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SUMMARY

We develop a new method for analysing survival data usings§lan process regression to
directly infer the relationship between event times (otgpand covariates (inputs). We com-
pare this to a second Gaussian process model that assumgsypE€dazard rate. Both of these:o
approaches are applied to interval censored data, althbegtcan easily be extended to accom-
modate any combination of left, right or interval censorettencated observations. We define a
general non-linear transformation model from which sevexisting models, including both our
Gaussian process models, can be derived as special casaseltlser method hazard rates and
survival curves can be extracted and we can perform varssbdetion. For censored individuals:s
we can estimate what the event time would have been in thenedsd censoring and noise.
Results from simulated data illustrate that both modelsiogsr non-monotonic relationships
between the covariates and event times in the presencehbfang interval censoring.

Some key words: Cox proportional hazards; Gaussian process; Intervas@@rg; Survival analysis; Transformation
model. 20

1. INTRODUCTION

We approach the analysis of time to event data as a regrgasiblem. We want to model the
event times as a stochastic function of the covariates. Agaglt and powerful non-parametric
method of doing this is Gaussian process regression (Rasmus Williams, 2006). This al-
lows for flexible inference of a wide range of non-linear ftios by specifying different kernel 2
functions. The motivation behind this paper is to apply G@rsprocess regression to censored
observations. We will follow two alternative routes, oneiethfocuses on the event time distri-
bution and one which focuses on the hazard rate.

In the first route the event times are mapped, via a monotoaistormation, to the entire
real line. These transformed event times are then writtenfasction of the covariates. A Gaus-s
sian process prior is assumed for the function values. Tgpsoach differs from many existing
methods of analysing survival data which usually assumesgmamametric (or semi-parametric)
hazard rate. The Cox proportional hazards model (Cox, 18##)e of the most popular.

In the second route we assume a Cox-type hazard rate. Dgribgnl-dimensional vector
of covariates as, the Cox-type hazard rate is{7 | f(z)} = \o(7) exp{—f(x)} whereXo(7) =
is the base hazard ratd(7) = [ Xo(s)ds and f(x) is some function of the covariates. A
Gaussian process prior will be assumed for these functiliresaln Cox’s original modef (z) =
BTz whereg is ad-dimensional vector of regression weights. Such Cox-typeets have been
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studied by Savitsky et al. (2011) and Joensuu et al. (201hdote not been applied to interval
censored observations.

The first approach (which we refer to as the event time modeistinguish it from the Cox-
type model) is a more direct approach since it connects toegurantities which we observe,
namely the event times and covariates. We can regard thdisatian of the hazard rate in Cox-
type approaches as an intermediate step in establishimgdhinection, since the hazard rate is
first constructed from the covariates and subsequently tasednstruct the probability density
over event times. Furthermore, in the Cox-type model itssiawed that the time dependence and
the covariate dependence of the hazard rate factorizes) gaheral this won't always be valid.
In the event time model we avoid this assumption on the hazdedand furthermore we don't
have to specify the base hazard rate. The disadvantage eugthat a transformation of the
event times must be specified instead.

In the case of either model a full likelihood function can lbastructed that can easily incor-
porate any type of censored or truncated observations.ricplar, we apply both models to the
case of interval censored data. We numerically maximisékeihood with respect to the latent
function values.

There are three broad families of existing models for amadysiterval censored data. Non-
parametric estimators based on survival functions that@mstant within disjoint intervals have
been proposed by Peto (1973) and Turnbull (1976). Secopadigmetric models assume a spe-
cific parametric event time density. Popular choices ar&\thibull, exponential or log-Gaussian
densities for example. The advantage of parametric moddtsat expressions for the survival
function can be obtained in closed form and hence the exaaithood can be constructed for
right, left or interval censored observations. Covaridfects can be included via a link func-
tion which specifies that some parameter of the probabiktysity is a function of the covari-
ates. Numerical methods can be used to infer unknown paeamaiues. See Lindsey (1998)
for a discussion and comparison of several parametric mo@alell et al. (1992), Rabinowitz
et al. (1995) and Komarek & Lesaffre (2009) consider Wéihatelerated failure time models.
Sparling et al. (2006) present a family of parametric modlett can handle time dependent
covariates.

Finally, there are semi-parametric models, of which most ataptations of the Cox pro-
portional hazards model. The partial likelihood argumesdgcuby Cox cannot be used in the
presence of interval censoring. However, the full likeidacan be written in terms of the event
time density and survival functions and this can be numbyicgptimised with respect to any
model parameters (Finkelstein, 1986). Markov Chain MoreaeddCmethods have been used by
Sinha et al. (1999) in a Bayesian discretised Cox model an8dtien (1996) in a proportional
hazards model. The EM algorithm has been used by Goggins @©8i8) and Goetghebeur &
Ryan (2000) to infer parameters in proportional hazardseiso&everal authors use smoothing
techniques to model the base hazard rate (Betensky et @2) 80the event time density (Zhang
& Davidian, 2008). Kooperberg & Clarkson (1997) and Zhang e2010) used splines to model
a smooth hazard rate. Another strategy is to impute the ¢vees (Law & Brookmeyer, 1992)
by taking the midpoint or the end of the interval for instan8ee Pan (2000) for an example.

Before we continue we first consider some notation. ji(et) denote the probability density
over the event times > 0. The survival function isS(7) = [~ p(s)ds and the hazard rate is
7(1) = p(7)/S(7). In what follows In this paper we will only consider the casesingle risk
with independent censoring. Under that assumption, if vearag a specific form for any one of
these quantities then the remaining two quantities areughyqdetermined.
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2. NON-LINEAR TRANSFORMATION MODELS 85

Before we explain the Gaussian process models in more ddtafielpful to define a general
transformation between covariates and event times:

o(ri) = flzi)+ &, (=1,...,n), (1)

where¢ is a monotonically increasing transformation of the evanes, f (z;) is some function

of the covariatesg; is a noise random variable with a probability density funictdenoted by
pe, andn is the number of individuals in our dataset. Several exgstiodels, including both <«
Gaussian process models, can be derived as special cagés of (

Linear transformation models assumés unspecified and'(z) = 5"«. Various procedures
for estimating the regression parameters in such models bagn proposed by Cheng et al.
(1995), Fine et al. (1998) and Chen et al. (2002). RecentlkILu (2008) considered the case
wheref(x) is an unspecified smooth function and proposed a boostinmgagin method based o
on the marginal likelihood.

If we choosepg(s) = exp(s + €®) and¢(7) = log{Ay(7)} we recover the Cox-type model.
To see this we consider the event time to be a transformafitimaoise random variable and
derive the event time density

p(7) = pellog{Ao(7)} — f(fﬂ)]%[log{Ao(T)} — f(@)] 100
= Xo(r)e /) exp{—Ag(r)e I}, (2)

We can readily verify that this corresponds to a Cox-typeahdizate by writing the survival
function in terms of the hazard rate and equating this to Xipeession for the survival function
in terms of the event time density:

1-— / p(s)ds = exp{—Ag(r)e @)} 105
0

By differentiating this expression with respect to time watain (2). Whenf(z) = —p"z

we recover Cox’s proportional hazards model. Frailty med=n be retrieved by assuming
f(z) = —p"z +w wherew is a frailty term. Generalized additive models assufife) =
Brx + Zﬁzl gu(z,) whereg, are non-linear functions of the covariates (Fahrmeir & Knei
2011). See Martino et al. (2011) and Vanhatalo et al. (20d3)dcent implementations of suchuo
models. Alternatively, a Gaussian process prior can ba@asddior f as shown by Savitsky et al.
(2011) and Joensuu et al. (2012). Viewed in this order thesdeta seek to accommodate in-
creasingly complicated covariate effects through moretflexand sophisticated functions of the
covariates.

For completeness we note that accelerated failure time imcda be recovered by assumings
¢(1) = log(7r) and f(x) = STx. This implies a log linear model and by choosing differerisao
distributions a wide range of parametric models can be eyenlk See Klein & Moeschberger
(2003, Chapter 12) for an overview.

3. GAUSSIAN PROCESS MODELS FOR TIME TO EVENT DATA

3:1. Gaussian process models 120

We will now explain the Gaussian process models for sunavalysis in more detail. In
general we will observe a pair of event timds, for each individual. For interval censoring
I; = {r}, 7} wherer! andr* are the lower and upper bounds of an interval within which the
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event occurred. For left or right censoring we record thetohcensoring and for non-censored
individuals the event time is recorded. We also record aicatdr variable,A;, which labels
which type of censoring each observation corresponds tee lvere to make observations that
were both censored and truncated then we would observe fanetivo times. We will not
consider that case explicitly here for brevity althougtsisiraightforward to do so.

In a Gaussian process model we assume the output variaklesmehow related to a latent
function of the covariates. A Gaussian process model dsnsishree elements. Firstly, we give
the latent function a Gaussian process prfor; GP(n, k), wheren is the mean function ankl
is the kernel function, such that megfiiz)} = n(x) and co\{ f(z;), f(x;)} = k(x;, x;).

Secondly, we have the individual data likelihood tergd;, A; | F;) which will depend on
what kind of model has been assumed. Finally, we use Bayestéim to obtain the posterior
density over the latent function values

p(D | F)p(F | X)
p(D]X)
whereD = {(I1,A1),...,(In,An)}, X = (x1,...,2,), andF is then-dimensional vector of

latent function values such that = f(x;), andp(F | X) is the Gaussian process prior. The data
likelihood factorizes over samples so th&D | F) = [[\, ¥(1;, A; | F;).

p(F'| X, D) = (3)

3-2. Construction of the data likelihood
Taking the negative log of (3) we get

L(F) =~ log (5, A | B) — ~ logp(F | X). (4)
i=1
We now dropF; from our notation for brevity. For non-censored individugl 7;, A;) = p(7;)
which is simply the probability density evaluatedrat Right censored individuals contribute
with ¢ (1;, A;) = S(7;). This gives the probability that the event occurs at some tfterr;,
the time of censoring. Similarly left censored and inte@hsored individuals contribute with
1 — S(r;) andS(7}) — S(7*) respectively.

Left truncation occurs when only individuals who experierthe primary event after a cer-
tain time 7 are included in the cohort. The probability of an event ogograt a subsequent
time 72 is now conditional on survival until at leasf. Such an individual will contribute to the
likelihood with<(1;, A;) = p(r?)/S(r#). Similarly right and interval truncated individuals con-
tribute with 1 (1;, A;) = p(72)/{1 — S(v£)} andw(I;, A;) = p(2)/{S(r%) — S(7¢)} respec-
tively wherer{ is the time of right truncation. This can be easily extenaeddmbine any type
of censoring with any type of truncation.

3-:3. The event time Gaussian process model

There are two main challenges to applying standard Gaupsaess regression to survival
data. The first is to deal with the fact that the outputs aremegative. This is relatively easy
to do with an appropriate transformation of the event tinoethé entire real line. Secondly, we
must deal with the different types of censoring and trurcati

The first step is to transform the event timeg te ¢(7) = ~log(e™/” — 1), such that: can
take any real value. We have chosen this transformatiorusecahen- > ~ thent ~ 7 and one
can tune the value of such thaty < min(7;) which results in an effectively linear mapping. We
assume a model of the form

ti:f(wi)"’_fia fiNN(Ouﬁz) (121,...,71), (5)
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from which it follows thatt; ~ N(f(z;),3?). The survival function is given by (¢;) = 1 —

o (t;) whered(t;) is the cumulative Gaussian distribution. Note that (5) ipec&l case of the
more general transformation (1). The event time densitysamdival functions can be simply
inserted into (4) to obtain the log likelihood for the eventé model (after the event times aress
transformed).

A similar approach was taken by Chu & Ghahramani (2005) teldgva Gaussian process
method for ordinal regression. Ordinal regression is udeeihvthe outcomes are assigned to dis-
crete categories which are ranked (exam grades are an eXaivipthematically, this is identical
to the problem of interval censored event times since theoow is known only to lie within a o
certain interval.

The transformation of output variables in Gaussian prooegsession has been explored by
Snelson et al. (2004). They examine a variety of parametkrisonotone transformations and re-
gard any transformation parameters as hyperparametexartoduring training. Their procedure
infers the most appropriate transformation such that testormed outputs can be modelleds
using a Gaussian process. It may be useful to apply this methimiture work.

3-4. The Cox-type Gaussian process model

In the Cox-type model the event time density is given by (Re €orresponding survival func-
tion is S(7;) = exp{—Ao(7;)f(zi)}. These expressions can also be inserted into (4) to obtain

Lo(F) == 3 {logdo(r) + Fi} + > Ao(r)e — logp(F | X). (6
:A;=1 i=1

In the Cox-type model none of the event times are transforimefection 6 we implement thisis
model with a Weibull hazard rate (7) = v7%~! wherev > 0 is optimized as a hyperparameter.

4. INFERENCE ANDPREDICTION
4.1. Inference of latent parameters and hyper parameters

To determine the optimal latent function values we safve- ming L(F) by numerically
minimising (4) with a gradient based optimizer. First orgartial derivatives can be found inss
Appendix A. Letf be the vector of hyperparameters which include any kernepaters and
parameters such a& or v. To estimate the values of these hyperparameters we retigre
marginal likelihood which is given by(D | X) = [ p(D | F)p(F | X)dF. In general, this in-
tegral is analytically and numerically intractable. Irztave construct a Laplace approximation
of the marginal likelihood. This is done by expanding thellkglihood to second order and thenso
integrating overF'. For the Cox-type model for example,

oD | X) = /e—nL(F)—(F—F)~(U+K1)(F—F)/2dF
=p(D | F)p(F | X)(2r)"*det{ (U + K1)~ }1/2, (7

wheren=Y(U + K~1);; = 9L (F)/OF;0F; is the matrix of second order partial derivatives
given in Appendix A. The matrix¥<;; = k(x;, x;) is the covariance matrix from the Gaussians
process prior. For the event time model we simply use theixnBfrinstead ofU (see Appendix
A). Optimal hyperparameters are determined by numerisallying = ming{—n""log ¢(D |
X)}. This approach is similar to Gaussian process classifitgRasmussen & Williams, 2006,
Chapter 3) where the function values are unobserved aneédraa latent variables.
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4.2. Predictions, hazard rates and survival functions

Given a new individual with covariates, we want to predict a corresponding event time
7. In standard Gaussian process regressién,) ~ N(u,x) with y=kTK~'F and x =
k(2 4) — kT K 'k, wherek, is then-dimensional vector defined ¥, ); = k(x;, 7).

In the event time model we use the mode of the posterior swuathfth,) ~ N(f, &) with
fi=kTK'F andi = k(zy,2,) — kT(K + W~1)~1k,. The variance is a combination of un-
certainty due to conditioning o’ and the uncertainty in the value df itself (Rasmussen
& Williams, 2006, Section 3.4.2). The predictive distritaut for transformed event times is
t, ~ N(i1, & + 5%). Finally, we use the transformation to derive the predictive density for
the actual event time:

exp |~ sk {71og(e™/ 7 = 1) = 2|

9| X2, D) = {2n(k + B2} 12 /7 —1

(8)

Predictions are made by numerically computing the mean aridnce of (8). Due to the trans-
formation¢ any predictions that are negative or close to zero will baadstped’ into the positive
half of the real line. As noted in the introduction the sualifunction and hazard rate can be com-
puted once the event time density is known. Some numerisaésare discussed in Appendix
B.

In the case of the Cox-type model predictions are made bytituthey modé€ F, ) = /i for
f(x,) into (2) and using this to numerically compute the mean amnee ofr,. Ideally we
would multiply the event time density by the predictive dgnsver F, and integrate overF,.
However this results in a predictive density ovgrthat is not defined. Consequently, by using
only the mode off, we underestimate the varianceQf

5. COMPARISON TO THECOX PROPORTIONAL HAZARDS MODEL

In the results section we will compare the performance ol i@aussian process models to
Cox’s original proportional hazards model. Cox’s model igained from (2) whenf(z;) =
—pTx;. We use Breslow’s estimator for the base hazard rate, atlgiproposed in the discussion
at the end of Cox (1972). This can be written as a maximumiliked estimator of the base
hazard rate (Coolen & Holmberg, 2014, Section 8.1):

> i1 01,8,0(T — 71)
> exp(BTx;)0(my — 1)

Ao(T) = ©)

This can be inserted into (2) to obtain the event time derwityesponding to Cox’s model.
However, this density is not normalised as can be seen from

A0 = /ooo No(5)e8™ 2 exp{—Ap(s)e? ™ }ds = 1 — exp{—NAg(s)e” >}

S§=00

The problem arises sindk)(7) does not diverge to infinity in the limit thatbecomes infinitely
large. This is reflected in the fact that any survival curvaegated using Cox’s model with
Breslow’s estimator has a non-zero value for infinitely ¢éatgnes. This implies that there is
non-zero probability of the event never occurring whichassistent with?7 (z,) < 1.
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We normalise the event time density by dividing Byz, ) and use this to compute the mean
(and variance) of, which are then used for making predictions:

Tx

Te) = Ti —€ :
Z(Q}*) Pyt z] eBTq:je ) p Z ) eBTZCjH

(15— T = (15 — 1)

6. RESULTS 235

Presented in Fig. 1 are results from simulated data with ammomnotonic relationship be-
tween the event times and covariates. There is one covariaed n = 25 individuals, of
which twelve are censored. In all figures the vertical axjgesents the untransformed event
time. An end of trial cut-off is imposed at six years and isresented by the dashed line.
Any individuals alive at that time are considered right aged. Panel (a) shows the observegd
data. The black line is the true function which was drawn fri@aussian process prior with
a squared exponential kernelz;, z;) = o exp{—(21%)"(x; — ;)T (x; — x;)} with hyperpa-
rameters set t¢n, 5,0,1) = (5,0.2,3,0.7). Results from applying the normalized Cox propor-
tional hazards model are shown in panel (b). This is desgrdi®ve in Section 5. We found
B = 0.49. In panel (c) are results from the event time model. NoteZhare plotted and not zs
;. For censored individuals thg; provide an estimate of when the event would have been
reported in the absence of censoring or noise. In particalant times can be estimated sev-
eral years after the trial ended (note the uncertainty iatget in this region). Hyperparameters
were found to bdn, 5, 0,1) = (5.82,0.32,2.59,0.64). In panel (d) the Cox-type model is ap-
plied to the data with a squared exponential kernel. Optimgperparameters were found to bew
(n,v,0,1) = (—28.4,16.2, 34,0.68). Note that the variance is underestimated since the the mode
of F, is used. In panels (e) and (f) we converted non-censoredidhgils into interval censored
individuals by generating a random one year interval fohdadividual. The event time model
is used in (e). Note thaf, are plotted and not the observed event times. Optimal hgpanpe-
ters were found to béy, 5,0,1) = (5.67,0.14,3.34,0.57). In (f) are results from the Cox-typezss
model. Optimal hyperparameters were found tqhe, o, 1) = (—45.5,27.2,64.7,0.47).

7. DISCUSSION

We have formulated two different Gaussian process modelthéanalysis of censored sur-
vival data. The first model expresses the transformed eiraptds a function of the covariates
whereas the second model is defined by assuming a Cox-typedhate. One drawback of thexo
Cox-type model is that the assumed independence of time @ratiate effects on the hazard
rate may not always be valid. When it is valid however, we caerpret the latent function val-
ues as either amplifying or diminishing the base hazardfoateach individual. Thus, negative
function values correspond to longer survival times. Buewlhe assumption is invalid then
this interpretation may be misleading. In contrast, the aflthe latent function values is alwayses
clear in the event time model since they can be seen as thetewes in the absence of noise or
censoring. A second drawback of the Cox-type model is thaangainable to fully quantify the
uncertainty of our predictions which leads to an underestion of the predictive variance.

The first model takes a more direct approach by connectingvtbequantities we observe
(event times and covariates) directly. In the practicalysis of biomedical survival data, often:
the most relevant issues are making predictions for nevemtatiand assessing the most rele-
vant covariates. In both cases the most relevant quantitptithe hazard rate, but rather the
connection between covariates and event times.
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Covariate x (arbitrary units) Covariate x (arbitrary units)

Fig. 1: In panels (a), (b), (d) and (f) the white and black dmgespond to observed right cen-
soring times and non-censored event times respectivedll figures the dashed line represents
an end of trial cutoff time. The observed data are plottedaingb (a). These were drawn from
the true function which is represented by the black line URg$rom the normalized Cox model
are shown in (b). The black line is the mean prediction andyteg area is plus and minus one
standard deviation. In panels (c) and (d) are predictionsigged using the event time model and
the Cox-type model respectively. The variance is undenedéd in the Cox-type model since the
uncertainty inf" is not taken into account. In (c) and (e) the white and bladk deef” for right
censored and non-censored individuals respectively. drbtiitom two panels, (e) and (f), are
results from the event time model and Cox-type models on éawation of interval and right
censored data. The ‘error bars’ denote randomly generated/@ar censoring intervals. In (e)
right censored individuals have a half ‘error bar’ connegtk} to the time of censoring.

In general, it is natural for a Bayesian analysis of survilah to avoid any partial likelihood
arguments and infer the relevant parameters from fullitioelds combined with priors. This
offers an intuitive and systematic way to construct theguast likelihood. The advantage of this
in our case is that censored and truncated individuals (apd@mbination thereof) can be easily
incorporated into the likelihood.
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Gaussian process models possess several attractiveefefduthe analysis of survival data.
Firstly, by specifying and combining different kernels lretGaussian process prior we can infek
a wide range of non-linear relationships between covariatel event times. Secondly, the use
of kernel functions means that high dimensional covariedéesbe studied. The risk of overfitting
can be kept to a minimum provided we exclude variable seledilyperparameters. Thirdly,
estimates of event times for censored individuals can bexetetd from the data. Finally, any
type of censoring or truncation can be easily dealt with. 285

In future work it may be interesting to explore different atws for the noise distribution in
our model. In the case of biomedical data it is interestingsio what the noise represents. Does
it represent inherent stochasticity in biological systemselays in the reporting of events? In
the latter case the latent function values can be intempeeaoise-free event times and the noise
(with semi-infinite support) represents a waiting time luhii: event is recorded. For example, it
may take some time for symptoms to manifest themselveselfotimer case noise with infinite
support is more appropriate. In real data both sources skenaie likely to be present and so
it would be interesting to implement asymmetric noise thstions that place more density on
positive noise values. We also plan to study the case of pheiltisks which may or may not be
correlated. A potential route would be to use multi-outpat€sian process priors to capture any
correlation between the different risks.
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A. PARTIAL DERIVATIVES

In Section 41 we required the first order partial derivatives of the léglihood. Here we consider non-sw
censored individuals and right censored individuals. Rerdvent time model the first order derivatives
are

0 1l 0 1. _
B—E-L(F) = —E;a—ﬂlogw(h,ﬁk | Fk)“"ﬁ{K (F —n)}is

where for non-censored individualg I, Ay | F) = N(F}, 3?) and

0 _ -2
OF 10g’L/J(Ik,Ak | Fk) =00 (tk — Fk).

Individuals who were right censored hawély, Ay | Fy,) = S(tx | Fi)

0 1 1 — s (t—F)?
I, A | Fi) = 6; 2pZ VR TERD
aFiw( ks Ak | Fi) S ) (27r52)1/26 205

Second order partial derivatives are also required in 8eekil to construct a Laplace approximation of
the posterior. These are

0? 1 02 1 .., 1 1
WL(F) = —551',7'51'1@; OF0F, log (I, Ay | Fy) + Ky = E(W+ K™)ij,

where the diagonal matrik/ is defined byW;; = —92? /0F?log(I;, A; | F;). For non-censored indi-
vidualsW;; = 32. For right censored individuals 310

W“ _ 1 1 eiw%(tifFi)z 2 B (tz — Fl) 1 1 eim%(tiiFi)z
"\ 3 | F) @npo) 2 B2 \S( | F) @2nf?)72 |
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Partial derivatives for interval censored individuals eatculated similarly. See the Appendix B below
for numerical details. Partial derivatives of the Cox-tyigelihood (6) are

0 = 1 1 F; 1 -1
3FiLC(F) = nél’Ai’ + nAO(Tl)e + n(K F);
— LA(F :_,LA ; F; —Kilz_ K_l i
amaF, L) = Joute(ri)e + D KyE = S (U+ K

B. NUMERICAL CONSIDERATIONS

To compute hazard rates and partial derivatives for the tetiere model we need to numerically
evaluateA(t) = p(t)/S(t) wherep(t) is a normal density with variangé® and S(t) is the correspond-
ing survival function. The denominator can be written imtsrof the complementary error function as
S(t) = erfc(h)/2 whereh = t/(28%)'/2. Then A(t) = C exp(—h?)/erfc(h) whereC = 2/(275%)'/2,
The quantityA(t) becomes numerically unstable for largesince the numerator and denominator both
tend towards zero. Fak > 0 we use the asymptotic expansion of the complementary etrastibn
(Menzel, 1960):

e 1 2 8
erfc(h) = NG 1 57,2 + en? 2Ry + e for h > 0.
This ensuresi(t) can be computed without difficulty. It is also clear that farde times the hazard rate is
approximately linear.

There is an interesting symmetry in the fact that for Coxetypodels the computation of event time
densities such as (2) or (10) can be numerically unstablaaltiee presence of the double exponential.
In particular, when dealing with the likelihood contribatimade by an interval censored observation we
must compute quantities of the forlog(e =+ — e=*2) wherex, = —Ao(7%)e’. If 2, or z, are suffi-
ciently large then this will be evaluated kg (0) if double precision numbers are used. Instead we write
this as

log(e ™™ — e™™2) = log{e " (1 — e ~7%2)}

[ =z +log(1 — e 72) when—h' < z1 — a9
T —xy — eTrTT2 %ez(“*“) whenz; — zo < —H'.

whereh’ is some suitably defined cutoff constant. Similar tricks banused to ensure the partial deriva-
tives are computed robustly.
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