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Econophysics

Physicists’ thinking and quantitative methods
applied to problems in economics and finance

e Fconomics largely axiomatic, and focused on optimimal sta-
tionary states in deterministic microscopic economic models

e Real world economic decisions not based on precise deduc-
tive reasoning and perfect information, but on inductive rea-
soning and imperfect information

e Ergo: economists do not understand the fluctuations in fi-
nancial time series

e Statistical mechanical models of interacting agents in sim-
plified ‘markets’, example: Minority Game (1997)
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N agents, 1 =1...N:

e At each round ¢:
— all agents receive market information I(¢) € {1, ..., I,}
— each takes a binary decision o;(¢) € {—1,1}
e Those in the minority win !
v;0;0) >0: the g;(f) = —1 win
vi0;0) <0:  the o;(f) =1 win

e Fach agent i has S strategies (look-up tables):
R,= (R, ..., R)e{-1,1}', a=1...5

iad **

Strategy a used, and I(¢) = I,:  0;(¢) = R},



MG Dynamics

Choice of strategy a € {1,...,S}, as a function of time,
for all agents

Agents learn to select profitable strategies, by keeping track of
strategies’ performance p;,

>0j(l)>0: Rffa(e) = —1 winning strategy
J

>oj(l) <0: Rfa(e) = 1 winning strategy

J

Hence:

pia(f + 1) — pia(g) — 7N Rfa(g) ZO_](K)
J

Choice:
a;(¢) = arg max ,{p;.(¢)}

(would have performed best so far)

e Eixternal information I(¢): history of the market

e Closed microscopic equations for the {p;,}
(non-Markovian !)

e Quenched disorder:
realization of strategies { R;,}

e Competition & frustration:
most agents must inevitably lose ...
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e Non-trivial behaviour; phase-transition at «,.
e Value of S of no qualitative relevance

e Agents appear to understand & predict the market !

Simplest MG: S =2 (strategies/agent)

1

1 1
¢ = i[pu—pm]a & = i[Rﬁ—Réé]a = m%:[}z?ﬁ}%]

then

() b

() = 60— & |00 + = £ sl (0]

non-Markovian, memory depth = O(log N)
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e Cavagna 1999:
hardly any difference in volatitilies of standard MG

e Johnson et al 1999:
big differences in MGs with other valuation update rules, or
when agents do not see history strings of same length

e Challet & Marsili 2000:
differences also in standard MG, approximate replica analy-
sis, by ‘fitting’ a curve to observed history freq distribution

o Lee 2001:
simulation study of bid periodicities due to real histories

e all other theoretical papers: fake histories only ...



Simulations of the standard MG
in the non-ergodic regime a < «,
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e two strategies per agent

e M =5 (history depth), N = 4097 (nr of agents)
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e binary individual bids: b;(¢) € {—1,1}

o overall bid: A(t) = N~z 5, b;(t)
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Simulations of the standard MG
in the ergodic regime a > a,
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e M = 16 (history depth), N = 4097 (nr of agents)

e binary individual bids: b;(t) € {—1,1}
o overall bid: A(t) = N~2 5, b;(t)
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volatility o and fraction ¢ of ‘frozen’ agents:

0.01 0.1 1 10 100 " 001 0.1 1 10 100

full circles: real memory
open circles: fake memory

initial conditions: A = $[p;1(0) — pi(0)]
pia(t): valuation of strategy a of agent 7 at time ¢



History statistics:

History strings:
A(t) = (sgn[A(t — 1)],...,sgn[A(t — M)])

History frequency:
.1 L
T = A2 3 0x A

— 00 L t=1

History frequency distribution:
(2M = aN, a fixed)

o(f) = lim 27" Y o[f — 2Ymy ]

N—o0 A
fake hist:
T\ =2", o(f) = o[f — 1]
real hist:
o < Qg o > O
o(f)
f
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Pseudo-equilibrium Replica Analysis of
MGs with Fake Histories

e neglect fluctuations in microscopic process:
Lyapunov function H

e approximate fluctuations by effective Gaussian ones, added
to gradient descent process on H

e use equilibrium statistical mechanics,
carry out disorder average using replica theory

For:

first systematic theory for MGs
correct results for phase diagram

Against:

not exact
no dynamics
not applicable in non-ergodic regime of MG
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Generating Functional Analysis of
MGs with Fake Histories

1. generating functional:

Z [] = (e ZiZi "ébi(t)sgn[qz'(t)b

average over process (i.e. over paths): (...)
average over random strategies: ...

1 AL

L1 , T — — lim
C(t,t) = —ngn[qz(t)]sgn[qz(t )| = 7}5210 Nza@bl( £) O, (')

0 iy = 1 0*Z[1p]
90, Bl = = Y G 06()

G(tv t,) — N Z

2. after standard manipulations:

= [DCDCDGDG ... NVOCGE

3. N — o0, steepest descent:

exact closed eqns for C' and G
defined in terms of effective ‘single agent’ process

4. solve/analyze effective single agent process:

phase diagrams, short-time dynamics, ...
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Examples of ‘effective single agent’ processes, for fake histories:

e standard ‘batch’ MG:
gt +1) =q(t) +0(t) — a X R(t,t')sgn[q(t")] + v n(t)

<t

e standard ‘on-line” MG with decision noise:

@ yt) = 0(t) — o [ldt’ Rt ) {olg(t), 2]): + va n(t)

dt
(n(t)) =0, (®)nt)) = (¢, 1)
R=R(C,G), T =3%(C,G)

e ‘batch’ MG with decision noise and ‘trend-followers’:

a(t+1) = g(t)—2b(t)+ac X R(t,)olg(t), ()| TI+van(t)

t'<t

(1)) =0, (n)n)) =X(t,1)
R=R(C,G), ¥=3(C,G)
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Generating Functional Analysis of MGs
with Real Histories

mathematical complications:

e non-Markovian microscopic laws

e no ‘batch’ versions possible
(batch = average over all histories at each step ...)

e on-line: no temporal regularization possible
(messes up timing, disaster for non-Markovian models ...)

Define generating functional,
for un-regularized on-line process with real histories

Z[ } — <@—i2¢ > ’ébi(t)sgn[qz'(t)]>

average over process: (...)
average over random strategies: ...

add overall bid perturbation term:

A@y:j%gnmw+A4w

after non-standard manipulations:

Z[§] = [DCDCDGDG ... NVICCGE]

C(t,t):  two-time correlation function
G(t,t):  two-time response function
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Effective single agent process

similarities between real and fake history MGSs:

e both cases: effective single agent equation of the form

%q(t) — 0(t) — oz/otdtl R(t,t") olq(t)] + Va n(t)

(n(6)) =0,  (n()n(t)) = =, 1)
from which {C, G’} are to be solved self-consistently

e scaling with NV of characteristic times are identical,
provided we avoid highly biased global bid initializations

15



differences between real and fake history MGSs:

e real history: {R, >} are to be solved from an effective equa-
tion for the stochastically evolving global bid:

4}
N .
R(t, t ) = (SAe(t’) (151£>I(1] <A(‘€)5A(K,A),A(K/,A) >{A} (=t/5,0=t'|§
L ,
Here:

A(¢, A) = history string at time £, given overall bid ‘path’ A

o cffective global bid process:

1 / /
A(f) — Ae(f) -+ ¢£ — 577 Z G(&f )5A(£,A),A(£’,A) A(E)

<y

zero-average Gaussian random fields {¢}:

1
(Pede)(play = 5[1 +CO)] Oy A

e The overall bid process is in itself independent of the effec-
tive single trader process; they are linked only via the (time
dependent) order parameters occurring in their definitions

o A(!)is coupled directly only to those bids in the past at times
¢ with identical realization of the M-bit history string
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Role and Calculation of History Statistics

History coincidence kernels:

Ap(ly, . b)) = P~ 1§< H OX (@) )
probability of finding dentical histories
at k prescribed non-identical times {1, ..., ¢}
divided by the probability for this to happen
for randomly drawn fake histories

One can express { R, ¥} in terms of these kernels:

R(t,t") = §(t —1t') + lim

6—0

{Z( 1Y Gl b)) ... .G, 0,

r>0 0.4

X Apga(l, .., 4}

/
lo=%.lr=%

E(t,t’) == 111’1’1{ Z (_5)r+r’ Z G(fo,fl)...G(fr_l,fr)

0=0 | rr7>0 ...
<z G(%af') Gl 4) L+ O, £)]
e
X Ar+r’+2(£07 cee 7€T7 E{)a e 76;“’)} |50:§’g6:%
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Time translation invariant states
with short history correlation times L,

1 +L

3L 2 OAA @) T m\(A) [1+O((Ly/L)

D=

)

If L, < N:
stationary state order parameter equations in terms of history
frequency distribution o(f) only

VaXR l1—¢
u = = =1 — Erflu
Sov/2 X QOXR ? &
1 I e
c = 1 — Erflu] + —2u2Erf[u] — uﬁe
00 f
— df o(f
XR /0 o(f) 1+ f
2 00 f?
= (1 fo(f) ———

with

X=[dtG(t) xrp=[ dtR(t) S;=3%(c0) c=C(0)
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Calculation of history frequency distribution o(f)
as expansion for small width

If Fourier transform of o(f) well-defined: moment expansion

we = [ df o(f)f"
_pdw iwf Mk, .k
olf) = [—=e“ ¥ Z(—iw)

2T k>0 k‘

1.0 T T T T 1.0

o8 | 4 . 08

M—o0

lim log(us) = %Qk(k —1) - %Q%(k — 1)(2k — 3) + O(Q?)

1
2(1+¢) 2

1+xf)21-c)] :

Q = % 7 df o(f)f arctan |1+
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Final Theory versus Simulations

persistent correlations ¢ and
fraction ¢ of frozen agents:
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Conclusions

e The generating functional methods of De Dominicis can be
applied successfully to non-Markovian disordered microscopic
stochastic processes

e We now have the mathematical tools to study the more sub-
tle and more realistic MG versions with real market histories

e The present method to solve the effective bid process is an
expansion for small width of the history frequency distribu-
tion; it would be helpful to develop alternatives

Further Reading

e details: cond-mat/0410335

o Minority games — interacting agents in financial markets
Oxford Univ Press, Nov 2004
D Challet, M Marsili and YC Zhang

e The mathematical theory of minority games — statistical

mechanics of interacting agents
Oxford Univ Press, Feb 2005
ACC Coolen
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