e−

1
2 (d−µ)·Γ(d−µ)

〈s2(xi), s1(xj)〉 = (2π)d/2ω2√
|Ω1+Ω2|

e−
1
2 (d+µ)·Γ(d+µ) 〈sr(xi), sr(xj)〉 = πd/2ω2√

|Ωr|
e−

1
4 d·Ωrd

(20)

where the covariance matrices are diagonal with Σr = ΣrId×d and Ωr = ΩrId×d and Γ = Ω1(Ω1 + Ω2)−1Ω2. We
assume that the characteristic length scales in covariate space are the same Σ1 = Σ2 = Ω1 = Ω2 = l−2. The vector µ
allows one output to be a translation of the other. We assume [µ]ν = µ for ν = 1, . . . , d with µ constant. Finally, we shall
assume that the noise levels are the same for both events β1 = β2 = β. In the simplest case we have a six-dimensional
vector of hyperparameters θ = (η, µ, β, σ, ω, l) where η ∈ R (from the GP mean), µ ∈ R, β ≥ 0, σ ≥ 0, ω ≥ 0 and l ≥ 0.
These simplifications are by no means necessary and may not be appropriate for certain datasets. They do however make
inference of hyperparameters considerably easier since the search space will in general contain local minima so lowering
the dimension of the search space will have significant computational advantages.

Inserting these into (19) allows us to construct a covariance matrix which we can use to define a GP prior over
f = [f1, f2] ∈ R2N :

p(f |X) = G
(
η,

[
K11 K12

K21 K22

])
(21)

where [Krq]ij = 〈fr(xi), fq(xj)〉 and [η]ν = η, with η ∈ R, is the GP mean. The block matrices have an intuitive
interpretation. K11 and K22 control the covariance structure of the independent parts of each output whereas the off-
diagonal blocks control the covariance between outputs.

Returning to (18) we will now assume the GP prior (21) for the function values f = [f1, f2]. Again we let t1 = φ(τ1)
and t2 = φ(τ2). The indicator variable can take values ∆i = 0, 1, 2 to indicate censoring, event type 1 or event type
2 respectively. With a Gaussian distribution for the noise we obtain tr ∼ G(fr, β

2
r ) for r = 1, 2. Assuming that right

censoring is independent the joint event time density is conditionally independent given the noise-free function values

p(t1i , t
2
i |f1

i , f
2
i ) = p(t1i |f1

i )p(t2i |f2
i ). (22)

The conditional independence leaves us with a rather convenient event time density. All of the complicated business of
correlations between risks and similarities between individuals is captured by the GP prior leaving a simple product of
univariate Gaussian densities. We will discus thus more in Section 3.3.

3.1. Inference of noise-free function values and hyperparameters

We can write the data likelihood as a product of Gaussian density terms and cumulative Gaussian terms

p(D|f1, f2) =

2∏
r=1

{
N∏
i=1

[p(ti|fri )]δ∆i,r [S(ti|fri )]1−δ∆i,r

}
. (23)

As before, we use Bayes’ theorem (7) to calculate the posterior over the function values and then use this to obtain the
negative log likelihood

L(f) = − 1

N

∑
i:∆i 6=1

logS(ti|f1
i )− 1

N

∑
i:∆i 6=2

logS(ti|f2
i )− 1

N

∑
i:∆i=1

log p(ti|f1
i )

− 1

N

∑
i:∆i=2

log p(ti|f2
i ) +

1

2N
(f − η) ·K−1(f − η) + log 2π +

1

2N
log |K|. (24)

Hyperparameters are obtained by minimising the negative log of the Laplace approximation of the marginal likelihood.
Details are given in the Supporting Information.

3.2. Making predictions

The predictive distribution for the output fr∗ corresponding to a new input x∗ is Gaussian with mean and variance

µ̂r = k∗r ·K
−1f (25)

κ̂r = k(x∗,x∗)− k∗r · (K + W−1)−1k∗r (26)
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where f = [f1, f2] and k∗r = [k∗r1,k
∗
r2] with [k∗rq]i = 〈fr(x∗), fq(xi)〉 given by (19). The matrix K is the covariance matrix

in (21) formed out of four block matrices. Finally, k(x∗,x∗) = 〈fr(x∗), fr(x∗)〉 = πd/2σ2/
√
|Σr|+ πd/2ω2/

√
|Ωr|.

The predictive density over the original event time variable is given by (13). From this the mean and variance can be
numerically computed, similarly to Section 2.1.1. Once the predictive event time density has been obtained one can
readily derive hazard rates or survival curves for each risk if desired.

3.3. ‘Disabling’ a risk

A perennial question in survival analysis is how to estimate the survival probabilities in the absence of one or more risks. It
is not primarily a statistical questions since ‘disabling’ or eliminating one or more risks will in general alter the remaining
risks because the risks will in general share biological pathways or rely on the same biological systems. The quantities we
infer from data correspond to a world where all of the risks are operating so we must assume that that these quantities are
relevant to the hypothetical world where one or more risk have been somehow ‘disabled’. Suppose now we have a total of
R risks. By ‘disabling’ all risks except risk r we mean replacing

pi(τ0, . . . , τR) = p̃ri (τr) lim
ζ→∞

∏
q 6=r

δ(τq − ζ) (27)

where p̃ri (τ) =
∫∞

0
(
∏
q 6=r dsq)p(s0, . . . , sR) is the marginal density of event time r. We use tildes to denote quantities

after the risks have been disabled. The survival function is

S̃ri (τ) =

∫ ∞
τr

ds p̃ri (s). (28)

Since there is only one risk the cause specific hazard rate is:

π̃ri (τ) = p̃ri (τ)/S̃ri (τ). (29)

From this it follows that
S̃ri (τ) = e−

∫ τ
0

ds π̃ri (s). (30)

Note that π̃qi (τ) = 0 and S̃qi (τ) = 1 for all q 6= r. The cumulative incidence function for risk r becomes

C̃ri (τ) =

∫ τ

0

ds π̃ri (s)e
−

∫ s
0

ds′π̃ri (s′) = 1− S̃ri (τ). (31)

The interpretation of the marginal survival probabilities depends on whether the risks are independent or not. We examine
both cases separately.

Dependent risks: In this case π̃ri (τ) 6= πri (τ). This can be seen by comparing the expression for πri (τ)

πri (τ) =

(∏
q 6=r
∫∞
τ

dsq
)
pi(s0, . . . , sr−1, τ, sr+1, . . . , sR)

Si(τ)
(32)

to the expression for π̃ri (τ) which is given by (29). This is to be expected since switching off the other risks will change the
probability to survive until a certain time and hence the hazard rate due to risk r will also change. In this case the quantity
Sri (τ) = exp(−

∫ τ
0

ds πri (s)) cannot be interpreted as a marginal survival probability in the hypothetical world where
all other risks are switched off. Consequently, Cri (τ) = 1− Sri (τ) does not have a valid interpretation as a cumulative
probability distribution either.

Independent risks: In the case of independent risks the survival function can be written as Si(τ) = S1
i (τ) · · ·SRi (τ) where

the marginal survival functions are defined as Sri (τ) =
∫∞
τ

ds pri (s) for r = 1, . . . , R. Since the risks are independent it
immediately follows that p̃ri (τ) = pri (τ). From (28) and (29) it follows that S̃ri (τ) = Sri (τ) and π̃ri (τ) = πri (τ). In this case
the quantity Sri (τ) = exp(−

∫ τ
0

ds πri (s)) is equal to (30) and hence it can be interpreted as a marginal survival probability
in the hypothetical world where all other risks are switched off.

The GP model: In our case the conditional independence of the event times given the noise-free function means that
we can always interpret Sri (τ) =

∫∞
τ

ds pri (s|fri ) as a marginal survival probability. This true regardless of whether the
underlying functions are independent or otherwise (which in the language of our model means this is true for any value of
ω).
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4. Results

Here we present result from simulation studies and experimental data. We begin by explaining how the simulated data are
generated. We then apply our GP regression method to simulated data with a single risk and independent right censoring.
We also test the performance of the model on interval censored data. Then we apply the model to gene expression data
from a study of lymphoma patients [35]. Finally, we generate simulated competing risks data.

4.1. Generation of simulated data with a specified event time density

Generation of simulated data is straightforward in the case of the GP regression model. N covariate vectors are randomly
generated from a uniform distribution on a finite region of the covariate space where N is the number of samples we wish
to generate. The corresponding kernel matrix K is constructed, and event times are sampled from the GP prior (4) which
in practice means drawing a random vector f from an N -dimensional multivariate Gaussian density, and then adding
Gaussian noise to the components of f . Finally independent right censoring is simulated by randomly selecting a subset of
the individuals and generating a random number from a uniform distribution defined on the interval [0, τi) which is then
recorded as the time of censoring. Competing risks data are generated in the the same way but with the multiple output
GP prior (21).

4.2. Non-monotonic simulated survival data with a single risk

Shown in Figure 1 are results from a simulated dataset that consists of N = 25 individuals with a single covariate x. There
are 13 censored individuals and 12 who have experienced the primary risk. An end of trail cutoff at 6 years has been
imposed and several individuals have been censored due to this (see Figure 1 (a)).

In Figure 1 (b) we have plotted the predicted mean event time using the Weibull proportional hazards model. The
WPHM is poorly suited to these data as it assumes a monotonically increasing or decreasing relationship between event
times and covariates. The results from our model are shown in Figure 1 (c). The model infers the underlying function and
retrieves the hyperparameters reasonably well. The inferred function gives an estimate of when event times will occur.
Note that the model has extrapolated the underlying function beyond the end of trial cutoff. This can be seen in the region
x ∈ (−3,−2), and the uncertainty is also greatest in this region. In Figure 1 (d) we convert these data into interval censored
data by generating a random one year interval for all of the non-censored individuals. These intervals are represented by
the ‘error bars’ in the plot. The GP regression model is capable of recovering the underlying function.

We also implemented the GP hazard rate model from [19]. Additions results are available in the Supporting
Information and show that the GP hazard rate model is also capable of inferring non-linear relationships and offers
comparable performance to our GP model. A disadvantage with the hazard rate model is the difficulty in interpreting
the hyperparameters. This is because the function inferred in that case describes the relationship between the covariates
and the hazard rates. Hyperparameters such as the noise level and overall variance have a less intuitive interpretation.

4.3. Experimental gene expression data

We applied our method to the gene expression data from the Rosenwald 2002 study of lymphoma patients [35]. These
data consist of N = 240 patients each with d = 7399 gene expression measurements. In the original analysis the patients
had been split into a training group of 160 and a validation group of 80 individuals. These data were studied in [13] to test
a transformation model with non-linear covariate effects and it was reported that some of the gene expression levels had
a non-linear relationship with the time-to-event. We examined one of these genes, with UNIQID = 33014, with our GP
method and also found a non-linear function f(x). This function was inferred using the 160 training individuals and can
be seen in Figure 2 (a). If we compare this to the top right panel of Figure 2 in [13] we can see that both functions are very
similar (once we ignore the fact that, by definition, they differ in sign).

To further quantify the difference between our GP method and the WPHM we computed the mean square error (MSE)
between the predicted time-to-event and the reported time-to-event in both the training and validation sets for both models.
The results are displayed in Table 1. It is clear that the GP method offers vastly superior performance compared the
WPHM. We can also see that the WPHM validation error is considerably larger than the training error. This is a hallmark
of overfitting where the model fails to generalise well to unseen data. GP regression on the other hand does not suffer from
this problem on this dataset.

4.4. Comparison of GP models with dependent and independent competing risks

In order to test the performance of GP regression in the presence of competing risks we generated survival data with
dependent risks and compare two GP models, one which allows for dependency between risks and one with independent
risks. Recall that by fixing the value of ω = 0 we force the two risks to be independent. The results are shown in Figure 3.

8 www.sim.org Copyright c© 2010 John Wiley & Sons, Ltd. Statist. Med. 2010, 00 1–12
Prepared using simauth.cls



J. E. BARRETT AND A. C. C. COOLEN

Statistics
in Medicine

τ
(t
im

e
in

ye
a
rs
)

Covariate x

−2 0 20

2

4

6

8

 

 
Primary event
Censored

(a) Observed data with true function

τ
(t
im

e
in

ye
a
rs
)

Covariate x

−2 0 20

2

4

6

8

 

 
Primary event
Censored

(b) WPHM

τ
(t
im

e
in

ye
a
rs
)

Covariate x

−2 0 20

2

4

6

8

 

 
Primary event
Censored

(c) GP regression

τ
(t
im

e
in

ye
a
rs
)

Covariate x

−2 0 20

2

4

6

8

 

 
Censored

(d) GP regression with interval censoring

Figure 1. Results from a simulated dataset with d = 1 generated with a squared exponential kernel with hyperparameters set to (η, β, σ, l) = (5, 0.2, 3, 0.7). There are
N = 25 individuals, 13 of which are censored. The end of trail at 6 years is represented by the dashed line. Figure (a) shows the observed data with the ‘true’ function. Figure (b)
is a plot of the predicted event time using the Weibull proportional hazards model. The grey region represents plus and minus one standard deviation from the mean prediction. We
found (β, ρ, ν) = (0.49, 6.0, 4.7). The WPHM fails to infer the correct function since it assumes a monotonic relationship between covariates and event times. In (c) the mean
prediction using our model is shown (i.e. we have plotted (13) as a function of x). Optimal hyperparameters were found to be (η, β, σ, l) = (5.82, 0.32, 2.59, 0.64). Note
the increased uncertainty at x ∈ (−3,−2) where only censored observations were made. In (d) the non-censored observations were converted to interval censored observations
by generating a random one year interval which are represented by the error bars. The inferred hyperparameters are (η, β, σ, l) = (5.67, 0.14, 3.34, 0.57). The GP model is
clearly capable of recovering non-monotonic relationships.

GP regression WPHM
Training MSE (years2) 22.86 774.96

Validation MSE (years2) 22.38 2514.7

Table 1. Comparison of mean square error (MSE) between the predicted and reported event times in the validation
set using gene number 33014 from the Rosenwald lymphoma dataset [35]. Our GP regression method offers superior
performance to the WPHM because it has detected a non-linear relationship between the event times and that gene
expression level. The WPHM also overfits the validation data since the MSE is considerably larger than the training

MSE. The GP model does not suffer from this problem in this case.

In Figure 3 (a) and Figure 3 (b) are results from a GP model where ω is inferred from the data. Hyperparameters
were found to be (η, µ, β, σ, ω, l) = (4.59, 0.41, 0.33, 0.20, 1.63, 1.01). The higher value of ω indicates that the model is
assuming strong dependence between risks. In (c) and (d) are results from a second GP model with ω = 0. Remaining
hyperparameters were found to be (η, µ, β, σ, l) = (13.03,−0.60, 1.02, 1.90, 1.02). Note that the value of σ is now higher
as the unique part of each risk must explain all of the output variance. The advantage of allowing dependent risks
becomes apparent when we examine the inferred risk 2 function towards the left of (b) and (d). In the independent model
the uncertainty associated with the underlying function is much greater since knowledge of risk 1 is unavailable. In
the dependent model a more accurate recovery of the risk 2 function is obtained and the uncertainty is smaller since
information from risk 1 events can be utilised more effectively. In this dataset the generating hyperparameters were
(η, µ, β, σ, ω, l) = (5, 0.5, 0.5, 0.5, 2.0, 1.0) so the dependent model performs much better, particularly towards the left
of the x-axis despite the complete lack of risk 2 observations. Of course, with real data we will not have the luxury of
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(a) GP regression training data
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(b) GP regression validation data

Figure 2. Univariate analysis of gene number 33014 from the Rosenwald lymphoma dataset [35]. In (a) is the function inferred on the training set (of 160 patients) using our GP
regression method which clearly shows a non-linear relationship between the expression levels and event times. In (b) is the same function superimposed on the validation set.
Visually, the inferred function is a plausible fit.

knowing whether an assumption of dependence is correct or not but this example nevertheless illustrates the potential
usefulness of our approach.

4.5. Application to multi-dimensional covariates

It is straightforward to deal with more than one covariate. Using the ARD hyperparameters outlined in Section 2.1 we
can determine which covariates have the biggest impact on survival outcomes. In the Supporting Information we give an
example of competing risks data with two covariates. Inferred ARD hyperparameters are (l1, l2) = (0.52, 1.47) indicating
that the first covariate is more important.

5. Discussion and conclusion

We have pursued an alternative route to many existing survival analysis methods — which assume a parametric or semi-
parametric hazard rate — and focus on directly characterising the relationship between covariates and event times in a
flexible and non-parametric manner. GP regression provides a powerful and elegant means to achieve this. All relevant
quantities are inferred in Bayesian manner and we can obtain probabilistic predictions, survival probabilities and hazard
rates. It is straightforward to incorporate censored or truncated observations (or combination thereof). We found that the
GP hazard rate model used in [19] also performed well on non-monotonic data but the hyperparameters are not easy to
interpret. This is because the inferred function represents the relationship between the covariates and hazard rate whereas
in our case the inferred function is conceptually more straightforward and easier to interpret.

An interesting question to consider is how to interpret the underlying function we infer. In standard GP regression the
function values would be considered ‘noise-free’ outputs which are then corrupted by Gaussian observational noise. The
corresponding interpretation in our case would be that the functions represent a ‘noise-free’ event time. However, Gaussian
noise is not appropriate in that case since it is generally not plausible to claim events could be randomly reported before
they actually occur. A more appropriate choice would be noise with a semi infinite support on (0,∞] that would represent
a delay between the event occurring and the time it is diagnosed or recorded. In that case the underlying function could be
interpreted as a noise-free event time. An alternative interpretation of the noise, however, is that it represents a disparity or
mismatch between the assumed model and the actual model of the data. In that case it is acceptable to regard the function
values as noise-free event times. In future work it may be interesting to explore alternative noise distributions.

Multiple output GP regression provided a natural route to incorporate competing risks data. Working with the event
time density — also called the latent event time approach — has been criticised for a number of reasons. The most serious
objection is that the joint event time density is unobservable and cannot be inferred from the observed failure and censoring
times (due to the identifiability problem). While one may assume that the event times are independent or perhaps assume
some parametric density to model dependencies one cannot conclude on the basis of the observed data alone whether or
not the event times are independent. Some authors such as [36, Section 3.3] have claimed that the latent failure times lack
plausibility or are too hypothetical in nature since we are positing the existence of quantities which in reality can never be
measured (see [33, Section 8.2] for further in depth discussion).
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Figure 3. Results from simulated data with two competing risks. In (a) and (b) are inferred functions from both risks using a multiple output GP model with dependent risks
allowed. Values of σ = 0.2 and ω = 1.63 were found which indicate strongly dependent risks. In (c) and (d) the inferred risks are forced to be independent by setting ω = 0.
A value of σ = 1.9 is found which is sensible since the unique part of each risk must account for all of the variance. The advantage of assuming dependency can be seen around
x ∈ (−3,−1) in (b) and (d). There are no risk two observations in this region and in the independent model there is much greater uncertainty since information form risk one
cannot be utilised.

We argue instead that the latent failure time approach does provide a useful conceptual framework. There are two
aspects in particular where such an approach is useful. The first is in making predictions for new patients (who are still
alive) since the time until the different events is highly relevant. The second is in estimating what happens when one or
more risks are disabled. In both cases the marginal survival functions are the relevant quantities. In our GP formulation
both predictions and marginal survival probabilities are straightforward to compute due to the conditional independence
of the event times. If we want to model dependent risks (despite not being able to test our assumption due to identifiability
issues) then modelling the joint event time density is a convenient starting point. The fact that the data we observe in
reality do not allow a direct view of this joint density does not mean that it is not a useful concept.

We have illustrated that GP regression provides a flexible method of analysing survival data. We impose few structural
assumptions due to the non-parametric nature of GP regression and avoiding specification of the hazard rate. Future
research could involve applying sparse GP regression techniques to our model in order to achieve greater computational
efficiency.
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