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Immunology in a nutshell



Role of the immune system
protect organism from invaders (e.g. bacteria, viruses)
or from degenerated host cells (e.g. cancer)

Innate immune system
I generic short-term response to infections (hours),

found in all plants and animals

– recruit immune cells to infection site, via cytokines
– create physical and chemical barriers for bacteria
– sensitize pain receptors
– activate adaptive immune system

‘inflammation’

I involves immune cells that are not pathogen-specific
(natural killer cells, mast cells, macrophages, dendritic cells, ...)



Adaptive immune system
I more sophisticated response to pathogens (days),

appeared later in evolution (vertebrates only)

– develop highly pathogen-specific responses
– learning and memory mechanisms
– tune receptors via hypermutation and genetic recombination
– sophisticated cell-cell communication

result: enhanced secondary response,
and acquired immunity

I involves cells (‘lymphocytes’) with
adaptive pathogen-specific receptors

B-cells, born in bone marrow
T-cells, born in thymus



I Strategy of adaptive immune system: mark the enemy

– B-cells can recognize specific ‘antigen’
– if activated: secrete antigen-specific antibodies
– antibodies ‘stick’ to the enemy
– antibody-tagged objects are removed by

the innate immune system

I Controlling the process

– B-cells require activation signal from T-cells
– helper T-cells: activate B-cells
– regulator T-cells: de-activate B-cells
– T-cells require antigen parts being ‘presented’ to them by other cells

B-T communication via
cytokines and antigen presentation



Lymphocyte lineage
and development

naive B-cell→ mature B-cell→ plasma cell
naive T-cell→ ‘armed’ effector T-cell



‘with great power comes great responsibility’

The self-nonself problem
How to prevent the adaptive immune system
from classifying healthy hosts cells
accidentally as enemies to be destroyed?

I false positives: auto-immune diseases
I false negatives: fatal infections
I cancer: is enemy, but looks like self



I Why learning is essential

– resource limitations: cannot maintain receptors for all
possible antigen shapes, ‘learn’ the relevant ones

– improve efficacy of B/T/antibody binding to relevant antigen
– ‘learn’ to distinguish between friend and foe ...

I The mechanism of learning

– hypersomatic mutation and selection of high-affinity receptors
– deselection of B/T cells that respond significantly to self-antigen
– B-cells that are never or chronically triggered die ...

Antibody



clones
families of B- or T-cells that are activated by the same antigen
(i.e. have identical antigen receptors)

I Memory in the adaptive immune system

– previously encountered antigens are memorized,
so that secondary response is more swift and strong

– how? no full consensus yet ...

current dogma:

after immune response,
B-cells of activated clones
become long-lived
‘memory cells’



alternative explanation
for immunological memory:

Jerne’s ‘idiotypic networks’ 1974
1984 Nobel prize ...

(developed further by
Varela & Coutinho, 1991)

Nobel award premature?



immunology:
relatively young compared to neuroscience ...

1938: antigen-antibody hypothesis
1948: B-cells produce antibodies
1957: clonal selection theory
1964: T and B cell cooperation

1978: first mathematical models

1983: discovery of T-cell antigen receptor
1995: discovery of regulatory T-cells

each new edition of Janeway’s handbook:
new players and new mechanisms



Prognostic power of
immunological markers
in cancer medicine

DFS:
disease-free survival

All breast
cancer types

DFS (years) DFS (years) DFS (years)

standard markers immune markers all markers

fraction
correct

TN breast
cancer only

DFS (years) DFS (years) DFS (years)

standard markers immune markers all markers

fraction
correct

standard markers: tumour size, grade, nr of lymph nodes affected ...
immunological markers: lymphocyte counts and distributions,

even in unaffected lymph nodes



The TGN1412 trial (2006)

TGN1412: genetically engineered antibody
that can activate T-cells without needing
antigen receptor signal ...

I six volunteers given the drug ...
– within 1 hour, all seriously ill
– within 16 hours, all in intensive care
– ‘cytokine storm’, multiple organ failures
– only barely kept alive ...

I long term effects
– lost fingers and toes
– chronically low numbers of regulatory T-cells
– auto-immune diseases, cancer risks

I looking back ...
– naive extrapolation of ‘safe’ dose from animal studies
– gave drug to all volunteers at the same time

but what actually happened? still not clear ...



Cancer immunotherapy

increase efficacy of natural killer cells
and cytotoxic T-cells in docking to
and killing tumour cells

e.g. CART
(chimeric antigen receptor Tcell)

high affinity antigen receptor, tailored to specific antigen
expressed by the patient’s tumour, plus co-stimulatory signals

I successful in leukemia and lymphoma types

I tricky to control dose, CARTs multiply ...
– cytokine storms ...
– uncontrolled macrophage proliferation ...
– tumour lysis syndrome when CARTs work too well ...







Similarity between immune and neural networks

I recurrent many-variable systems, with parallel dynamics
I adaptive interactions between components
I distributed storage and processing of information

immune networks neural networks computers

108 B/T-clones 1011 neurons 1010 logical gates
concentrations spike trains 0/1 states
hours msecs nsecs

parallel parallel sequential
adaptive links adaptive links fixed links
connectivity low connectivity high connectivity low

equations? equations known equations known
since 1940s/1950s since 1940s/1950s
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We know in principle how to program
and reprogram recurrent neural networks:
(Hebbian-type rules, in ±1 notation)

∆Jij = ηiξj : if in state (ξ1, . . . , ξN) go to state (η1, . . . , ηN)

∆Jij = −ηiξj : if in state (ξ1, . . . , ξN) do not go to state (η1, . . . , ηN)

i.e. we can manipulate the dynamics ...
learn, unlearn, control response to triggers

Future immune therapies ...

I using intuition, experience and techniques
of recurrent neural networks ...

I can we reprogram the adaptive immune system?
e.g. manipulate self-nonself dividing line?
(‘switching’ as in alopacia)

I learning and unlearning requires theory,
e.g. immunological equivalent of Hebb rule ...



Modelling complex many-variable processes



statistical mechanics

∼1024 positions, velocities
(~x1, ~v1), (~x2, ~v2), . . .

Newton’s equations
d
dt (~x1, ~v1) = ..., d

dt (~x2, ~v2) = ... ← don’t try to solve these!

macroscopic theory:
densities, correlation functions,
perturbation response functions,
phase transitions ...

large systems: ‘self-averaging’, macroscopic theory
only dependent on statistics of model parameters ...



statistical mechanics recurrent neural networks

∼1024 positions, velocities ∼1011 neuronal firing states
(~x1, ~v1), (~x2, ~v2), . . . S1, S2, S3, . . .

Newton’s equations simplified Hodgkin-Huxley equations
d
dt (~x1, ~v1) = ..., d

dt (~x2, ~v2) = ... d
dt Si = g(

∑
j JijSj + θi )− µSi

macroscopic theory: macroscopic theory:
densities, correlation functions, overlaps, correlation functions,
perturbation response functions, response functions (to perturbations),
phase transitions ... phase transitions ...

large systems: ‘self-averaging’, macroscopic theory
only dependent on statistics of model parameters ... 1980s onwards



statistical mechanics immune networks

∼1024 positions, velocities ∼108 B/T clone concentrations
(~x1, ~v1), (~x2, ~v2), . . . B1, B2, B3, . . . ,T1,T2,T3, . . .

Newton’s equations equations?
d
dt (~x1, ~v1) = ..., d

dt (~x2, ~v2) = ...
experiments tricky ...
reliable data scarce ...
confusion about lymphocyte types ...
mostly single clone models ...

macroscopic theory:
densities, correlation functions,
perturbation response functions,
phase transitions ... ?
large systems: ‘self-averaging’, macroscopic theory
only dependent on statistics of model parameters ...



statistical mechanics of
many-variable systems
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statistical mechanics of
many-variable systems

N→∞
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statistical mechanics of
many-variable systems

N→∞

solve
macroscopic

eqns

�
�
�
�
�
�AA�
�
�
�
�
�
�
�
�
�
�� B
B
B
B
B
B
B
B
B
B
BB
@
@@ �

�
�
�
�
�
� B
B
B
B
B
B
@
@
@@

nothing← → in business



Analysis of recurrent neural networks
the frontline 1970–1985
full connectivity, Hebbian synapses:
attractor neural networks

I 1972: Amari, Kohonen and others

combine McCulloch Pitts
(i.e. binary) neurons

with Hebbian synapses

xi (t +1) = sgn
(∑

j

wijxj (t)
) creates fixed point attractors︷ ︸︸ ︷

wij =

p∑
µ=1

sµi sµj or

creates dynamical attractors︷ ︸︸ ︷
wij =

p∑
µ=1

sµ+1
i sµj



I 1982: Hopfield

if symmetric synapses:
equivalence with models of magnetism,
studied memory capacity
via simulations: α = p/N ∼ 0.14

following Hopfield’s paper in PNAS,
and recent progress in analysis of
heterogeneous many-particle systems,
physicists became interested ...

I 1985: Amit, Gutfreund, Sompolinsky

full equilibrium stat mech analysis,
computed phase diagram
of stochastic Hopfield model

I 1987: Derrida, Gardner, Zippelius

similar solution for randomly
diluted Hebbian synapses



Analysis of recurrent neural networks
the frontline 1985–2000
generalizations,
analysis of dynamics ...

I 1987,1988: Buhmann et al, Coolen et al,
Van Hemmen et al

pattern recall dynamics away from saturation

I 1988–1993: Amari & Maginu,
Horner et al, Coolen et al

pattern recall dynamics near saturation
(using approximations)

I 1998: Düring, Coolen, Sherrington

exact phase diagram of
sequence processing model
near saturation



Analysis of recurrent neural networks
the frontline 2000-onwards
processes on finitely connected graphs
with specified statistical features

I 2003: Wemmenhove, Coolen
Attractor network, Hebbian synapses
on finitely connected random graph: statics

σi (t +1) = sgn
(∑

j

Jijσj (t) + noise
)

Jij = cijφ
(∑

µ

ξµi ξ
µ
j

)
,

Prob(cij =1) = c/N
Prob(cij =0) = 1−c/N

I 2004, 2005: Hatchett et al, Coolen et al
Attractor network on finitely connected random graph: dynamics
Generalisation of statics analysis to coupled oscillators

I now: processes on topologies with many short loops

tools for finitely connected systems:
time to return to immune networks



Modeling immune networks the Roman way



Immune network model
of Agliari and Barra et al

2011 onwards ...

builds on a 1990
paper by Parisi
(before discovery of
regulatory T-cells ...)

forget (for now) about B-cell and T-cell subtypes,
forget (for now) about hypersomatic mutation,
forget (for now) about antigen dynamics

focus on B-T interaction,
find simplest possible solvable model
that describes many interacting clones

remember lessons from modelling recurrent neural networks ...



model of Agliari and Barra et al

I B-cell clones bµ
each B-clone can recognise
and attack specific antigen aµ

I T-cell clones σi

coordinate B-clones via
cytokine signals ξµi = −1, 0, 1
(−1: contract, +1: expand)

I Phenomenological eqn for evolution of B-clones:

d

dt
bµ =

expansion force︷ ︸︸ ︷
λµaµ +

NT∑
i=1

ξµi σi −

decay︷︸︸︷
bµ +

noise︷ ︸︸ ︷
χµ(t)

evolution of T-clones?
not known ...



lymphocyte promiscuity

randomly drawn cytokine variables:
(bi-partite random graph)

p(ξµi ) =
c

2N

[
δξµi ,1

+ δξµi ,−1

]
+ (1− c

N
)δξµi ,0

c: promiscuity
average nr of T-clones
interacting with each B-clone

NB = αN∼108

N ∼ 2.108



Evolution of T-clones?

I Observation:
B-dynamics is
noisy gradient descent

d

dt
bµ = λµaµ +

NT∑
i=1

ξµi σi − bµ + χµ(t)

= − ∂

∂bµ
E(b,σ) + χµ(t)

with

E(b,σ) =
1
2

NB∑
ν=1

b2
ν −

NB∑
ν=1

bν
(
λνaν +

NT∑
i=1

ξνi σi

)

I Assume:
also T-dynamics is
noisy gradient descent

d

dt
σi = − ∂

∂σi
E(b,σ) + ηi (t)

=

NB∑
µ=1

ξµi bµ + ηi (t)

Consequence:
if noise is Gaussian,
system evolves to equilibrium
with state probabilities

p(σ,b) =
1
Z
e−βE(b,σ)



another observation ...
‘integrate out’ the B-clones:

p(σ) =

∫
db p(b,σ) =

1
Z

∫
db e−βE(b,σ)

=
1
Z

∫
db e

− 1
2β

∑NB
ν=1 b2

ν+β
∑NB
ν=1 bν

(
λνaν+

∑NT
i=1 ξ

ν
i σi

)
=

e−βEeff (σ)

ZT

Eeff(σ) = −1
2

N∑
i,j=1

σiσj

αN∑
µ=1

ξµi ξ
µ
j −

N∑
i=1

σi

αN∑
µ=1

λµaµξµi



Immune and neural networks: beyond similarity

both store and recall information ...
now also mathematically very similar ...

p(σ) =
e−βE(σ)

ZT
E(σ) = −1

2

N∑
i,j=1

σiσjJij −
αN∑
µ=1

ψµ

N∑
i=1

σiξ
µ
i

I Immune model: pattern dilution

Jij =
αN∑
µ=1

ξµi ξ
µ
j , p(ξµi ) =

c
2N

[
δξµi ,1

+ δξµi ,−1

]
+ (1− c

N
)δξµi ,0

simultaneous recall of O(N) c-bit cytokine patterns
essential for survival!

I diluted Hopfield model: bond dilution

Jij = cij

αN∑
µ=1

ξµi ξ
µ
j , ξµi = ±1, p(cij ) =

c
N

[
δcij ,1 + (1− c

N
)δcij ,0

]
recall of O(c) N-bit neuronal firing patterns



topological features
of the effective T-T interaction graph

Jij =
∑αN
µ=1 ξ

µ
i ξ
µ
j

c: promiscuity of B-clones

αc2 < 1 αc2 = 1 αc2 > 1

percolation transition: αc2 = 1

unlike diluted Hopfield model:
many short loops and cliques

so analysis significantly harder ...



Statistical mechanical analysis

E(σ) = − 1
2c

αN∑
µ=1

M2
µ(σ)−

αN∑
µ=1

ψµMµ(σ), Mµ(σ) =
N∑

i=1

ξµi σi

Mµ(σ) > 0: pos signal to B-clone, bµ ↑
Mµ(σ) < 0: neg signal to B-clone, bµ ↓

ψµ: antigen trigger

I To calculate:

f = − lim
N→∞

1
βN

〈
log ZN

〉
ξ
, ZN =

∑
σ

e
β
2c

∑
µ M2

µ(σ)+β
∑
µ ψµMµ(σ)

P(M|ψ) =
〈〈 1
αN

αN∑
µ=1

δM,Mµ(σ)δ(ψ − ψµ)
〉〉

prob of clonal activation M, given antigen trigger ψ

I tricky but feasible calculation ...
combination of replica method, path integrals,
and steepest descent integration



final macroscopic theory

W (h) = e−c
∑
k≥0

ck

k !
e−αck

∑
r≥0

(αc)r

r !

∫ ∞
−∞

[∏
s≤r

dhsW (hs)
] ∑
`1...`r≤k

∫
dψ P(ψ)

×
∑
τ=±1

δ

h−τψ− 1
2β

log

∑σ1...σk =±1 e
β(

∑
`≤kσ`)2/2c+β(

∑
`≤kσ`)(ψ+τ/c)+β

∑
s≤r hsσ`s∑

σ1...σk =±1 e
β(

∑
`≤kσ`)2/2c+β(

∑
`≤kσ`)(ψ−τ/c)+β

∑
s≤r hsσ`s



W (h): clonal cross-talk interference distribution

P(M|ψ) =
∑
k≥0

p(k)P(M|k , ψ), p(k) = e−cck/k !

P(M|k , ψ) = e−αck
∑
r≥0

(αc)r

r !

∫ ∞
−∞

[∏
s≤r

dhsW (hs)
] ∑
`1...`r≤k

×


∑
σ1...σk =±1 δM,

∑
`≤kσ`

eβ(
∑
`≤k σ`)2/2c+βψ

∑
`≤k σ`+β

∑
s≤r hsσ`s∑

σ1...σk =±1 e
β(

∑
`≤k σ`)2/2c+βψ

∑
`≤k σ`+β

∑
s≤r hsσ`s





state without clonal cross-talk

W (h) = δ(h),
always a soln, for any choice of model parameters

k > 0 :

P(M|k , ψ) = e−αck
∑
r≥0

(αc)r

r !

∑
`1...`r≤k


∑
σ1...σk =±1 δM,

∑
`≤k σ`

e
β
2c (

∑
`≤k σ`)2+βψ

∑
`≤k σ`∑

σ1...σk =±1 e
β
2c (

∑
`≤k σ`)2+βψ

∑
`≤k σ`


at T = 0 (no noise):

ψ 6= 0 : P(M|k , ψ) = δM,k sgn(ψ)

i .e. error free activation or inhibition
of stored strategy with k nonzero entries

ψ = 0 : P(M|k , ψ) =
1
2

[δM,k + δM,−k ]

weak ergodicity breaking,
clone oscillates randomly between Mµ>0 and Mµ<0 states,
important for homeostasis!



Phase diagram

continuous bifurcations
away from W (h) = δ(h):

1 = αc2
∑
k≥0

e−c ck

k !

{∫
dz e−

1
2 z2

tanh(z
√
β/c+β/c) coshk+1(z

√
β/c+β/c)∫

dz e−
1
2 z2 coshk+1(z

√
β/c+β/c)

}2
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numerical soln of eqn for W (h)
via population dynamics
algorithm
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clonal activation statistics
in absence of antigen

transitions into
cross-talk regime

no cross-talk



consequence of finite
connectivity in the model:
homeostasis

important property,
since permanently inactive clones die ...



Further developments

Imperfections of the
Agliari-Barra model

I Convenient short-cuts in modelling ...

– no biological motivation for the T-clone equation
– bµ ∈ IR but σi ∈ {−1, 1}
– identical noise levels for B-clones and T -clones
– no dynamical analysis

I Level of biological detail ...

– no distinction between T-helpers and T-regulators
– no B-cell subtypes
– no other lymphocyte types
– primitive definition of interaction network

I Relevant timescales ...

– no antigen dynamics
– no hypersomatic mutation



more recent studes

I Include idiotypic interactions:
B-clones come in complementary pairs, (µ, µ̄)

d

dt
bµ = λµaµ +

NT∑
i=1

ξµi σi − bµ + kbµ̄ + χµ(t)

increased danger of auto-immune disease ...

I Dynamical analysis:
so far only in extensively connected regime,
i.e. few B-clones, extensively many T-clones

flow diagrams very similar to overlap dynamics
in standard non-diluted Hopfield model

I Alternative (regular or random)
interaction topologies
for B-T lymphocytes:
no qualitative changes



I More realistic equations

– representation of activation: multiplicative,
– distinct helper- and activator T-clones: ξµi =±1, σi≥0,
– distinct T-clone and B-clone noise levels,
– arbitrary topology: interaction partner sets ∂i and ∂µ

τb
d

dt
bµ = aµ

(∑
i∈∂µ

ξµi σi +θµ
)
− ρbµ + χµ(t)

τσ
d

dt
σi =

∑
µ∈∂i

aµξµi bµ −
∂

∂σi
V (σ) + ηi (t)

transitions between
low dose tolerance state,
and vigorous immune
response state

auto-immune pathologies,
or immune switch-off ...

aµ

fraction of T-helpers

fraction of T-regulators



Discussion

I Similarity between immune and neural networks

– large nr of interacting variables
– adaptive links between components
– learn and recall distributed information

neuroscience: high connectivity, equations known
immunology: low connectivity, equations unclear

I Using post-2000 statistical mechanics tools:
more realistic solvable immunological models

Mathematically nearly identical to diluted
Hopfield model of recurrent neural networks

Experience with recurrent neural networks
extremely helpful in immunological modeling

I Rich phenomenology

– clonal cross-talk transitions
– clonal on/off switching in absence of antigen (homeostasis)
– low tolerance states
– autoimmunity due to percolation



Possible benefits to neuroscience

transfer of mathematical methods

I Ability to solve models analytically in terms of
statistical features of (finite) connectivity graph

– impact of recurrent network topology on operation
(degree distribution, correlations, modularity, ...)

– impact of short loops

– extend to models with spike trains and phases
(e.g. coupled oscillators)

– extend to models with (Hebbian) synaptic adaptation
(finite n replica method)

– application to neural activity dynamics
on functional connectivity graphs



suggestions of
new functionality

I Recall simultaneously ∼N sub-patterns, each with finite nr of bits,
with controlled linking between sub-patterns (percolation transition)

I Oscillation between metastable states, in absence of input,
with controlled durations in individual attractors

– equivalent phenomena in neuroscience?
– memory homeostasis?
– brain activity during sleep?
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