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SUMMARY

We develop a new method for analysing survival data using Gaussian process regression to
directly infer the relationship between event times (outputs) and covariates (inputs). We com-
pare this to a second Gaussian process model that assumes a Cox-type hazard rate. Both of these10

approaches are applied to interval censored data, althoughthey can easily be extended to accom-
modate any combination of left, right or interval censored or truncated observations. We define a
general non-linear transformation model from which several existing models, including both our
Gaussian process models, can be derived as special cases. Using either method hazard rates and
survival curves can be extracted and we can perform variableselection. For censored individuals15

we can estimate what the event time would have been in the absence of censoring and noise.
Results from simulated data illustrate that both models caninfer non-monotonic relationships
between the covariates and event times in the presence of right and interval censoring.

Some key words: Cox proportional hazards; Gaussian process; Interval Censoring; Survival analysis; Transformation
model. 20

1. INTRODUCTION

We approach the analysis of time to event data as a regressionproblem. We want to model the
event times as a stochastic function of the covariates. An elegant and powerful non-parametric
method of doing this is Gaussian process regression (Rasmussen & Williams, 2006). This al-
lows for flexible inference of a wide range of non-linear functions by specifying different kernel 25

functions. The motivation behind this paper is to apply Gaussian process regression to censored
observations. We will follow two alternative routes, one which focuses on the event time distri-
bution and one which focuses on the hazard rate.

In the first route the event times are mapped, via a monotonic transformation, to the entire
real line. These transformed event times are then written asa function of the covariates. A Gaus-30

sian process prior is assumed for the function values. This approach differs from many existing
methods of analysing survival data which usually assume some parametric (or semi-parametric)
hazard rate. The Cox proportional hazards model (Cox, 1972)is one of the most popular.

In the second route we assume a Cox-type hazard rate. Denoting thed-dimensional vector
of covariates asx, the Cox-type hazard rate isπ{τ | f(x)} = λ0(τ) exp{−f(x)} whereλ0(τ) 35

is the base hazard rate,Λ0(τ) =
∫ τ
0 λ0(s)ds and f(x) is some function of the covariates. A

Gaussian process prior will be assumed for these function values. In Cox’s original modelf(x) =
βTx whereβ is ad-dimensional vector of regression weights. Such Cox-type models have been

http://arxiv.org/abs/1312.1591v1
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studied by Savitsky et al. (2011) and Joensuu et al. (2012) but have not been applied to interval
censored observations.40

The first approach (which we refer to as the event time model todistinguish it from the Cox-
type model) is a more direct approach since it connects the two quantities which we observe,
namely the event times and covariates. We can regard the specification of the hazard rate in Cox-
type approaches as an intermediate step in establishing this connection, since the hazard rate is
first constructed from the covariates and subsequently usedto construct the probability density45

over event times. Furthermore, in the Cox-type model it is assumed that the time dependence and
the covariate dependence of the hazard rate factorizes, butin general this won’t always be valid.
In the event time model we avoid this assumption on the hazardrate and furthermore we don’t
have to specify the base hazard rate. The disadvantage however, is that a transformation of the
event times must be specified instead.50

In the case of either model a full likelihood function can be constructed that can easily incor-
porate any type of censored or truncated observations. In particular, we apply both models to the
case of interval censored data. We numerically maximise thelikelihood with respect to the latent
function values.

There are three broad families of existing models for analysing interval censored data. Non-55

parametric estimators based on survival functions that areconstant within disjoint intervals have
been proposed by Peto (1973) and Turnbull (1976). Secondly,parametric models assume a spe-
cific parametric event time density. Popular choices are theWeibull, exponential or log-Gaussian
densities for example. The advantage of parametric models is that expressions for the survival
function can be obtained in closed form and hence the exact likelihood can be constructed for60

right, left or interval censored observations. Covariate effects can be included via a link func-
tion which specifies that some parameter of the probability density is a function of the covari-
ates. Numerical methods can be used to infer unknown parameter values. See Lindsey (1998)
for a discussion and comparison of several parametric models. Odell et al. (1992), Rabinowitz
et al. (1995) and Komárek & Lesaffre (2009) consider Weibull accelerated failure time models.65

Sparling et al. (2006) present a family of parametric modelsthat can handle time dependent
covariates.

Finally, there are semi-parametric models, of which most are adaptations of the Cox pro-
portional hazards model. The partial likelihood argument used by Cox cannot be used in the
presence of interval censoring. However, the full likelihood can be written in terms of the event70

time density and survival functions and this can be numerically optimised with respect to any
model parameters (Finkelstein, 1986). Markov Chain Monte Carlo methods have been used by
Sinha et al. (1999) in a Bayesian discretised Cox model and bySatten (1996) in a proportional
hazards model. The EM algorithm has been used by Goggins et al. (1998) and Goetghebeur &
Ryan (2000) to infer parameters in proportional hazards models. Several authors use smoothing75

techniques to model the base hazard rate (Betensky et al., 2002) or the event time density (Zhang
& Davidian, 2008). Kooperberg & Clarkson (1997) and Zhang etal. (2010) used splines to model
a smooth hazard rate. Another strategy is to impute the eventtimes (Law & Brookmeyer, 1992)
by taking the midpoint or the end of the interval for instance. See Pan (2000) for an example.

Before we continue we first consider some notation. Letp(τ) denote the probability density80

over the event timesτ ≥ 0. The survival function isS(τ) =
∫

∞

τ p(s)ds and the hazard rate is
π(τ) = p(τ)/S(τ). In what follows In this paper we will only consider the case of a single risk
with independent censoring. Under that assumption, if we assume a specific form for any one of
these quantities then the remaining two quantities are uniquely determined.
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2. NON-LINEAR TRANSFORMATION MODELS 85

Before we explain the Gaussian process models in more detailit is helpful to define a general
transformation between covariates and event times:

φ(τi) = f(xi) + ξi, (i = 1, . . . , n), (1)

whereφ is a monotonically increasing transformation of the event times,f(xi) is some function
of the covariates,ξi is a noise random variable with a probability density function denoted by
pξ, andn is the number of individuals in our dataset. Several existing models, including both 90

Gaussian process models, can be derived as special cases of (1).
Linear transformation models assumeφ is unspecified andf(x) = βTx. Various procedures

for estimating the regression parameters in such models have been proposed by Cheng et al.
(1995), Fine et al. (1998) and Chen et al. (2002). Recently Lu& Li (2008) considered the case
wheref(x) is an unspecified smooth function and proposed a boosting estimation method based 95

on the marginal likelihood.
If we choosepξ(s) = exp(s+ es) andφ(τ) = log{Λ0(τ)} we recover the Cox-type model.

To see this we consider the event time to be a transformation of the noise random variable and
derive the event time density

p(τ) = pξ[log{Λ0(τ)} − f(x)]
d

dτ
[log{Λ0(τ)} − f(x)] 100

= λ0(τ)e
−f(x) exp{−Λ0(τ)e

−f(x)}. (2)

We can readily verify that this corresponds to a Cox-type hazard rate by writing the survival
function in terms of the hazard rate and equating this to the expression for the survival function
in terms of the event time density:

1−
∫ τ

0
p(s)ds = exp{−Λ0(τ)e

−f(x)}. 105

By differentiating this expression with respect to time we obtain (2). Whenf(x) = −βTx
we recover Cox’s proportional hazards model. Frailty models can be retrieved by assuming
f(x) = −βTx+ w wherew is a frailty term. Generalized additive models assumef(x) =

βTx+
∑d

µ=1 gµ(xµ) wheregµ are non-linear functions of the covariates (Fahrmeir & Kneib,
2011). See Martino et al. (2011) and Vanhatalo et al. (2013) for recent implementations of such110

models. Alternatively, a Gaussian process prior can be assumed forf as shown by Savitsky et al.
(2011) and Joensuu et al. (2012). Viewed in this order these models seek to accommodate in-
creasingly complicated covariate effects through more flexible and sophisticated functions of the
covariates.

For completeness we note that accelerated failure time models can be recovered by assuming115

φ(τ) = log(τ) andf(x) = βTx. This implies a log linear model and by choosing different noise
distributions a wide range of parametric models can be recovered. See Klein & Moeschberger
(2003, Chapter 12) for an overview.

3. GAUSSIAN PROCESS MODELS FOR TIME TO EVENT DATA

3·1. Gaussian process models 120

We will now explain the Gaussian process models for survivalanalysis in more detail. In
general we will observe a pair of event times,Ii, for each individual. For interval censoring
Ii = {τ li , τui } whereτ li andτui are the lower and upper bounds of an interval within which the
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event occurred. For left or right censoring we record the time of censoring and for non-censored
individuals the event time is recorded. We also record an indicator variable,∆i, which labels125

which type of censoring each observation corresponds to. Ifwe were to make observations that
were both censored and truncated then we would observe more than two times. We will not
consider that case explicitly here for brevity although it is straightforward to do so.

In a Gaussian process model we assume the output variables are somehow related to a latent
function of the covariates. A Gaussian process model consists of three elements. Firstly, we give130

the latent function a Gaussian process prior,f ∼ GP(η, k), whereη is the mean function andk
is the kernel function, such that mean{f(x)} = η(x) and cov{f(xi), f(xj)} = k(xi, xj).

Secondly, we have the individual data likelihood termsψ(Ii,∆i | Fi) which will depend on
what kind of model has been assumed. Finally, we use Bayes’ theorem to obtain the posterior
density over the latent function values135

p(F | X,D) =
p(D | F )p(F | X)

p(D | X)
, (3)

whereD = {(I1,∆1), . . . , (In,∆n)}, X = (x1, . . . , xn), andF is then-dimensional vector of
latent function values such thatFi = f(xi), andp(F | X) is the Gaussian process prior. The data
likelihood factorizes over samples so thatp(D | F ) = ∏n

i=1 ψ(Ii,∆i | Fi).

3·2. Construction of the data likelihood
Taking the negative log of (3) we get140

L(F ) = − 1

n

n
∑

i=1

logψ(Ii,∆i | Fi)−
1

n
log p(F | X). (4)

We now dropFi from our notation for brevity. For non-censored individuals ψ(Ii,∆i) = p(τi)
which is simply the probability density evaluated atτi. Right censored individuals contribute
with ψ(Ii,∆i) = S(τi). This gives the probability that the event occurs at some time afterτi,
the time of censoring. Similarly left censored and intervalcensored individuals contribute with
1− S(τi) andS(τ li )− S(τui ) respectively.145

Left truncation occurs when only individuals who experience the primary event after a cer-
tain timeτai are included in the cohort. The probability of an event occurring at a subsequent
time τ bi is now conditional on survival until at leastτai . Such an individual will contribute to the
likelihood withψ(Ii,∆i) = p(τ bi )/S(τ

a
i ). Similarly right and interval truncated individuals con-

tribute withψ(Ii,∆i) = p(τ bi )/{1 − S(τ ci )} andψ(Ii,∆i) = p(τ bi )/{S(τai )− S(τ ci )} respec-150

tively whereτ ci is the time of right truncation. This can be easily extended to combine any type
of censoring with any type of truncation.

3·3. The event time Gaussian process model
There are two main challenges to applying standard Gaussianprocess regression to survival

data. The first is to deal with the fact that the outputs are non-negative. This is relatively easy155

to do with an appropriate transformation of the event times to the entire real line. Secondly, we
must deal with the different types of censoring and truncation.

The first step is to transform the event times tot = φ(τ) = γ log(eτ/γ − 1), such thatt can
take any real value. We have chosen this transformation because whenτ ≫ γ thent ≈ τ and one
can tune the value ofγ such thatγ < min(τi) which results in an effectively linear mapping. We160

assume a model of the form

ti = f(xi) + ξi, ξi ∼ N(0, β2) (i = 1, . . . , n), (5)
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from which it follows thatti ∼ N(f(xi), β
2). The survival function is given byS(ti) = 1−

Φ(ti) whereΦ(ti) is the cumulative Gaussian distribution. Note that (5) is a special case of the
more general transformation (1). The event time density andsurvival functions can be simply
inserted into (4) to obtain the log likelihood for the event time model (after the event times are165

transformed).
A similar approach was taken by Chu & Ghahramani (2005) to develop a Gaussian process

method for ordinal regression. Ordinal regression is used when the outcomes are assigned to dis-
crete categories which are ranked (exam grades are an example). Mathematically, this is identical
to the problem of interval censored event times since the outcome is known only to lie within a 170

certain interval.
The transformation of output variables in Gaussian processregression has been explored by

Snelson et al. (2004). They examine a variety of parameterised monotone transformations and re-
gard any transformation parameters as hyperparameters to learn during training. Their procedure
infers the most appropriate transformation such that the transformed outputs can be modelled175

using a Gaussian process. It may be useful to apply this method in future work.

3·4. The Cox-type Gaussian process model
In the Cox-type model the event time density is given by (2). The corresponding survival func-

tion isS(τi) = exp{−Λ0(τi)f(xi)}. These expressions can also be inserted into (4) to obtain

LC(F ) = − 1

n

∑

i:∆i=1

{log λ0(τi) + Fi}+
1

n

n
∑

i=1

Λ0(τi)e
Fi − 1

n
log p(F | X). (6)

In the Cox-type model none of the event times are transformed. In Section 6 we implement this 180

model with a Weibull hazard rateλ0(τ) = ντν−1 whereν > 0 is optimized as a hyperparameter.

4. INFERENCE ANDPREDICTION

4·1. Inference of latent parameters and hyperparameters
To determine the optimal latent function values we solveF̂ = minF L(F ) by numerically

minimising (4) with a gradient based optimizer. First orderpartial derivatives can be found in185

Appendix A. Letθ be the vector of hyperparameters which include any kernel parameters and
parameters such asβ2 or ν. To estimate the values of these hyperparameters we requirethe
marginal likelihood which is given byp(D | X) =

∫

p(D | F )p(F | X)dF . In general, this in-
tegral is analytically and numerically intractable. Instead we construct a Laplace approximation
of the marginal likelihood. This is done by expanding the loglikelihood to second order and then190

integrating overF . For the Cox-type model for example,

q(D | X) =

∫

e−nL(F̂ )−(F−F̂ )·(U+K−1)(F−F̂ )/2dF

= p(D | F̂ )p(F̂ | X)(2π)n/2det{(U +K−1)−1}1/2, (7)

wheren−1(U +K−1)ij = ∂2LC(F )/∂Fj∂Fi is the matrix of second order partial derivatives
given in Appendix A. The matrixKij = k(xi, xj) is the covariance matrix from the Gaussian195

process prior. For the event time model we simply use the matrix W instead ofU (see Appendix
A). Optimal hyperparameters are determined by numericallysolving θ̂ = minθ{−n−1 log q(D |
X)}. This approach is similar to Gaussian process classification (Rasmussen & Williams, 2006,
Chapter 3) where the function values are unobserved and treated as latent variables.
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4·2. Predictions, hazard rates and survival functions200

Given a new individual with covariatesx⋆ we want to predict a corresponding event time
τ⋆. In standard Gaussian process regressionf(x⋆) ∼ N(µ, κ) with µ = kT

⋆K
−1F and κ =

k(x⋆, x⋆)− kT

⋆K
−1k⋆ wherek⋆ is then-dimensional vector defined by(k⋆)i = k(xi, x⋆).

In the event time model we use the mode of the posterior such that f(x⋆) ∼ N(µ̂, κ̂) with
µ̂ = kT

⋆K
−1F̂ and κ̂ = k(x⋆, x⋆)− kT

⋆ (K +W−1)−1k⋆. The variance is a combination of un-205

certainty due to conditioning on̂F and the uncertainty in the value of̂F itself (Rasmussen
& Williams, 2006, Section 3.4.2). The predictive distribution for transformed event times is
t⋆ ∼ N(µ̂, κ̂+ β2). Finally, we use the transformationφ to derive the predictive density for
the actual event time:

g(τ⋆ | X,x⋆,D) =
exp

[

− 1
2(κ̂+β2)

{γ log(eτ⋆/γ − 1)− µ̂}2
]

{2π(κ̂ + β2)}1/2
eτ⋆/γ

eτ⋆/γ − 1
. (8)

Predictions are made by numerically computing the mean and variance of (8). Due to the trans-210

formationφ any predictions that are negative or close to zero will be ‘squashed’ into the positive
half of the real line. As noted in the introduction the survival function and hazard rate can be com-
puted once the event time density is known. Some numerical issues are discussed in Appendix
B.

In the case of the Cox-type model predictions are made by substituting mode(F⋆) = µ̂ for215

f(x⋆) into (2) and using this to numerically compute the mean and variance ofτ⋆. Ideally we
would multiply the event time density by the predictive density overF⋆ and integrate overF⋆.
However this results in a predictive density overτ⋆ that is not defined. Consequently, by using
only the mode ofF⋆ we underestimate the variance ofτ⋆.

5. COMPARISON TO THECOX PROPORTIONAL HAZARDS MODEL220

In the results section we will compare the performance of both Gaussian process models to
Cox’s original proportional hazards model. Cox’s model is obtained from (2) whenf(xi) =
−βTxi. We use Breslow’s estimator for the base hazard rate, originally proposed in the discussion
at the end of Cox (1972). This can be written as a maximum likelihood estimator of the base
hazard rate (Coolen & Holmberg, 2014, Section 8.1):225

λ0(τ) =

∑n
i=1 δ1,∆i

δ(τ − τi)
∑n

j=1 exp(β
Txj)θ(τj − τ)

. (9)

This can be inserted into (2) to obtain the event time densitycorresponding to Cox’s model.
However, this density is not normalised as can be seen from

Z(x⋆) =

∫

∞

0
λ0(s)e

βTx⋆ exp{−Λ0(s)e
βTx⋆}ds = 1− exp{−Λ0(s)e

βTx⋆}
∣

∣

∣

s=∞

.

The problem arises sinceΛ0(τ) does not diverge to infinity in the limit thatτ becomes infinitely
large. This is reflected in the fact that any survival curve generated using Cox’s model with
Breslow’s estimator has a non-zero value for infinitely large times. This implies that there is230

non-zero probability of the event never occurring which is consistent withZ(x⋆) < 1.
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We normalise the event time density by dividing byZ(x⋆) and use this to compute the mean
(and variance) ofτ⋆ which are then used for making predictions:

〈τ⋆〉 =
1

Z(x⋆)

∑

i:∆i=1

τi
eβ

Tx⋆

∑

j e
βTxjθ(τj − τi)

exp

{

−eβTx⋆

n
∑

k=1

δ1,∆k
θ(τi − τk)

∑

j e
βTxjθ(τj − τk)

}

. (10)

6. RESULTS 235

Presented in Fig. 1 are results from simulated data with a non-monotonic relationship be-
tween the event times and covariates. There is one covariatex and n = 25 individuals, of
which twelve are censored. In all figures the vertical axis represents the untransformed event
time. An end of trial cut-off is imposed at six years and is represented by the dashed line.
Any individuals alive at that time are considered right censored. Panel (a) shows the observed240

data. The black line is the true function which was drawn froma Gaussian process prior with
a squared exponential kernelk(xi, xj) = σ exp{−(2l2)−1(xi − xj)

T(xi − xj)} with hyperpa-
rameters set to(η, β, σ, l) = (5, 0.2, 3, 0.7). Results from applying the normalized Cox propor-
tional hazards model are shown in panel (b). This is described above in Section 5. We found
β = 0.49. In panel (c) are results from the event time model. Note theF̂i are plotted and not 245

τi. For censored individuals thêFi provide an estimate of when the event would have been
reported in the absence of censoring or noise. In particular, event times can be estimated sev-
eral years after the trial ended (note the uncertainty is greatest in this region). Hyperparameters
were found to be(η, β, σ, l) = (5.82, 0.32, 2.59, 0.64). In panel (d) the Cox-type model is ap-
plied to the data with a squared exponential kernel. Optimalhyperparameters were found to be250

(η, ν, σ, l) = (−28.4, 16.2, 34, 0.68). Note that the variance is underestimated since the the mode
of F⋆ is used. In panels (e) and (f) we converted non-censored individuals into interval censored
individuals by generating a random one year interval for each individual. The event time model
is used in (e). Note that̂Fi are plotted and not the observed event times. Optimal hyperparame-
ters were found to be(η, β, σ, l) = (5.67, 0.14, 3.34, 0.57). In (f) are results from the Cox-type255

model. Optimal hyperparameters were found to be(η, ν, σ, l) = (−45.5, 27.2, 64.7, 0.47).

7. DISCUSSION

We have formulated two different Gaussian process models for the analysis of censored sur-
vival data. The first model expresses the transformed event time as a function of the covariates
whereas the second model is defined by assuming a Cox-type hazard rate. One drawback of the260

Cox-type model is that the assumed independence of time and covariate effects on the hazard
rate may not always be valid. When it is valid however, we can interpret the latent function val-
ues as either amplifying or diminishing the base hazard ratefor each individual. Thus, negative
function values correspond to longer survival times. But when the assumption is invalid then
this interpretation may be misleading. In contrast, the role of the latent function values is always265

clear in the event time model since they can be seen as the event times in the absence of noise or
censoring. A second drawback of the Cox-type model is that weare unable to fully quantify the
uncertainty of our predictions which leads to an underestimation of the predictive variance.

The first model takes a more direct approach by connecting thetwo quantities we observe
(event times and covariates) directly. In the practical analysis of biomedical survival data, often270

the most relevant issues are making predictions for new patients and assessing the most rele-
vant covariates. In both cases the most relevant quantity isnot the hazard rate, but rather the
connection between covariates and event times.
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Fig. 1: In panels (a), (b), (d) and (f) the white and black dotscorrespond to observed right cen-
soring times and non-censored event times respectively. Inall figures the dashed line represents
an end of trial cutoff time. The observed data are plotted in panel (a). These were drawn from
the true function which is represented by the black line. Results from the normalized Cox model
are shown in (b). The black line is the mean prediction and thegrey area is plus and minus one
standard deviation. In panels (c) and (d) are predictions generated using the event time model and
the Cox-type model respectively. The variance is underestimated in the Cox-type model since the
uncertainty inF̂ is not taken into account. In (c) and (e) the white and black dots areF̂ for right
censored and non-censored individuals respectively. In the bottom two panels, (e) and (f), are
results from the event time model and Cox-type models on a combination of interval and right
censored data. The ‘error bars’ denote randomly generated one year censoring intervals. In (e)
right censored individuals have a half ‘error bar’ connecting F̂i to the time of censoring.

In general, it is natural for a Bayesian analysis of survivaldata to avoid any partial likelihood
arguments and infer the relevant parameters from full likelihoods combined with priors. This275

offers an intuitive and systematic way to construct the posterior likelihood. The advantage of this
in our case is that censored and truncated individuals (and any combination thereof) can be easily
incorporated into the likelihood.
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Gaussian process models possess several attractive features for the analysis of survival data.
Firstly, by specifying and combining different kernels in the Gaussian process prior we can infer280

a wide range of non-linear relationships between covariates and event times. Secondly, the use
of kernel functions means that high dimensional covariatescan be studied. The risk of overfitting
can be kept to a minimum provided we exclude variable selection hyperparameters. Thirdly,
estimates of event times for censored individuals can be extracted from the data. Finally, any
type of censoring or truncation can be easily dealt with. 285

In future work it may be interesting to explore different choices for the noise distribution in
our model. In the case of biomedical data it is interesting toask what the noise represents. Does
it represent inherent stochasticity in biological systemsor delays in the reporting of events? In
the latter case the latent function values can be interpreted as noise-free event times and the noise
(with semi-infinite support) represents a waiting time until the event is recorded. For example, it290

may take some time for symptoms to manifest themselves. In the former case noise with infinite
support is more appropriate. In real data both sources of noise are likely to be present and so
it would be interesting to implement asymmetric noise distributions that place more density on
positive noise values. We also plan to study the case of multiple risks which may or may not be
correlated. A potential route would be to use multi-output Gaussian process priors to capture any295

correlation between the different risks.
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A. PARTIAL DERIVATIVES

In Section 4·1 we required the first order partial derivatives of the log likelihood. Here we consider non-300

censored individuals and right censored individuals. For the event time model the first order derivatives
are

∂

∂Fi
L(F ) = − 1

n

n
∑

k=1

∂

∂Fi
logψ(Ik,∆k | Fk) +

1

n
{K−1(F − η)}i,

where for non-censored individualsψ(Ik,∆k | Fk) = N(Fk, β
2) and

∂

∂Fi
logψ(Ik,∆k | Fk) = δikβ

−2(tk − Fk).

Individuals who were right censored haveψ(Ik,∆k | Fk) = S(tk | Fk)

∂

∂Fi
ψ(Ik,∆k | Fk) = δik

1

S(tk | Fk)

1

(2πβ2)1/2
e
− 1

2β2
(tk−Fk)

2

. 305

Second order partial derivatives are also required in Section 4·1 to construct a Laplace approximation of
the posterior. These are

∂2

∂Fj∂Fi
L(F ) = − 1

n
δijδik

∑

k=1

∂2

∂Fj∂Fi
logψ(Ik,∆k | Fk) +

1

n
K−1

ij =
1

n
(W +K−1)ij ,

where the diagonal matrixW is defined byWii = −∂2/∂F 2
i logψ(Ii,∆i | Fi). For non-censored indi-

vidualsWii = β−2. For right censored individuals 310

Wii =

{

1

S(ti | Fi)

1

(2πβ2)1/2
e
− 1

2β2
(ti−Fi)

2

}2

− (ti − Fi)

β2

{

1

S(ti | Fi)

1

(2πβ2)1/2
e
− 1

2β2
(ti−Fi)

2

}

.
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Partial derivatives for interval censored individuals arecalculated similarly. See the Appendix B below
for numerical details. Partial derivatives of the Cox-typelikelihood (6) are

∂

∂Fi
LC(F ) = − 1

n
δ1,∆i

+
1

n
Λ0(τi)e

Fi +
1

n
(K−1F )i

∂2

∂Fj∂Fi
LC(F ) =

1

n
δijΛ0(τi)e

Fi +
1

n
K−1

ij =
1

n
(U +K−1)ij .

B. NUMERICAL CONSIDERATIONS315

To compute hazard rates and partial derivatives for the event time model we need to numerically
evaluateA(t) = p(t)/S(t) wherep(t) is a normal density with varianceβ2 andS(t) is the correspond-
ing survival function. The denominator can be written in terms of the complementary error function as
S(t) = erfc(h)/2 whereh = t/(2β2)1/2. ThenA(t) = C exp(−h2)/erfc(h) whereC = 2/(2πβ2)1/2.
The quantityA(t) becomes numerically unstable for largeh since the numerator and denominator both320

tend towards zero. Forh≫ 0 we use the asymptotic expansion of the complementary error function
(Menzel, 1960):

erfc(h) =
e−h2

h
√
π

[

1− 1

2h2
+

2

(2h2)2
− 8

(2h2)3
+ · · ·

]

for h≫ 0.

This ensuresA(t) can be computed without difficulty. It is also clear that for large times the hazard rate is
approximately linear.

There is an interesting symmetry in the fact that for Cox-type models the computation of event time325

densities such as (2) or (10) can be numerically unstable dueto the presence of the double exponential.
In particular, when dealing with the likelihood contribution made by an interval censored observation we
must compute quantities of the formlog(e−x1 − e−x2) wherexk = −Λ0(τ

k)ef . If x1 or x2 are suffi-
ciently large then this will be evaluated aslog(0) if double precision numbers are used. Instead we write
this as330

log(e−x1 − e−x2) = log{e−x1(1− ex1−x2)}

=

{

−x1 + log(1− ex1−x2) when−h′ ≤ x1 − x2
−x1 − ex1−x2 − 1

2e
2(x1−x2) whenx1 − x2 < −h′.

whereh′ is some suitably defined cutoff constant. Similar tricks canbe used to ensure the partial deriva-
tives are computed robustly.
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KOMÁREK, A. & L ESAFFRE, E. (2009). The regression analysis of correlated interval-censored data illustration

using accelerated failure time models with flexible distributional assumptions.Statistical Modelling 9, 299–319. 365

KOOPERBERG, C. & CLARKSON, D. B. (1997). Hazard regression with interval-censored data. Biometrics , 1485–
1494.

LAW, C. G. & BROOKMEYER, R. (1992). Effects of mid-point imputation on the analysisof doubly censored data.
Statistics in medicine 11, 1569–1578.

L INDSEY, J. (1998). A study of interval censoring in parametric regression models.Lifetime Data Analysis 4, 370

329–354.
LU, W. & L I , L. (2008). Boosting method for nonlinear transformation models with censored survival data.Bio-

statistics 9, 658–667.
MARTINO, S., AKERKAR, R. & RUE, H. (2011). Approximate bayesian inference for survival models.Scandinavian

Journal of Statistics 38, 514 – 528. 375

MENZEL, D. H. (1960).Fundamental Formulas of Physics, vol. one. Dover Publications, Inc. New York.
ODELL , P. M., ANDERSON, K. M. & D’A GOSTINO, R. B. (1992). Maximum likelihood estimation for interval-

censored data using a weibull-based accelerated failure time model.Biometrics , 951–959.
PAN , W. (2000). A multiple imputation approach to cox regression with interval-censored data.Biometrics 56,

199–203. 380

PETO, R. (1973). Experimental survival curves for interval-censored data.Applied Statistics , 86–91.
RABINOWITZ , D., TSIATIS, A. & A RAGON, J. (1995). Regression with interval-censored data.Biometrika 82,

501–513.
RASMUSSEN, C. E. & WILLIAMS , C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press, Cam-

bridge, MA. 385

SATTEN, G. A. (1996). Rank-based inference in the proportional hazards model for interval censored data.
Biometrika 83, 355–370.

SAVITSKY, T., VANNUCCI, M. & SHA , N. (2011). Variable selection for nonparametric gaussianprocess priors:
Models and computational strategies.Statistical Science 26, 130–149.

SINHA , D., CHEN, M.-H. & GHOSH, S. K. (1999). Bayesian analysis and model selection for interval-censored 390

survival data.Biometrics 55, 585–590.
SNELSON, E., RASMUSSEN, C. E. & GHAHRAMANI , Z. (2004). Warped gaussian processes.Advances in neural

information processing systems 16, 337–344.
SPARLING, Y. H., YOUNES, N., LACHIN , J. M. & BAUTISTA , O. M. (2006). Parametric survival models for

interval-censored data with time-dependent covariates.Biostatistics 7, 599–614. 395

TURNBULL , B. W. (1976). The empirical distribution function with arbitrarily grouped, censored and truncated data.
Journal of the Royal Statistical Society. Series B (Methodological) , 290–295.

VANHATALO , J., RIIHIM ÄKI , J., HARTIKAINEN , J., JYL ÄNKI , P., TOLVANEN , V. & V EHTARI, A. (2013). Bayesian
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