Outline

Immunology in a nutshell
 Main players and their interactions
 Learning and memory in the immune system
 Motivation: potential of immune therapies
 Similarity to recurrent neural networks

Modelling complex many-variable processes
 Ideas behind statistical mechanics
 Analysis of recurrent neural networks

Modeling immune networks the Roman way
 Model of Agliari and Barra
 Immune and neural networks: beyond similarity
 Statistical mechanical analysis
 Further developments

Discussion

Acknowledgements and references
Immunology in a nutshell
Role of the immune system

protect organism from invaders (e.g. bacteria, viruses) or from degenerated host cells (e.g. cancer)

Innate immune system

- generic short-term response to infections (hours), found in all plants and animals
 - recruit immune cells to infection site, via cytokines
 - create physical and chemical barriers for bacteria
 - sensitize pain receptors
 - activate adaptive immune system

‘inflammation’

- involves immune cells that are not pathogen-specific (natural killer cells, mast cells, macrophages, dendritic cells, ...)

![Cells under microscope images]
Adaptive immune system

- more sophisticated response to pathogens (days),
 appeared later in evolution (vertebrates only)
 - develop highly pathogen-specific responses
 - learning and memory mechanisms
 - tune receptors via hypermutation and genetic recombination
 - sophisticated cell-cell communication

result: enhanced secondary response, and acquired immunity

- involves cells (‘lymphocytes’) with adaptive pathogen-specific receptors

B-cells, born in bone marrow
T-cells, born in thymus
Strategy of *adaptive* immune system: mark the enemy

– B-cells can recognize specific ‘antigen’
– if activated: secrete antigen-specific antibodies
– antibodies ‘stick’ to the enemy
– antibody-tagged objects are removed by the innate immune system

Controlling the process

– B-cells require activation signal from T-cells
– helper T-cells: activate B-cells
– regulator T-cells: de-activate B-cells
– T-cells require antigen parts being ‘presented’ to them by other cells

B-T communication via cytokines and antigen presentation
Lymphocyte lineage and development

naive B-cell → mature B-cell → plasma cell
naive T-cell → ‘armed’ effector T-cell
‘with great power comes great responsibility’

The self-nonself problem

How to prevent the adaptive immune system from classifying healthy host cells accidentally as enemies to be destroyed?

- false positives: auto-immune diseases
- false negatives: fatal infections
- cancer: is enemy, but looks like self
Why learning is essential

– resource limitations: cannot maintain receptors for all possible antigen shapes, ‘learn’ the relevant ones
– improve efficacy of B/T/antibody binding to relevant antigen
– ‘learn’ to distinguish between friend and foe ...

The mechanism of learning

– hypersomatic mutation and selection of high-affinity receptors
– deselection of B/T cells that respond significantly to self-antigen
– B-cells that are never or chronically triggered die ...
clones
families of B- or T-cells that are activated by the same antigen (i.e. have identical antigen receptors)

- Memory in the adaptive immune system
 - previously encountered antigens are memorized, so that secondary response is more swift and strong
 - how? no full consensus yet ...

current dogma:
after immune response, B-cells of activated clones become long-lived ‘memory cells’
alternative explanation for immunological memory:

Jerne’s ‘idiotypic networks’ 1974 1984 Nobel prize ...

(developed further by Varela & Coutinho, 1991)

Nobel award premature?
immunology:
relatively young compared to neuroscience ...

1938: antigen-antibody hypothesis
1948: B-cells produce antibodies
1957: clonal selection theory
1964: T and B cell cooperation
1978: first mathematical models
1983: discovery of T-cell antigen receptor
1995: discovery of regulatory T-cells

each new edition of Janeway’s handbook:
new players and new mechanisms
Prognostic power of immunological markers in cancer medicine

DFS: disease-free survival

All breast cancer types

<table>
<thead>
<tr>
<th></th>
<th>DFS (years)</th>
<th>DFS (years)</th>
<th>DFS (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard markers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>immune markers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all markers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TN breast cancer only

<table>
<thead>
<tr>
<th></th>
<th>DFS (years)</th>
<th>DFS (years)</th>
<th>DFS (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard markers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>immune markers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>all markers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

standard markers: tumour size, grade, nr of lymph nodes affected ...

immunological markers: lymphocyte counts and distributions, even in unaffected lymph nodes
The TGN1412 trial (2006)

TGN1412: genetically engineered antibody that can activate T-cells without needing antigen receptor signal ...

- six volunteers given the drug ...
 - within 1 hour, all seriously ill
 - within 16 hours, all in intensive care
 - ‘cytokine storm’, multiple organ failures
 - only barely kept alive ...

- long term effects
 - lost fingers and toes
 - chronically low numbers of regulatory T-cells
 - auto-immune diseases, cancer risks

- looking back ...
 - naive extrapolation of ‘safe’ dose from animal studies
 - gave drug to all volunteers at the same time

but what actually happened? still not clear ...
Cancer immunotherapy

increase efficacy of natural killer cells and cytotoxic T-cells in docking to and killing tumour cells

e.g. CART (chimeric antigen receptor Tcell)

high affinity antigen receptor, tailored to specific antigen expressed by the patient’s tumour, plus co-stimulatory signals

▶ successful in leukemia and lymphoma types
▶ tricky to control dose, CARTs multiply ...
 – cytokine storms ...
 – uncontrolled macrophage proliferation ...
 – tumour lysis syndrome when CARTs work too well ...
Novartis CAR-T cell therapy CTL019 unanimously (10-0) recommended for approval by FDA advisory committee to treat pediatric, young adult r/r B-cell ALL

JUL 13, 2017

- Recommendation based on review of CTL019 r/r B-cell ALL development program, including the pivotal Phase II global ELIANA trial

- A Biologics License Application (BLA) for this indication is under FDA priority review; if approved, CTL019 could become first CAR-T cell therapy available

- Positive ODAC recommendation is latest milestone for CTL019 program that started through collaboration with the University of Pennsylvania

Basel, July 12, 2017 - Novartis announced today that the US Food and Drug Administration (FDA) Oncologic Drugs Advisory Committee (ODAC) unanimously (10-0) recommended approval of CTL019 (tisagenlecleucel), an investigational chimeric antigen receptor T cell (CAR-T) therapy, for the treatment of relapsed or refractory (r/r) pediatric and young adult patients with B-cell acute lymphoblastic leukemia (ALL).
The US Food and Drug Administration just approved a cutting-edge cancer therapy.

On Wednesday, the FDA approved Novartis's Kymriah, also known as tisagenlecleucel, a treatment for pediatric acute lymphoblastic leukemia.

"I think this is the most exciting thing I've seen in my lifetime," said Dr. Tim Cripe, an oncologist who was part of the FDA advisory committee panel that voted in favor of approving the drug in July.

The highly personalized treatment is called CAR T-cell therapy. It's a type of cancer immunotherapy — or a therapy that harnesses the body's immune system to take on cancer cells.

"We're entering a new frontier in medical innovation with the ability to reprogram a patient's own cells to attack a deadly cancer," the FDA commissioner, Scott Gottlieb, said in a statement. "New technologies such as gene and cell therapies hold out the potential to transform medicine for generations to come."
Similarity between immune and neural networks

- recurrent many-variable systems, with parallel dynamics
- adaptive interactions between components
- distributed storage and processing of information

<table>
<thead>
<tr>
<th>immune networks</th>
<th>neural networks</th>
<th>computers</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^8 B/T-clones</td>
<td>10^{11} neurons</td>
<td>10^{10} logical gates</td>
</tr>
<tr>
<td>concentrations hours</td>
<td>spike trains msecs</td>
<td>0/1 states nsecs</td>
</tr>
<tr>
<td>parallel</td>
<td>parallel adaptive links</td>
<td>sequential fixed links</td>
</tr>
<tr>
<td>adaptive links connectivity low</td>
<td>connectivity high</td>
<td>connectivity low</td>
</tr>
<tr>
<td>equations?</td>
<td>equations known since 1940s/1950s</td>
<td>equations known since 1940s/1950s</td>
</tr>
</tbody>
</table>
Similarity between immune and neural networks

- recurrent many-variable systems, with parallel dynamics
- adaptive interactions between components
- storage and processing of information

<table>
<thead>
<tr>
<th></th>
<th>immune networks</th>
<th>neural networks</th>
<th>computers</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^8 B/T-clones</td>
<td>concentrations</td>
<td>10^{11} neurons</td>
<td>10^{10} logical gates</td>
</tr>
<tr>
<td>hours</td>
<td></td>
<td>spike trains</td>
<td>0/1 states</td>
</tr>
<tr>
<td>parallel</td>
<td>adaptive links</td>
<td>parallel</td>
<td>sequential</td>
</tr>
<tr>
<td>connectivity low</td>
<td></td>
<td>adaptive links</td>
<td>fixed links</td>
</tr>
<tr>
<td>equations?</td>
<td></td>
<td>connectivity high</td>
<td>connectivity low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>equations known</td>
<td>equations known</td>
</tr>
<tr>
<td></td>
<td></td>
<td>since 1940s/1950s</td>
<td>since 1940s/1950s</td>
</tr>
</tbody>
</table>
We know in principle how to program and reprogram recurrent neural networks: (Hebbian-type rules, in \(\pm 1 \) notation)

\[\Delta J_{ij} = \eta_i \xi_j : \quad \text{if in state } (\xi_1, \ldots, \xi_N) \text{ go to state } (\eta_1, \ldots, \eta_N) \]
\[\Delta J_{ij} = -\eta_i \xi_j : \quad \text{if in state } (\xi_1, \ldots, \xi_N) \text{ do not go to state } (\eta_1, \ldots, \eta_N) \]

i.e. we can manipulate the dynamics ... learn, unlearn, control response to triggers

Future immune therapies ...

- using intuition, experience and techniques of recurrent neural networks ...
- can we reprogram the adaptive immune system? e.g. manipulate self-nonself dividing line? (‘switching’ as in alopacia)
- learning and unlearning requires theory, e.g. immunological equivalent of Hebb rule ...
Modelling complex many-variable processes
statistical mechanics

\(~ 10^{24} \) positions, velocities
\((\vec{x}_1, \vec{v}_1), (\vec{x}_2, \vec{v}_2), \ldots\)

Newton’s equations
\[\frac{d}{dt}(\vec{x}_1, \vec{v}_1) = \ldots, \quad \frac{d}{dt}(\vec{x}_2, \vec{v}_2) = \ldots \]
← don’t try to solve these!

macroscopic theory:

densities, correlation functions, perturbation response functions, phase transitions ...

large systems: ‘self-averaging’, macroscopic theory only dependent on *statistics* of model parameters ...
statistical mechanics

\[\sim 10^{24} \text{ positions, velocities} \]
\[(\vec{x}_1, \vec{v}_1), (\vec{x}_2, \vec{v}_2), \ldots \]

Newton’s equations
\[\frac{d}{dt}(\vec{x}_1, \vec{v}_1) = \ldots, \frac{d}{dt}(\vec{x}_2, \vec{v}_2) = \ldots \]

macroscopic theory:
densities, correlation functions, perturbation response functions, phase transitions ...

large systems: ‘self-averaging’, macroscopic theory only dependent on statistics of model parameters ...

1980s onwards

recurrent neural networks

\[\sim 10^{11} \text{ neuronal firing states} \]
\[S_1, S_2, S_3, \ldots \]

simplified Hodgkin-Huxley equations
\[\frac{d}{dt} S_i = g(\sum_j J_{ij} S_j + \theta_i) - \mu S_i \]

macroscopic theory:
overlaps, correlation functions, response functions (to perturbations), phase transitions ...

large systems: 'self-averaging', macroscopic theory only dependent on statistics of model parameters ...
statistical mechanics

\[\sim 10^{24} \text{ positions, velocities} \]
\[(\vec{x}_1, \vec{v}_1), (\vec{x}_2, \vec{v}_2), \ldots \]

Newton’s equations
\[\frac{d}{dt}(\vec{x}_1, \vec{v}_1) = \ldots, \frac{d}{dt}(\vec{x}_2, \vec{v}_2) = \ldots \]

immune networks

\[\sim 10^8 \text{ B/T clone concentrations} \]
\[B_1, B_2, B_3, \ldots, T_1, T_2, T_3, \ldots \]

equations?

experiments tricky ...
reliable data scarce ...
confusion about lymphocyte types ...
mostly single clone models ...

\textit{macroscopic theory:}
densities, correlation functions, perturbation response functions, phase transitions ...

large systems: ‘self-averaging’, macroscopic theory only dependent on \textit{statistics} of model parameters ...
statistical mechanics of many-variable systems
statistical mechanics of many-variable systems

\[N \to \infty \]

nothing \leftarrow \quad \rightarrow in business
statistical mechanics of many-variable systems

\[N \rightarrow \infty \]

solve macroscopic eqns

nothing ← in business
Analysis of recurrent neural networks
the frontline 1970–1985
full connectivity, Hebbian synapses:
attractor neural networks

1972: Amari, Kohonen and others

\[x_i(t+1) = \text{sgn}\left(\sum_j w_{ij} x_j(t) \right) \]

\[w_{ij} = \sum_{\mu=1}^{p} s_i^{\mu} s_j^{\mu} \]

creates fixed point attractors
creates dynamical attractors

combine McCulloch Pitts (i.e. binary) neurons with Hebbian synapses
1982: Hopfield

if symmetric synapses:
equivalence with models of magnetism,
studied memory capacity
via simulations: $\alpha = p/N \sim 0.14$

following Hopfield’s paper in PNAS,
and recent progress in analysis of heterogeneous many-particle systems,
physicists became interested ...

1985: Amit, Gutfreund, Sompolinsky

full equilibrium stat mech analysis,
computed phase diagram
of stochastic Hopfield model

1987: Derrida, Gardner, Zippelius

similar solution for randomly diluted Hebbian synapses
Analysis of recurrent neural networks
the frontline 1985–2000
generalizations,
analysis of dynamics ...

► 1987, 1988: Buhmann et al, Coolen et al,
 Van Hemmen et al
 pattern recall dynamics away from saturation

► 1988–1993: Amari & Maginu,
 Horner et al, Coolen et al
 pattern recall dynamics near saturation
 (using approximations)

► 1998: Düring, Coolen, Sherrington
 exact phase diagram of
 sequence processing model
 near saturation
Analysis of recurrent neural networks
the frontline 2000-onwards
processes on \textit{finitely connected graphs}
with specified statistical features

- 2003: Wemmenhove, Coolen
 Attractor network, Hebbian synapses
on finitely connected random graph: statics

\[\sigma_i(t+1) = \text{sgn}\left(\sum_j J_{ij} \sigma_j(t) + \text{noise} \right) \]

\[J_{ij} = c_{ij} \phi\left(\sum_{\mu} \xi_i^\mu \xi_j^\mu \right), \quad \text{Prob}(c_{ij}=1) = c/N \]
\[\text{Prob}(c_{ij}=0) = 1 - c/N \]

 Attractor network on finitely connected random graph: dynamics
 Generalisation of statics analysis to coupled oscillators

- now: processes on topologies with many short loops

\textit{tools for finitely connected systems:
time to return to immune networks}
Modeling immune networks the Roman way
Immune network model
of Agliari and Barra et al

2011 onwards ...
builds on a 1990 paper by Parisi
(before discovery of regulatory T-cells ...)

forget (for now) about B-cell and T-cell subtypes,
forget (for now) about hypersomatic mutation,
forget (for now) about antigen dynamics

focus on B-T interaction,
find simplest possible solvable model
that describes many interacting clones

remember lessons from modelling recurrent neural networks ...
B-cell clones b_μ

each B-clone can recognise and attack specific antigen a_μ

T-cell clones σ_i

coordinate B-clones via cytokine signals $\xi_i^\mu = -1, 0, 1$

$(-1: \text{contract}, +1: \text{expand})$

Phenomenological eqn for evolution of B-clones:

$$\frac{db_\mu}{dt} = \lambda_\mu a_\mu + \sum_{i=1}^{N_T} \xi_i^\mu \sigma_i - b_\mu + \chi_\mu(t)$$

evolution of T-clones?

not known ...
lymphocyte promiscuity

randomly drawn cytokine variables: (bi-partite random graph)

\[
p(\xi_i^\mu) = \frac{c}{2N} \left[\delta_{\xi_i^\mu,1} + \delta_{\xi_i^\mu,-1} \right] + \left(1 - \frac{c}{N}\right)\delta_{\xi_i^\mu,0}
\]

c: promiscuity
average nr of T-clones interacting with each B-clone

\[
N_B = \alpha N \sim 10^8
\]

\[
N \sim 2 \times 10^8
\]
Evolution of T-clones?

▶ Observation:
B-dynamics is noisy gradient descent

\[
\frac{d}{dt} b_\mu = \lambda_\mu a_\mu + \sum_{i=1}^{N_T} \xi_\mu^i \sigma_i - b_\mu + \chi_\mu(t)
\]

\[
= - \frac{\partial}{\partial b_\mu} E(b, \sigma) + \chi_\mu(t)
\]

with

\[
E(b, \sigma) = \frac{1}{2} \sum_{\nu=1}^{N_B} b_\nu^2 - \sum_{\nu=1}^{N_B} b_\nu \left(\lambda_\nu a_\nu + \sum_{i=1}^{N_T} \xi_\nu^i \sigma_i \right)
\]

▶ Assume:
also T-dynamics is noisy gradient descent

\[
\frac{d}{dt} \sigma_i = - \frac{\partial}{\partial \sigma_i} E(b, \sigma) + \eta_i(t)
\]

\[
= \sum_{\mu=1}^{N_B} \xi_\mu^i b_\mu + \eta_i(t)
\]

Consequence:
if noise is Gaussian, system evolves to equilibrium with state probabilities

\[
p(\sigma, b) = \frac{1}{Z} e^{-\beta E(b, \sigma)}
\]
another observation ...

‘integrate out’ the B-clones:

\[p(\sigma) = \int d\mathbf{b} \, p(\mathbf{b}, \sigma) = \frac{1}{Z} \int d\mathbf{b} \, e^{-\beta E(\mathbf{b}, \sigma)} \]

\[= \frac{1}{Z} \int d\mathbf{b} \, e^{-\frac{1}{2} \sum_{\nu=1}^{N_B} b_{\nu}^2 + \beta \sum_{\nu=1}^{N_B} b_{\nu} \left(\lambda_\nu a_\nu + \sum_{i=1}^{N_T} \xi_i^\nu \sigma_i \right)} = \frac{e^{-\beta E_{\text{eff}}(\sigma)}}{Z_T} \]

\[E_{\text{eff}}(\sigma) = -\frac{1}{2} \sum_{i,j=1}^{N} \sigma_i \sigma_j \sum_{\mu=1}^{\alpha N} \xi_i^\mu \xi_j^\mu - \sum_{i=1}^{N} \sigma_i \sum_{\mu=1}^{\alpha N} \lambda_\mu a_\mu \xi_i^\mu \]
Immune and neural networks: beyond similarity

both store and recall information ...
now also *mathematically* very similar ...

\[p(\sigma) = \frac{e^{-\beta E(\sigma)}}{Z_T} \]
\[E(\sigma) = -\frac{1}{2} \sum_{i,j=1}^{N} \sigma_i \sigma_j J_{ij} - \sum_{\mu=1}^{\alpha N} \psi_\mu \sum_{i=1}^{N} \sigma_i \xi_i^\mu \]

▶ **Immune model: pattern dilution**

\[J_{ij} = \sum_{\mu=1}^{\alpha N} \xi_i^\mu \xi_j^\mu \]
\[p(\xi_i^\mu) = \frac{c}{2N} \left[\delta_{\xi_i^\mu,1} + \delta_{\xi_i^\mu,-1} \right] + \left(1 - \frac{c}{N} \right) \delta_{\xi_i^\mu,0} \]

simultaneous recall of \(\mathcal{O}(N) \) c-bit cytokine patterns essential for survival!

▶ **diluted Hopfield model: bond dilution**

\[J_{ij} = c_{ij} \sum_{\mu=1}^{\alpha N} \xi_i^\mu \xi_j^\mu \]
\[\xi_i^\mu = \pm 1 \]
\[p(c_{ij}) = \frac{c}{N} \left[\delta_{c_{ij},1} + \left(1 - \frac{c}{N} \right) \delta_{c_{ij},0} \right] \]

recall of \(\mathcal{O}(c) \) N-bit neuronal firing patterns
topological features
of the effective T-T interaction graph

\[J_{ij} = \sum_{\mu=1}^{\alpha N} \xi_i^\mu \xi_j^\mu \]

c: promiscuity of B-clones

\[\alpha c^2 < 1 \]
\[\alpha c^2 = 1 \]
\[\alpha c^2 > 1 \]

percolation transition: \[\alpha c^2 = 1 \]

unlike diluted Hopfield model:
many short loops and cliques
so analysis significantly harder ...
Statistical mechanical analysis

\[E(\sigma) = -\frac{1}{2c} \sum_{\mu=1}^{\alpha N} M_{\mu}^2(\sigma) - \sum_{\mu=1}^{\alpha N} \psi_{\mu} M_{\mu}(\sigma), \quad M_{\mu}(\sigma) = \sum_{i=1}^{N} \xi_{i}^{\mu} \sigma_{i} \]

\[M_{\mu}(\sigma) > 0: \text{ pos signal to B-clone, } b_{\mu} \uparrow \]
\[M_{\mu}(\sigma) < 0: \text{ neg signal to B-clone, } b_{\mu} \downarrow \]

\[\psi_{\mu}: \text{ antigen trigger} \]

\[\text{To calculate:} \]
\[f = -\lim_{N \to \infty} \frac{1}{\beta N} \langle \log Z_{N} \rangle \xi, \quad Z_{N} = \sum_{\sigma} e^{\frac{\beta}{2c} \sum_{\mu} M_{\mu}^2(\sigma) + \beta \sum_{\mu} \psi_{\mu} M_{\mu}(\sigma)} \]

\[\mathcal{P}(M|\psi) = \left\langle \frac{1}{\alpha N} \sum_{\mu=1}^{\alpha N} \delta_{M, M_{\mu}(\sigma)} \delta(\psi - \psi_{\mu}) \right\rangle \]

\[\text{prob of clonal activation } M, \text{ given antigen trigger } \psi \]

\[\text{tricky but feasible calculation ...} \]
\[\text{combination of replica method, path integrals, and steepest descent integration} \]
final macroscopic theory

\[W(h) = e^{-c} \sum_{k \geq 0} \frac{c^k}{k!} e^{-\alpha c k} \sum_{r \geq 0} \frac{(\alpha c)^r}{r!} \int_{-\infty}^{\infty} \left[\prod_{s \leq r} dh_s W(h_s) \right] \sum_{\ell_1 \ldots \ell_r \leq k} \int d\psi P(\psi) \times \sum_{\tau = \pm 1} \delta \left[h - \tau \psi - \frac{1}{2\beta} \log \left(\frac{\sum_{\sigma_1 \ldots \sigma_k = \pm 1} e^{\beta(\sum_{\ell \leq k} \sigma_\ell)^2 / 2 + \beta \psi \sum_{\ell \leq k} \sigma_\ell + \beta \sum_{s \leq r} h_s \sigma_\ell s}}{\sum_{\sigma_1 \ldots \sigma_k = \pm 1} e^{\beta(\sum_{\ell \leq k} \sigma_\ell)^2 / 2 + \beta \psi \sum_{\ell \leq k} \sigma_\ell + \beta \sum_{s \leq r} h_s \sigma_\ell s}} \right) \right] \]

\[W(h): \text{ clonal cross-talk interference distribution} \]

\[P(M|\psi) = \sum_{k \geq 0} p(k) P(M|k, \psi), \quad p(k) = e^{-c} c^k / k! \]

\[P(M|k, \psi) = e^{-\alpha c k} \sum_{r \geq 0} \frac{(\alpha c)^r}{r!} \int_{-\infty}^{\infty} \left[\prod_{s \leq r} dh_s W(h_s) \right] \sum_{\ell_1 \ldots \ell_r \leq k} \times \left\{ \sum_{\sigma_1 \ldots \sigma_k = \pm 1} \delta_{M, \sum_{\ell \leq k} \sigma_\ell} e^{\beta(\sum_{\ell \leq k} \sigma_\ell)^2 / 2 + \beta \psi \sum_{\ell \leq k} \sigma_\ell + \beta \sum_{s \leq r} h_s \sigma_\ell s} \right\} \left\{ \sum_{\sigma_1 \ldots \sigma_k = \pm 1} e^{\beta(\sum_{\ell \leq k} \sigma_\ell)^2 / 2 + \beta \psi \sum_{\ell \leq k} \sigma_\ell + \beta \sum_{s \leq r} h_s \sigma_\ell s} \right\} \]
state without clonal cross-talk

\(\mathcal{W}(h) = \delta(h) \),
always a soln, for any choice of model parameters

\[k > 0 : \]
\[P(M|k, \psi) = e^{-\alpha c k} \sum_{r \geq 0} \frac{(\alpha c)^r}{r!} \sum_{\ell_1 \ldots \ell_r \leq k} \left\{ \frac{\sum_{\sigma_1 \ldots \sigma_k = \pm 1} \delta_M, \sum_{\ell \leq k} \sigma_\ell \left(e^{\frac{\beta}{2c} \left(\sum_{\ell \leq k} \sigma_\ell \right)^2} + \beta \psi \sum_{\ell \leq k} \sigma_\ell \right) \sum_{\sigma_1 \ldots \sigma_k = \pm 1} \left(e^{\frac{\beta}{2c} \left(\sum_{\ell \leq k} \sigma_\ell \right)^2} + \beta \psi \sum_{\ell \leq k} \sigma_\ell \right) \right\} \]

at \(T = 0 \) (no noise):

\[\psi \neq 0 : \] \[P(M|k, \psi) = \delta_{M,k} \text{sgn}(\psi) \]
i.e. error free activation or inhibition
of stored strategy with \(k \) nonzero entries

\[\psi = 0 : \] \[P(M|k, \psi) = \frac{1}{2} \left[\delta_{M,k} + \delta_{M,-k} \right] \]
weak ergodicity breaking,
clone oscillates randomly between \(M_\mu > 0 \) and \(M_\mu < 0 \) states,
important for homeostasis!
Phase diagram

continuous bifurcations
away from $W(h) = \delta(h)$:

$$1 = \alpha c^2 \sum_{k \geq 0} e^{-c} \frac{c^k}{k!} \left\{ \frac{\int dz \ e^{-\frac{1}{2}z^2} \tanh(z \sqrt{\beta/c + \beta/c}) \cosh^{k+1}(z \sqrt{\beta/c + \beta/c})}{\int dz \ e^{-\frac{1}{2}z^2} \cosh^{k+1}(z \sqrt{\beta/c + \beta/c})} \right\}^2$$
numerical soln of eqn for $W(h)$ via population dynamics algorithm

clonal cross-talk interference distribution $W(h)$ below T_c

$c = 2$, $\alpha = 2$, $\beta = 6.2$
clonal activation statistics in absence of antigen

transitions into cross-talk regime

no cross-talk
consequence of finite connectivity in the model: **homeostasis**

important property, since permanently inactive clones die ...
Further developments

Imperfections of the Agliari-Barra model

» Convenient short-cuts in modelling ...
 – no biological motivation for the T-clone equation
 – $b_\mu \in \mathbb{R}$ but $\sigma_i \in \{-1, 1\}$
 – identical noise levels for B-clones and T-clones
 – no dynamical analysis

» Level of biological detail ...
 – no distinction between T-helpers and T-regulators
 – no B-cell subtypes
 – no other lymphocyte types
 – primitive definition of interaction network

» Relevant timescales ...
 – no antigen dynamics
 – no hypersomatic mutation
more recent studies

- Include idiotypic interactions: B-clones come in complementary pairs, $(\mu, \bar{\mu})$

\[
\frac{d}{dt} b_\mu = \lambda_\mu a_\mu + \sum_{i=1}^{N_T} \xi_i^{\mu} \sigma_i - b_\mu + k b_{\bar{\mu}} + \chi_\mu(t)
\]

increased danger of auto-immune disease ...

- Dynamical analysis:
so far only in extensively connected regime, i.e. few B-clones, extensively many T-clones

flow diagrams very similar to overlap dynamics in standard non-diluted Hopfield model

- Alternative (regular or random) interaction topologies for B-T lymphocytes:
no qualitative changes
More realistic equations

- representation of activation: multiplicative,
- distinct helper- and activator T-clones: \(\xi^\mu_i = \pm 1, \sigma_i \geq 0 \),
- distinct T-clone and B-clone noise levels,
- arbitrary topology: interaction partner sets \(\partial_i \) and \(\partial_\mu \)

\[
\tau_b \frac{d}{dt} b_\mu = a_\mu \left(\sum_{i \in \partial_\mu} \xi^\mu_i \sigma_i + \theta_\mu \right) - \rho b_\mu + \chi_\mu(t)
\]

\[
\tau_\sigma \frac{d}{dt} \sigma_i = \sum_{\mu \in \partial_i} a_\mu \xi^\mu_i b_\mu - \frac{\partial}{\partial \sigma_i} V(\sigma) + \eta_i(t)
\]

transitions between
low dose tolerance state, and vigorous immune response state

auto-immune pathologies, or immune switch-off ...

\(a_\mu \)
Discussion

- Similarity between immune and neural networks
 - large nr of interacting variables
 - adaptive links between components
 - learn and recall distributed information

 neuroscience: high connectivity, equations known
 immunology: low connectivity, equations unclear

- Using post-2000 statistical mechanics tools:
 more realistic solvable immunological models

 Mathematically *nearly identical* to diluted Hopfield model of recurrent neural networks

 Experience with recurrent neural networks extremely helpful in immunological modeling

- Rich phenomenology
 - clonal cross-talk transitions
 - clonal on/off switching in absence of antigen (homeostasis)
 - low tolerance states
 - autoimmunity due to percolation
Possible benefits to neuroscience

transfer of mathematical methods

- Ability to solve models analytically in terms of statistical features of (finite) connectivity graph
 - impact of recurrent network topology on operation (degree distribution, correlations, modularity, ...)
 - impact of short loops
 - extend to models with spike trains and phases (e.g. coupled oscillators)
 - extend to models with (Hebbian) synaptic adaptation (finite n replica method)
 - application to neural activity dynamics on functional connectivity graphs
Recall simultaneously $\sim N$ sub-patterns, each with finite nr of bits, with controlled linking between sub-patterns (percolation transition)

Oscillation between metastable states, in absence of input, with controlled durations in individual attractors

- equivalent phenomena in neuroscience?
- memory homeostasis?
- brain activity during sleep?
Thanks to

Elena Agliari, Alessia Annibale, Adriano Barra, Deborah Dunn-Walters, Alexander Mozeika, Daniele Tantari

Medical Research Council
Ana Leaf Foundation

Projects, papers, seminars

https://toncoolen.wixsite.com/accc

Coordinates

Institute for Mathematical and Molecular Biomedicine
and Department of Mathematics
King’s College London

Saddle Point Science Ltd
Selected references

- Recurrent neural network modelling prior to 2000:
 S-I Amari, 2013, *Neural Networks* 37

- Immune modelling prior to 2000:
 G Parisi, 1990, *Proc Natl Acad USA* 87

- Immune modelling after 2000: