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e Quality of raw data
@ Bayesian analysis of imaging data
@ Proteome data decontamination

e Complex signalling processes
@ Many-variable systems in biology
@ Signalling in the proteome
@ Cytokine signalling in adaptive immune system

e Risk associations and outcome prediction
@ Overfitting in clinical outcome prediction
@ Bayesian latent variable analysis
@ Prediction from high dimensional covariates
@ Heterogeneity and competing risks

a selection of past and present projects ...
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biomedical
research
in 21st century

biology,

medicine,
chemistry,
physics,
engineering,
computer science,
mathematics,
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‘next generation’ data ...
... previous generation analysis

Regression Models and Life-Tables
D.R. Cox

al of the Royal Statistical Society. Series B (Methodological), Volunr
187-220.

Stable URE:
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e Quality of raw data
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Bayesian analysis of imaging data

Fluorescence Lifetime Imaging
data: arrival times of photons

PAKI _Cded2 MRFP
@ goal Xy 9
emission lifetime of
light emitting molecules GFPWFRET
fast processes: s ol N
small nr of photons o
@ problem with small photon nrs r of photons

— to fit to decay curve,
need histogram of arrival times

— large bins: time resolution poor ... ae
small bins: vertical resolution poor ... : N
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Bayesian analysis

photon detection = emission physics + instrument + noise
parameters 6

forward model: p(data|@), prior: p(0)

@ calculate p(datal@)
@ Bayesian identity:

_ p(datal6)p(6)
P(010a13) = g7 1\ datal6’)o(@)

benefits

— exact, statistically optimal
— estimates with error bars
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‘forward modelling’

Background photons Decay photons
A —
Yl
[ dtdu p(t)T(u)6 (At —t—u+ Tp.int (f;“)
p(At) = 0(AL)O(T — At) T 0+ (1 - wo)— —
Sl ane [[2 dtdu p(t)T(u)s (At’ —t—u+Tp.int (%))

= 0(AH)I(T — At) { + Al(T ;") /dt p(t)Y T(At—t+ zm)}

>0

includes:

— instrument response function

— artifacts of repetitive excitation

— multi-exponential delay distributions
— Bayesian model selection
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example:
human epithelial cancer cells

Intensity MLE LS Phasor Bayesian

45 mm— 400 6 mn 2.8
Total count Lifetime [ns]

compared to existing methods:
half nr photons needed for same accuracy
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Protein interaction networks
Quantify topology: \

@ p(k):
fraction of nodes that
have k neighbours (degree distr)

@ W(k,K'):
fraction of links that .
connect nodes with k and k’ nelghbours s

Mathematical tools

graph theory, information-theory,
and statistical physics

tailored random graph families,
characterised by {p, W}:

quantify complexity, appropriate network null models,
algorithms for correct randomisation,
proxies for process modelling, network dissimilarity measures, ...
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nature

biotechnology

Search FuSFE

Access
To read this story in full you will need to login or make a payment (see right).

nature.com > Journal home = Table of Contents

Commentary

Nature Biotechnology 26, 69 - 72 (2008)

Protein-protein interaction networks and —_—
biology—what's the connection? ARTICLETOOLS

B send to a friend
Luke Hakest, John W PinneyX, David L Robertsont & Simon C Lavell: [ export citation

% Export references
Analysis of protein-protein interaction networks is an increasingly EY Rights and permissions
popular means to infer biological insight, but is close enough
attention being paid to data handling protocols and the degree of
bias in the data?

% Order commercial reprints

c@') Baookmark in Connotea
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Quantify network
dissimilarity
using

information
theory

Distance
0 5 10
L I I Distance
C jejuni [ 5 10 15
S. X [ e —————
S. isiae VIII S. isiae X
S.cerevisiae V
S.cerevisiae XI S.cerevisiae VIl
T.pallidum
E.coli _l S.cerevisiae IV
S.cerevisiae VII
H.sapiens | e S.cerevisiae IX
H.sapiens Il
S.cerevisiae Xll — S.cerevisiae VI AP-MS
S.cerevisiae Il
S.cereynsnae ! S.cerevisiae XI PCA
S.cerevisiae Il
M.loti s
C.elegans S.cerevisiae Xl
Synechocystis. e
H.pylori S.cerevisiae Il
H.sapiens IIl -
D.melanogaster S.cerevisiae |
P falciparum
S.cerevisiae IV S.cerevisiae Il Y2H
S.cerevisiae IX
S.cerevisiae VI B
H.sapiens IV
Il Yeast-two-Hybrid Affinity Purification-Mass Spectrometry Protein Complementation Assay

Database Datasets

Data Integration

@ PPINs of same species are similar only if measured via same method

@ strong bias in PPIN data, induced by experimental method,
that overrules species information
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analysis of
data contamination by experimental bias

@ node undersampling:
, Li=1 .
: prob to IH
detect protein i

@ link undersampling:

.

Li=1
: prob to
detect interaction (i, j)

—.
<
I
o
:\ \

@ link oversampling:

/N: prob to i b
report false positive

interaction

Il
o

-
—.

*j . ;=1

methods from statistical physics:

relation between measured p(k) and W(k, k')
and true p(k) and W(k, k')

in terms of

ACC Coolen (KCL) Mathematics in cancer research January 2015 15/63



true data .
colour plots of
Wk, k")/W(k)W(K'):

L0} e q '
p
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Bayesian decontamination of PPIN data

— protein species (=1...L
unknown networks c*

— experimental methods a=1...M (Y2H, PCA, MS, ...)
unknown error parameters 6« = {x“(k), y*(k, k"), z%(k,k")}

matrix of Mx L

Lo
observed networks €™ method a methodb method ¢

Y

species |

Y

species Il

Y

species Il

recover:

true PINs {c',...,ct}
sampling pars {¢',...,0"}
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e Complex signalling processes
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Analysis of signalling processes

proteome:

usual description Table 2. Model Equations
reaction equations

d(RD)/dt — keyRDA — kigRD - A + K3y RDE — ky3RD - E — kyaRD + kR - D + kyRT — kyzRD - M
d(RT)/dt — ksRTE — kysRT - £ 4 ksaR - T — kgRT — ko RT + keRTA — kagRT - A — kopaRT - E + kyM + ky2RD - M
d(RDE)/dt — k3RO - E — ks RDE + kesRE - D — ksaROE + ksyRTE
O d(RE)/dt — kyRDE — kysRE - D + ksaRTE — kysRE - T + koaR + £ — kagRE
" d(RTE) dt = kasRE - T — ksaRTE + kysRT - E — ks, RTE — ks3RTE
4 d(RTA)/dt — kBT - A — keaRTA — kggRTA + krgRA - T — kg7 RTA
,, ) d(RA) /dt — keyRTA — kzeRA - T + kosR - A — kzoRA + ksRDA — kysRA - D
a\ /k/)\ d(RDA) /dt — keaRTA + kzeRA - D — kg RDA + kigRD - A — kg RDA
[ ° 4 d(R)/dt = kyoRT — kooR - T + kygRE — kogR - E + kygRD — koyR - D + ksgRA — korR - A
[ B /dt — ksyRDE — kysRD - E + kssRTE — kysRT - E + kagRE — koaR - E — kayRT - E + kyaM
: d{A}/dt — kg RDA — kigRD - A + ksRTA — kygRT - A + ksRA — kosR - A
d(M)/dt = kBT - E — knpM

Model equations correspond to the reaction scheme shown in Figure 1. Numbering of the reaction rate constants
follows the conventions introduced in Table 3,

@ cannot solve egns analytically ...
@ uncertain pathways and parameters ...
@ too many components for numerical exploration ...
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statistical physics

:n N
o \q ® |

‘ ,:'\'/-/ o

~10%* positions, velocities

()?17 ‘71)7 ()_(27 ‘72)7

Newton’s equations

LR B) =, LR o) = ...

macroscopic description:

densities, correlation functions,
perturbation response functions,
phase transitions ...
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statistical physics statistical biology

Z .
XA
NG \{X
2N
o
~10% positions, velocities ~10* concentr of proteins & complexes
(%, V1), (X2, Vo), ... X1, Xo, X3, ...
Newton’s equations reaction equations
d(y. o) — diy. o) — dy _ day dy _
E(X17 V1) = ..., E(XZ’ Vg) = ... EX1 = ..., EXQ = ..., EX:; = ...
macroscopic theory: macroscopic theory:
densities, correlation functions,
response functions (to perturbations), 277

phase transitions ...
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numerical illustration

2 post-trans| states/protein,
binary complexes,

random topologies & rates,
7 partners on average

individual
concentrations

stationary state
distribution of
concentrations

ACC Coolen (K

10 species

dashed: complexes
solid: unbound proteins

100 species 1000 species

n

L

time

time

B

time

depends only on param & network statistics!
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Signalling dynamics in the proteome
from many-particle physics
to many-particle biology

@ notation:

i=1...N labels proteins
x;*: concentr of protein i in state «
Xj: concentration of dimer j < j

@ events:

rate:
complex formation: (i, ) + (j,B) = (i <)) ki xex?
complex dissociation: (i=j) = (i,a)+ (,B) kaﬁ*x,,
conformation change: (i, o) = ( 6) AP xe
protein degradation: (o) = X
protein synthesis: 0 — (i, ) o5
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@ reaction eqgns:

complex formation & dissociation post—trans! modification

decay

d — ——

= 0 kT N A ] 5
J B B

d _
af

@ tailored random PPIN (prescribed degrees)
Cj = 0, 1

Ok S o
p(c) = W H [00504':"1 + (1 _00)504710]

I

@ draw reaction rates randomly
from realistic distributions P(k*, k™), P(\,~)
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generating functional analysis

calculate correlations, response functions etc ...
in heterogeneous many-variable systems
without solving microscopic equations!

@ after calculations ...
(path integral techniques, saddle-point integration, etc)

for N — co: exact
macroscopic equations

W=Gi[W], D=GW],  Giz: complicated but exact formulas
macroscopic
quantities: DI{x}{y}, W[{x}{y}

{x}: trajectories x.(t)
{y}: time dependent production rates y.(t)

D[{x}|{y}] describes response
to single-node perturbations
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motivation:
immune cancer therapies

Cytokine signalling in adaptive immune system

Antigen

@ B-clones b,
each can recognise specific antigen

@ T-clones o;

coordinate B-clones via
cytokines ¢ = —1,0, 1

(£/'=—1: contract, &' =+1: expand)

model of
Barra and Agliari:

e7\/EH(0-,|>) 1 ng ng nr
plob)=—F—  Hb) =523 b= b geh )
pn=1 p=1 i=1
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‘integrate out’ the B-clones,
results in model of interacting T-clones:

e—BH() 10 ng nt Np
p(o) = - H(o) =5 > o) St ="y Ao gt
ij=1 p=1 i=1 p=1

how can promiscuous T-clones coordinate an
extensive number of B-clones simultaneously?
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relevant parameters in
T—T network:

c: T-clone promiscuity
o ng/nrt

ST RS
¥ 520
s el S edipSpos
SR 75s
é.i’vg : i 8
Hy %%
P Ja

- {52,
B £
55y s
%gvvvvvvwgggf N
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solve model as a statistical mechanics one
(i.e. calculate asymptotic disorder-averaged free energy)

after calculation (finite connectivity replica analysis):
exact formula for clonal cross-talk transition lines

25 p—
parallel processing of (L
2 extensively many clones

CRR N c=2
1F NPT
0.5+ 8

O L L
0 0.5 1 1.5 2 2.5 3

[e'8 nB/nT
c: T-cell promiscuity
B8~': noise in clonal dynamics
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e Risk associations and outcome prediction
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Number people who drowned by falling into a swimming-pool
correlates with

Number of films Nicolas Cage appeared in

Number people who drowned by falling into a swimming-pool
= Number of films Niclas Cage appeared in

2001 2002 2003

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Number people who drowned by falling into a swimming-pool
Deaths (US) (CDC) 109 102 102 98 8 95 96 98 123 94 102

Number of films Nicolas Cage appeared in
Films (IMDB) 2 2 2 3 1 1 2 3 4 1 4

Correlation: 0.666004
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Age of Miss America
correlates with

Murders by steam, hot vapours and hot objects

= Age of Miss America
= Murders by steam, hot vapours and hot objects
= .

: S
1999 2000 2 2003 2004 2005 2006 2007 2008 2009

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Age of Miss America
Years (Wikipedia) 24 24 24 21 22 21 24 22 20 19 22

Murders by steam, hot vapours and hot objects | | |
Deaths (US) (CDC) 7 7 7 3 4 8 8 4 2 3 2

Correlation: 0.870127

ACC Coolen
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Tools to combat overfitting
in covariate-to-outcome analysis

@ Pin down the problem

predict ‘safe’ ratio covariates/sample
for Cox regression?

@ Eliminate redundant information

improve covariates/samples ratio

latent vars (information theory), find ‘true’ dimension
@ Model (avoid?) overfitting effects

handle statistics of full parameter uncertainty,
while keeping computations feasible
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Tools to combat overfitting
in covariate-to-outcome analysis

@ Pin down the problem

predict ‘safe’ ratio covariates/samples
for Cox regression?

@ Eliminate redundant information

improve covariates/samples ratio

latent vars (information theory), find ‘true’ dimension
@ Model (avoid?) overfitting effects

handle statistics of full parameter uncertainty,
while keeping computations feasible

all based on
Bayesian principles
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overfitting in
Proportional hazards regression

associations between covariates and risk
for time-to-event outcome data,

multivariate version for outcome prediction

p-values, confidence intervals
don’t measure overfitting!

100

uncorrelated covariates wl

rule of thumb: 0: 1000 samples & cases

‘10 samples per case’ e: 500 samples & cases  «w|

too optimistic ...

40

developing analytical theory,

that predicts onset of overfiting

in terms of statistics of covariates
and nr of samples and cases

20

ACC Coolen (KCL) Mathematics in cancer research

L
0 5 10 15 20 25 30

nr of covariates

fraction correct

(155 samples, 65 cases)|

40

% error in
regression
coeff

o L L
0.0 0.1 0.2 03

covariates/cases
January 2015
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Bayesian latent variable methods
for survival analysis

Assume: e.g. gene expression

(a) data Yx € R? are high-dim windows
on low dim latent variables X € RY

b) X actually drives outcome
() y other

(c)g<d biomarkers

@ nonlinear stochastic relations
Yr = f(X) + noise

@ dimension detection: optimal g?
@ find most probable latent variables X
@ use X to predict clinical outcome

Y

1

Y

2

T, A

Gaussian process latent variable model (GPLVM)
combined with Weibull proportional hazards model (WPHM)
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Results from METABRIC data Y: scores of 28 gene signatures

gene signature data outcome: overall survival time
Dimensionality detection 1 GPLVM-WPHM (¢ = 2) ) WPHM (d = 28)
38 T
37
=
g 36
é 35
Eﬂ 34
. High risk £ 0.2 High risk
32 — — — Low risk @ 0.1 — — — Low risk
+ Cens . + Cens
31 731 ¢ 8 10 12 14 0 5 10 0 5 10
¢ (no. of latent variables) Time 7 (years) Time 7 (years)

left: g <5, dimension of X (predicted from training set, n = 74)

middle: predicted low/high risk groups, g = 2
(tested in validation set, n = 74)

right: predicted low/high risk groups from Y
(tested in validation set, n = 74)
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Discriminant analysis
data: D = {(X1 0 ), ey (XN,yN)}

X;: covariates

yi: class labels ]
goal: ° e s 2N
class y of new observation x o |4
v
T T T T T T T
-2 0 2 4 6 8 10

model based approaches

parametrise p(x|y, 6),
estimate 6 from data, p(xly,0)p(y)
. X,0) =
then use: PY0) = 5= o(xly’. 0)p(r)

popular method: high dim data, d ~10%,10*:

i 3 8
mclustDA (Fraley & Raftery) optimise ~ 107, 10° pars ...

MAP estimation of 6 serious overfitting,

CPU demands prohibitive
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Bayesian multi-class outcome prediction
for high-dimensional data

@ in view of overfitting:

full Bayesian parameter estimation,
instead of MAP (e.g. mclustDA)

MAP - p(y|x,D) = p(y|X,0mar),  Omar = argmaxg p(6|D)

Bayes:  p(y|x.D) = /'de p(yIx, 0)p(6]D)

| __P(O)p(DI0)
Jdo" p(6")p(D16")

p(6|D
@ computational feasibility:
evaluate d-dimensional integrals analytically

© desirable:
determine MAP-optimal hyper-pars analytically

ACC Coolen (KCL) Mathematics in cancer research January 2015



simplest model
Gaussian
covariate
distribution

for each class

generative

all data assumed
informative

discriminative

extract only link
between x and y

e*%(xfﬂy)z/ai
X ,0 -
P 8) = = oy

w,: class signatures,
with Gaussian priors

,O(X,X1,. .

p(xs, ..

@ 1ull Bayesian parameter estimation: v
@ evaluate d-dimensional integrals analytically: v

© determine optimal hyper-pars analytically: v

ACC Coolen (KCL)
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'ax”7y7y17"'

'ax"ay‘xay‘h"'

,¥nl0) = p(x, ¥10) | [ p(xi, 116)

i=1

n

aynae) = ,D(}/|X,9)HP(X,U/,,9)

i=1
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Signature- versus variability-based classification

weak class ‘signatures’ in data:

classification still possible,
but will become variability-based:
(increasingly effective for large d)

2
p(x“|y)
0.12 0035
oo 0030 0010 I
|

008 0.025 0.008 II \‘

0020 \
006 0015 oo " ‘\

: 0004 |
0.04 0010 I
002 0.005 0002 [
000 0000 0.000 -
0 20 40 60 80 100 120 140 0 200 400 600 800 1000 1200
x2 X2
d=100 d=1000
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training
Method |
validation

_ Method lla

training

_ Method lla

validation
Method lib
training
Method lib
validation
mclustDA
training
mclustDA
validation
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Method |
0.9 - training
D Method |
08 \ validation
07 - o.. Method lla
\ training
0.6 \ .. Method lia
05 validation
& . Method Ilb
04 I 3 \ training
03 \‘\ Method IIb
LN validation
02 Y a mcI_U§tDA
01 N trallmnlgDA
) mclust
0 =& validation

N
O S O SLLE
2N PSSO S

Q

Error curves (100 training/100 validation), averaged over 100 data sets,
n=100 samples with identical class centres

[ | f h  a oz |
01 09 024 0.28
09 0.1 024 0.28

7
%

mclustDA and method | struggle when
training and validation sets differ in class membership balance
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04

Trlplg-negatl\(e breast cancer Er, Vethod |
prediction of survival ’ " training
from gene expression 03 Method |
/. N g validation
¢ N . Method llb
y=1: BC death within 5 yrs 0z —F—= training
y =2: survived for at least 5 yrs Method llb
validation
4 lustDA
n=165, d=22,035 ’ + Nainng
(f1 5 fg) = (0257 075) mclustDA
0.0 validation
performance measured via LOOCYV, P NG P&@”
genes ranked by correlation with outcome d

@ all methods give similar results
@ Bayesian methods can go to much larger d
@ min Ey =~ 0.24 (~ going for largest class)

either gene expression data confer no predictive information on
5 yr TNBC survival, or all methods suffer from model mismatch
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0.4

TCGA Breast cancer data E "
. . TV e ethod |
prediction of receptor status ’ training
03 _ o Method |
validation
y=1: ER-negative, HER2-negative L Method Il
y=2: ER-positive, HER2-negative 02 > training
y =3: ER-negative, HER2-positive B e Lo Melhod b
y=4: ER-positive, HER2-positive o . molusiDA
training
n=500, d=17,332 melustDA
(f,f, f, 1) = (0.19,0.66,0.04,0.11) 00 validation
\00 » \000 ,5050 000 « ,gz?/

performance measured via LOOCYV,
genes ranked by correlation with outcome

@ optimal predictive information in first 100 ranked genes
@ Bayesian methods can go to much larger d
@ min Ey ~ 0.14 (significant)

gene expression profiles of breast cancer patients are
reliable predictors of their ER and HERZ status
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conventional methods

@ cannot handle disease/host heterogeneity
beyond variability in covariates

@ assume different risks are uncorrelated
@ dangerous when many censoring events ...

primary risk only

predicted
survival
probabilities
can be

badly wrong ...

Kaplan-Meier estimators
Cox regression

ACC Coolen (KCL) Mathematics in cancer research
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More advanced methods

@ model all risks and their relations, at individual and cohort level
@ event times assumed uncorrelated only at the level of individuals
@ individuals with same covariates may have distinct risk profiles
@ Bayesian analysis, so reliable error bars

Latent class heterogeneity:

class 1
fraction: wy fraction:

for all risks r:

for all risks r: o
BLt) = Ar(t) s

10, 11,1 1p_p i 1
513, +Br zl-+...+fl, Z h,’,(t):)\r(t)e + Zi+... i

prop hazards within sub classes == prop hazards at cohort level!
can account for:

association heterogeneity, non-proportional hazards,
covariate interactions, competing risks, ...
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synthetic data

primary risk only false protectivity false aetiology

Kaplan-Meier
Cox-Breslow

red dashed: true survival curves
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synthetic data

primary risk only

false protectivity false aetiology

Kaplan-Meier
Cox-Breslow

08
06

04

02

00

ACC Coolen (KCL

Mathematics in cancer research

time

red dashed: true survival curves
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Bayesian retrospective class identification

B z-5F_ exn(Br-2) [{ds 5 (s)
Pt rz) = — 5 -
Zé/—1 Wy 6'8’ =30, (B, 2) [§ds A,1(s)
Data:
1_

AN g; = (0.5,0.5,0.5) + (2,0,2)
Wi =Wo= W3:% B1=(05,05,0.5) +(-2,-2,0)
2 competing risks B% =(0.5,0.5,0.5) + (0,2, —2)

each individual /:

in”t (pi, P2, p5) in R® class 1 class 2 class 3
p; = P(L|t;, 11, 2;) N [

1040
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Prostate cancer study N = 2047

on the ULSAM data set primary events: 208
death (non-PC): 910
hazard rates: end of trial: 929
HR; = %/
CLASSES  PRIMARY RISK SECONDARY RISK
BMI selen phys1 phys2 smok BMI selen phys1 phys2 smok
Cox 0.14 -0.15 0.20 -0.09 -0.08

new | wy=0.51 122 -041 0.73 -0.01 1.43 0.82 -042 -0.31 -0.14 1.35
w.=049 -0.07 -0.16 0.19 -0.10 -0.27 0.10 -0.07 -0.07 0.04 0.18

frailties:  B],—B%=—4.61 (HR 0.010) B30 — B2 =—4.06 (HR 0.017)

healthy group: strong effects of covariates,
BMI and smoking important risk factors

frail group: weak effects of covariates,
BMI and smoking weakly protective
(reverse causal effect?)
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Breast cancer study N = 1798, all BC diagnosed
(AMORIS data base)

potential of serum lipids, measured prior
to diagnosis, to predict risk of BC death

primary events (BC death): 259
secondary events (CV death): 179
tertiary events (other death): 423

censoring: 937
covariates:

triglycerides, cholesterol, glucose
age, 3 socio-economic variables

@ Cox regression:
no significant assoc

Upper Upper
1 e Middle 1S Middle
H _ HH . \_\\ Lower Lower
@ risk specmlc KM curves: . g N
no proportional hazards 2 N 2 ——
in primary risk g o8 g oe
(Cox invalid ...) S £ o4
@ KM curves themselves 0
unreliable (competing triglycerides age
risks 2 and 37) 0 0 5 10 15 20 25 ’ 0 5 10 15 20 5

Time (years) Time (years)
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heterogeneous model
predicts three classes,
explains non-monotonic relations

@ class 1, 57%: ! Toner ' Tower ——
. . Middle Middle ———
triglycerides HR> 1 00 Upper 09 dpper ——
age HR>1 z z S
class 2, 37%: g T T
age HR< 1 : o
class 3, 6%: 0e . . o0
L triglycerides age
no significant assoc . 05
0 5 10 15 20 2 0 5 10 1 20 2
Years Years
@ correlations of class , . . 1=
b hl robabilities SES - unemployed or unknown - 4 %
m.em ers . pp SES- blue collar i 05 8
with covariates: SES - white collar R c
Age + B 44 0 %
Class 1, older women: LogTC | 1 5
triglycerides HR>1, age HR> 1 LogTo | m s
Log glucose | ) y A g
Class 2, younger women: e

-

age HR< 1

Class 1
Class
Class 3
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Addition of cetuximab to oxaliplatin-based first-line @
combination chemotherapy for treatment of advanced

colorectal cancer: results of the randomised phase 3

MRC COIN trial

Timothy S Maughan, Richard A Adams, Christopher G Smith, AngelaM Meade, Matthew T Seymour, Richard H Wilson, Shelley Idziaszczyk,
RebeccaHarris, David Fisher, Sarah L Kenny, Edward Kay, JennaK Mitchell, Ayman Madi, Bharat Jasani, Michelle D James, John Bridgewater,
M John Kennedy, Bart Claes, Diether Lambrechts, RichardKaplan, Jeremy P Cheadle, on behalf of the MRC COIN Trial Investigators

Summary

Background In the Medical Research Council (MRC) COIN trial, the epidermal growth factor receptor (EGFR)-targeted  Lancet 2011;377:2103-14
antibody cetuximab was added to standard chemotherapy in first-line treatment of advanced colorectal cancer with  pubiished Online

the aim of assessing effect on overall survival. June 4, 2011

outcome:

Interpretation This trial has not confirmed a benefit of addition of cetuximab to oxaliplatin-based chemotherapy in
first-line treatment of patients with advanced colorectal cancer. Cetuximab increases response rate, with no evidence
of benefit in progression-free or overall survival in KRAS wild-type patients or even in patients selected by additional
mutational|analysis of their tumours. The use of cetuximab in combination with oxaliplatin and capecitabine in first-
line chemotherapy in patients with widespread metastases cannot be recommended.

ACC Coolen Mathematics in cancer research January 2015 61/63




Bayesian latent class analysis of COIN data

hazard ratios:

FRET Her3 Her2-Her3 Her2 Cetuximab KRAS mut
Cox 0.5 1.0 1.8 1.1 0.7 1.7
new model:
class I, 40% 0.7 1.5 3.7 1.1 0.3 25
class Il, 60% | 0.6 1.2 0.7 0.9 1.1 1.4

higher overall risk in class Il

@ two sub-cohorts, with similar base hazard rates,
but distinct overall frailties and associations.

@ methods provides retrospective class assignment
@ new tools to identify a priorithe responders to Cetuximab?
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