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Studying the temporal dynamics of bistable perception can be useful for understanding neural mechanisms underlying the 
phenomenon. We take a closer look at those temporal dynamics, using data from four different ambiguous stimuli. We 
focus our analyses on two recurrent themes in bistable perception literature. First, we address the question whether 
percept durations follow a gamma distribution, as is commonly assumed. We conclude that this assumption is not justified 
by the gamma distribution’s approximate resemblance to distributions of percept durations. We instead present two 
straightforward distributions of reciprocal percept durations (i.e., rates) that both easily surpass the classic gamma 
distribution in terms of resemblance to empirical data. Second, we compare the distributions arising from binocular rivalry 
with those from other forms of bistable perception. Parallels in temporal dynamics between those classes of stimuli are 
often mentioned as an indication of a similar neural basis, but have never been studied in detail. Our results demonstrate 
that the distributions arising from binocular rivalry and other forms of bistable perception are indeed similar up to a high 
level of detail. 
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Introduction 
When subjects are shown a visual stimulus that has two 

distinct interpretations, those interpretations will take 
turns reaching awareness, a phenomenon called bistable 
perception (for examples, see Figure 1). Bistable perception 
has over the years been studied by numerous researchers, 
because it is an interesting phenomenon in its own right 
but also because the partial decoupling of stimulus and 
percept might help to gain insight into the relation between 
awareness and brain function. Irrespective of these efforts, 
the neural mechanisms causing bistability are still under 
debate. One way to gain insight into these mechanisms is 
by studying the temporal dynamics of perceptual alterna-
tions. For a subject experiencing bistable perception, the 
duration of a percept commonly varies widely from one to 
the next, so speaking of a mean percept duration is of lim-
ited use. In contrast to this unpredictability, one of the 
most reproducible aspects of bistable perception is the 
shape of percept duration distributions. Invariably, these 
distributions are unimodal with a skew toward high dura-
tions (like the top curves in Figure 2). It has long been rec-

ognized that these distinctly shaped distributions may pro-
vide clues to understanding the neural processes involved. 

In this study, we investigate the temporal dynamics of 
bistable perception, using data that were previously col-
lected using four different ambiguous stimuli (Figure 1). 
We focus our analyses on two recurrent themes in the lit-
erature on the subject. First, we address the question 
whether distributions of percept durations follow a gamma 
distribution. As will be discussed shortly, there is reason to 
believe that this common assumption is not backed by em-
pirical findings. Second, we compare distributions over 
different stimuli, because parallels and differences in tem-
poral dynamics between stimuli can serve as an indication 
for parallels and differences in underlying neural mecha-
nisms.  

Gamma distributed percept durations? 
An interesting aspect in the study of distributions of 

percept durations is their resemblance to known statistical 
distributions, because these are often associated with clearly 
defined mechanisms. One such theoretical distribution 
with the desired unimodal, right-skewed shape is the 
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gamma distribution, introduced in this context by Levelt 
(1967). Its probability density function is given by  
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By definition, Γ(n) is the canonical continuous exten-
sion of (n – 1)!, which itself is of course only defined for 
natural n. The parameters k and λ in the equation are usu-
ally called the shape parameter and the scale parameter, 
respectively. 

Among other similarly shaped distributions, the 
gamma distribution is noteworthy because it has over the 
last decades become the standard for performing fits  
to empirical distributions of percept durations (e.g., 
Borsellino, De Marco, Allazetta, Rinesi, & Bartolini, 1972; 
Kovacs, Papathomas, Yang, & Feher, 1996; Logothetis, 
Leopold, & Sheinberg, 1996; Murata, Matsui, Miyauchi, 
Kakita, & Yanagida, 2003; Walker, 1975), even though 
Levelt himself acknowledged the fact that “other functions 
may fit as well.” Indeed, four studies that statistically  
analyze the gamma distribution’s fit performance do not 
univocally show a good fit to empirical data. The authors of 
two such studies (Borsellino et al., 1972; De Marco, 

Penengo, & Trabucco, 1977) judged gamma distributions 
to fit their data acceptably well for their purposes, but their 
analyses leave considerable room for doubt. (Borsellino and 
coworkers stated that around 15–30% of their gamma fits 
have a chi2 probability lower than 1%, and De Marco and 
colleagues mentioned two alternative theoretical distribu-
tions to fit equally well as the gamma distribution, although 
less favorable in the light of parsimony.) The two remaining 
studies (Cogan, 1973; Zhou, Gao, White, Merk, & Yao, 
2004) show an unacceptable fit quality for the gamma dis-
tribution: In both cases more than half of the fitted distri-
butions should be rejected at the 5% significance level. As a 
point in favor of the gamma distribution, it should be men-
tioned that on the basis of the above studies, one cannot 
identify an alternative distribution with better fit perform-
ance. Although Zhou et al. (2004) did show the lognormal 
distribution to fit their data better than the gamma distri-
bution, Cogan (1973) rejected the lognormal distribution 
as an acceptable fit to her data (note that lognormal dis-
tributed percept durations were also proposed by Lehky, 
1995).  
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Figure 1. Left and right eye components of the four stimuli for
which bistable perception was examined: orthogonal gratings
(A), bistable slant (B), house-face (C), and Necker cube (D). See
text for details. Adapted from Van Ee (2005). 

What makes the question whether the gamma distribu-
tion is appropriate particularly interesting is the neural 
model that is associated with it. As Levelt (1967) pointed 
out, one process known to lead to gamma-distributed laten-
cies between events is one in which every event occurs after 
a fixed number of consecutive ticks from a “Poisson clock” 
(i.e., randomly occurring ticks). Therefore, he proposed 
that “the summative effect of . . . successive spikes from the 
recessive [percept] is necessary and sufficient to re-establish 
dominance for that [percept],” without defining the exact 
nature of these Poisson “spikes” or ticks. In the case of a 
Poisson clock, λ in the above equation is the basic duration 
between two ticks, while the value of the shape parameter k 
is the number of ticks causing a perceptual alternation.  

One of our goals is to use our data to compare the fit 
quality of the gamma distribution and alternative distribu-
tions. The question is, what alternative distributions are 
viable candidates? We believe a step to finding such distri-
butions could be to switch the focus of attention away from 
distributions of percept durations toward distributions of 
reciprocal percept durations, or rates. Because distributions 
of alternation rates are just as characteristic for bistable per-
ception as those of percept durations, this provides no a 
priori reason to make fits to one or the other. We believe 
however that distributions of alternation rates can increase 
our understanding of underlying processes. This idea stems 
from saccadic (i.e., rapid eye movement) search literature, 
in which there is some tradition of using such an approach. 
There are several parallels between saccadic search and 
bistable perception, one of them being the timing of sac-
cades: The distribution of periods that a subject focuses 
between saccades has a shape that is very similar to that of 
distributions of percept durations. Analogous to the prac-
tice in bistability literature, much research has been aimed 
at linking saccadic latency distributions to the neural 
mechanisms involved (for an overview, see Smith & 
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Ratcliff, 2004). However, Carpenter (1981) proposed that 
these mechanisms might be more directly represented in 
distributions of reciprocal latencies instead of latencies, and 
since then various studies have made use of this idea 
(Carpenter & Williams, 1995; Reddi & Carpenter, 2000; 
Van Loon, Hooge, & Van den Berg, 2002). The key ele-
ment underlying these authors’ points of view is the notion 
of a decision network that in the presence of an extrafoveal 
target accumulates information about that target, and 
causes a saccade to be made toward it as soon as this rising 
decision signal exceeds a certain threshold level. If one now 
assumes this threshold level to be fixed over trials, then 
variations in the rate of information accumulation are di-
rectly reflected in the reciprocal latency, or rate, of saccades. 
(Specifically, Carpenter showed that if this rate of accumu-
lation is subject to Gaussian perturbations, a cumulative 
latency distribution as a function of reciprocal time will 
form a straight line on probability paper, which is the same 
as to say that reciprocal latency will have a Gaussian distri-
bution.) What we propose in analogy regarding bistable 
perception is that distributions of perceptual alternation rates 
(i.e., reciprocal percept durations), being more directly re-
lated to underlying neural processes than distributions of 
percept durations, could give insight into neural processes. 
This especially makes sense in light of the idea that the 
numerous phenomenological similarities between saccadic 
search and bistable perception are not merely coincidental, 
but instead reflect a more fundamental link between the 
two (Leopold & Logothetis, 1999). Completing the analogy 
between rate models in saccadic search and in bistable per-
ception, we therefore suggest a decision signal that starts 
rising at the beginning of a dominance period of percept A, 
and causes an alternation to percept B as soon as it reaches 
its threshold, so that characteristics of the rate of informa-
tion accumulation are reflected in distributions of percep-
tual alternation rates. 

In this study we pit two different rate distributions 
against the standard gamma fit. First, we explore the possi-
bility that alternation rates have a gamma distribution, 
which means we take the reciprocal of our percept dura-
tions and perform gamma fits to the resulting distributions. 
We will hereafter refer to these fits as “gamma rate” fits, 
not to be confused with the classical “gamma duration” fits. 
Because Van Loon et al. (2002) showed gamma rate fits to 
be applicable to saccade data, there is some reason to ex-
pect an acceptable fit to our data, too. The second distribu-
tion we fit to our rate data is the beta' (pronounce: “beta 
prime”) distribution, a two-parameter distribution related 
to the gamma distribution,1 and similar in shape. Its prob-
ability density function is given by 
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This distribution arises from a model that assumes two ris-
ing decision signals instead of one: one in favor of main-
taining the present percept, the other in favor of switching. 

These signals both increase toward a threshold over time, 
but compete for the same resource, so that at any given 
time only one of them can gain an increment (i.e., the 
model is based on a Bernoulli process). In terms of this 
model, the parameters S and F of the beta' distribution are 
determined by the thresholds for switching percepts and 
maintaining the current one, respectively. The parameter r 
is proportional to the observed alternation rate via a con-
stant R: rate =Rr. In the present work, we fix R at 1 s–1, 
performing our fits with a two-parameter distribution. The 
main reason for this is that the full three-parameter version 
caused divergence in our fitting algorithm, while much of 
the distribution’s flexibility can already be achieved by vary-
ing only the two remaining parameters. It should be kept in 
mind however that removing this constraint on the third 
parameter would provide room for an improved fit quality 
compared to what we present here. A complete derivation 
of the beta' distribution from the model assumptions is 
given by Van den Berg and Van Loon (in press). 

Apart from the neural model, there is one particular 
characteristic that makes the beta' distribution attractive in 
the present context; namely, it is invariant under inversion. 
That is to say that if variable A has a beta' distribution (with 
parameters S and F), then 1/A has a beta' distribution, too 
(with parameters F and S). The important implication here 
is that the beta' distribution will by definition fit our distri-
butions of percept durations equally well as our distribu-
tions of alternation rates, thereby in a sense bridging the 
gap between the two approaches. Figure 2 gives an impres-
sion of the overall shape of the probability density func-
tions (PDFs) and the cumulative distribution functions 
(CDFs) associated with the gamma duration, the gamma 
rate, and the beta' rate model. It shows both the overall 
similarity between them and the more subtle aspects in 
which they differ. 

Interstimulus comparison 
There are many stimuli that lead to bistable perception. 

One particularly well-studied class of stimuli is the one 
causing binocular rivalry. Binocular rivalry is elicited by 
presenting dissimilar images to corresponding areas of the 
two retinas, resulting in a percept that alternates between 
the two images (e.g., stimulus A and C in Figure 1). In re-
cent literature on bistable perception, much attention has 
been aimed toward answering the question whether bin-
ocular rivalry, on the one hand, and perceptual rivalry of 
ambiguous figures (e.g., stimulus B and D in Figure 1), on 
the other, reflect distinct or similar neural mechanisms (for 
reviews, see Blake, 2001; Blake & Logothetis, 2002; Tong, 
2001). Advocates of the former point of view argue that in 
binocular rivalry, alternations arise as the two monocular 
channels converge in the primary visual cortex, as a direct 
result of the incongruence between the retinal images. Re-
searchers favoring the latter position, on the other hand, 
claim that competition in binocular rivalry is between 
stimulus representations rather than eyes, generally locating 
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it in the higher visual areas and placing it in the same cate-
gory as reversals in ambiguous figure perception. An often 
repeated argument in this discussion is that percept dura-
tions have similarly shaped distributions in both binocular 

rivalry and ambiguous figure rivalry (e.g., Logothetis et al., 
1996; Logothetis, 1998; Lumer, Friston, & Rees, 1998; also 
see Carter & Pettigrew, 2003). However, this argument is 
based on no more than a broad resemblance and a fair fit 
to the gamma duration distribution. Our second goal in 
this study is to test whether the claim holds in the face of a 
detailed comparison of distributions across stimuli.  
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Figure 2. Examples of percept duration distributions predicted by
the three models we compare in this study. Top. Probability den-
sity functions (PDFs) of percept durations, under the assumption
of gamma distributed alternation rates (darkest shade), beta'
distributed alternation rates (intermediate shade), and gamma
distributed percept durations (lightest shade). To facilitate com-
parison, the parameters were chosen such that both mean and
variance are the same for the three curves. Bottom. The corre-
sponding cumulative distribution functions (CDFs). The PDFs
show that all three theoretical distributions satisfy the basic crite-
ria of unimodality and rightward skew, but that the classic
gamma duration distribution differs from the other two by having
a shorter (in this example, hardly any) initial phase of low slope,
and a lower peak. The CDFs, on the other hand, emphasize that
any difference between the three distributions is modest in light
of the overall similarity. Clearly, these graphs depict distributions
of percept durations, but note one subtlety: If one changes the
quantity on the horizontal axis to “alternation rate,” the graphs
can just as easily be read as distributions of alternation rates.
The darkest shade then becomes associated with gamma dis-
tributed durations and the lightest shade with gamma distributed
rates. The intermediate shade remains associated with beta'
distributed rates, due to the beta' distribution’s invariance under
inversion. 

Data collection 
A detailed account of the conditions in which data 

were gathered is given by Van Ee, Van Dam, and Brouwer 
(2005). In short, a total of six subjects were tested observing 
four different stimuli (Figure 1): 

Orthogonal grating stimulus. Orthogonal grating ri-
valry is a classical form of binocular rivalry, 
where orthogonal gratings are presented to 
the two eyes. In our case the stimulus con-
sisted of four parallel lines at 45 deg with 
the vertical that had orthogonal orientations 
in the two eyes. 

Bistable slant stimulus. This is a stimulus first sys-
tematically studied by Van Ee, Van Dam, 
and Erkelens (2002), consisting of a trape-
zoid that is viewed binocularly. Bistability 
arises from the fact that linear perspective 
and binocular disparity specify opposite 
slants (e.g., in Figure 1B perspective infor-
mation corresponds to a rectangle seen with 
the right side in front, whereas disparity in-
formation corresponds to a trapezoid seen 
with the left side in front). 

House-face stimulus. This is a stimulus developed by 
Tong, Nakayama, Vaughan, and Kanwisher 
(1998). Like the orthogonal gratings de-
scribed above, it gives rise to a form of bin-
ocular rivalry. In house-face rivalry, however, 
the conflicting images are not orthogonal 
lines but pictures of a house and a face. 

Necker cube stimulus. This is arguably the best 
known ambiguous stimulus. It is an image 
that can be interpreted as a cube seen from 
either of two viewpoints. 

The rate of perceptual alternations for all but the slant 
stimulus typically lies in the range of 0.3 to 1 alternations 
per second; the slant stimulus generally causes slower alter-
nations, averaging in the order of 0.2 per second. All stim-
uli were depicted in red and green and viewed through red 
and green anaglyph glasses to separate the left and right eye 
image where necessary. Even though there is no need for 
such separation in Necker cube rivalry, anaglyph glasses 
were used here as well for consistency. During 3-min trials, 
a stimulus was viewed on a computer screen, leading to an 
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unstable percept alternating back and forth between the 
two alternatives. Alternations were reported by the subjects 
using button presses. Stimuli covered an angular width of 
1.2 deg, and were surrounded by a background of fusible 
squares to maintain alignment of the eyes. The prevailing 
notion on the influence of eye movements on bistable per-
ception is that fixation position influences the alternation 
process, even though eye movements are not necessary for 
perceptual alternations to occur (Van Dam & Van Ee, in 
press; Toppino, 2003). Therefore, subjects were instructed 
to maintain central fixation during all trials, making use of 
a sunburst figure in the cases of the slant and the Necker 
cube stimulus. It was established that drift in the alterna-
tion rates was restricted to the first 30 s of a session, during 
which it never exceeded a few percentages of the mean rate, 
so our data were reasonably stable both across small data 
chunks and across experimental sessions. 

To check whether the subjects were reliably reporting 
the occurrence of perceptual alternations, rather than 
pressing keys at random, so-called “catch periods” were in-
cluded in trials using the slant and orthogonal grating 
stimuli. During these semi-randomly placed periods stimu-
lus ambiguity was removed respectively by adjusting the 
disparity-specified slant to become congruent with the per-
spective-specified slant, or by fading out one of the sets of 
parallel lines. This was done without the subject being 
aware of what was happening. Button presses recorded dur-
ing catch periods were not included in the data analysis; 
instead, they were used to increase the data’s reliability by 
removing data in case the responses during catch periods 
were not satisfactory (i.e., if a subject continued reporting 
perceptual alternations while the stimulus was in fact un-
ambiguous). All button presses in a 20-s period after a catch 
period had ended were excluded from analysis as well, be-
cause examination of the data indicated that in some cases 
it took some startup time after each catch period for sub-
jects to reach the phase of stable perceptual alternations we 
were interested in. 

Because the data were originally gathered, among other 
reasons, for investigating the influence of voluntary control 
on the dynamics of bistable perception, subjects were given 
one of four different instructions: either to view a stimulus 
in a natural way without attempting to control the alterna-
tion rate, or to try to keep percept A for as great a fraction 
of the time as possible, or to keep percept B for as great a 
fraction of the time as possible, or to speed up the alterna-
tion rate as much as they could. For each experiment,  
we treated the durations of the one percept (e.g., the  
house) separately from the durations of the other percept 
(e.g., the face). All variables taken together led to 6 (sub-
jects) × 4 (stimuli) × 4 (instructions) × 2 (percepts) = 192 
distributions. After removal of the 2% largest and 2% 
smallest values, the distributions had an average size of 243  
data points. 

Gamma distributed percept  
durations? 

Methods 
We determined the best-fitting gamma and beta' distri-

butions to our empirical data in two different ways. First, 
we employed the classical least squares method, minimizing 
the sum of squared residuals SSE. For the fits we obtained 
in this manner, we calculated the fit quality as SSE/(n – 2) 
(where n is the number of data points in a given distribu-
tion), but also using the Kolmogorov-Smirnov test for 
goodness of fit. The Kolmogorov-Smirnov test involves the 
largest overall deviation between empirical and fitted dis-
tribution, and the associated probability pKS. In addition 
to these least squares fits, we performed maximum likeli-
hood fits on the same data, providing an alternative esti-
mate of the best-fitting parameter values, as well as of the fit 
quality: the likelihood L. Note that likelihood fits by defini-
tion involve PDFs, whereas for the least squares fits we used 
continuity corrected CDFs, for reasons of robustness and 
objectivity (contrary to the PDF, the CDF does not involve 
an arbitrary bin size). All fitting algorithms were imple-
mented in the software package Scilab (http://scilabsoft 
.inria.fr/). 

Results 
Figure 3 shows examples of the three distributions fit-

ted to an empirical distribution (using the least squares fit-
ting algorithm). As expected, at first glance all seem in fair 
agreement with the data, but there are some deviations. A 
detailed analysis of these deviations is given in the next sec-
tion, but for now we can state that for the gamma duration 
fit, the fitting algorithm’s tendency to align model and ex-
perimental data on the CDF’s steeply ascending flank re-
sults in the fit overshooting the empirical CDF at both in-
flection points. For the two fits to rate data, the deviations 
between empirical and fitted distributions seem smaller and 
less consistent.  

This impression of the rate distributions fitting our 
data better is confirmed by quantitative analysis. Figure 4 
displays the fit quality of the three distributions, in terms of 
three different measures. It can be seen that, irrespective of 
the specific fitting algorithm or goodness measure used, 
both rate fits perform better than the gamma duration fit, 
and the gamma rate fit even slightly outperforms the beta' 
rate fit. 

Figure 4 clearly shows how the fit qualities of the three 
distributions relate to each other, but it does not tell us 
whether or not particular fits should be rejected. To assess 
that question, we visualized the fit qualities in a different 
way in Figure 5, plotting the fraction of fits that would be 
accepted, as a function of the critical Kolmogorov-Smirnov 
p level that one chooses. An advantage of this presentation 
method is that it summarizes the acceptance of fits, without 
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Figure 4. Quality of the fits to our 192 empirical distributions,
measured using the Kolmogorov-Smirnov test (top), the sum of
squared residuals SSE (middle), and the likelihood L (bottom).
Each box with whiskers summarizes 192 values, displaying me-
dian, 25% and 75% quantile, and extreme values (but note that
these fall outside the plot range in some cases). All three figures
indicate a low fit quality for the gamma duration distribution com-
pared to the rate distributions, and a slightly better fit for the
gamma rate than for the beta' rate distribution. 
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Figure 3. Gamma rate, beta' rate, and gamma duration distribu-
tions (drawn lines) fitted to one of our data sets (dots). Probabil-
ity density functions (left) are shown for illustration, but cumula-
tive distribution functions (right) were used for fitting. The number
of points in this data set is 541; the PDF bin size was chosen
such that 35 bins span the entire data range. The pKS values
associated with these fits, purposefully low for illustrating their
weaknesses, are 0.06, 0.009, and 0.0002 for the gamma rate,
the beta' rate, and the gamma duration distribution, respectively.
Note that the top four graphs have alternation rates on the hori-
zontal axis, whereas the bottom two have percept duration. 

pinpointing the critical pKS level in advance, revealing that 
both rate distributions have a higher acceptance than the 
gamma duration distribution at any critical p level. For in-
stance, in case one should decide to choose a level of 0.1 
(vertical line in Figure 5), fractions of 0.92, 0.86, and 0.69 
of the gamma rate, beta' rate, and gamma duration fits pass, 
respectively. 

We can conclude that this analysis positively demon-
strates an inferior fit for the gamma duration distribution, 
compared to the two rate distributions.  

Control experiment for motor bias 
The shown difference in fit quality, however consistent, is 
based on fairly subtle differences between distributions 
(Figure 2). We should therefore be wary of any bias intro-
duced by our experimental design. Particularly, because we 
relied on key presses to infer our subjects’ perceptual state, 
it is important to rule out the possibility that our results 
reflect characteristics of the motor system rather than the 

perceptual system. As Figure 2 shows, the main difference 
between the gamma duration distribution and the other 
two is there is less probability mass near short percept dura-
tions (or near high rates). Because we count the time differ-
ence between two successive key presses as one duration, 
our distributions are biased if the manual response time is 
not independent of percept duration (e.g., if it takes more 
time to respond to a short duration than to a long one). It 
would then be conceivable that subjects do experience per-
cepts that have gamma distributed durations, but that a 
longer lag in their manual response at short percept dura-
tions causes the two rate distributions to fit the reported 
distributions better after all. To investigate this possibility, 
we performed a control experiment determining the rela-
tion between perceived and reported durations. In this ex-
periment we showed subjects a stimulus that resembled our 
orthogonal grating stimulus, but that did not cause bistable 
perception. Instead, “perceptual alternations” were induced 
by presenting the green and the red set of lines in an alter-
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nating fashion on the computer screen, and subjects were 
asked to press a key when they saw the stimulus change. 
Importantly, we drew the durations of these successive 
presentations from a gamma distribution, so if all was well 
it would be the gamma duration distribution that fitted the 
subjects’ reported distributions best. We found that percept 
durations shorter than some hundreds of milliseconds did 
tend to be underrepresented in the reported distributions, 
and that this did benefit the two rate fits. However, this 
effect was not nearly strong enough to explain our findings. 
This is illustrated in the Figure 6 display of the results of 
one crucial experiment in which we presented six subjects 
with quite fast alternations (200 durations from a gamma 
distribution with a mean of 1.2 s and a standard deviation 
of 0.7 s, comparable to the fastest distributions from the 
actual experiments). The left panel shows (in the same way 
as Figure 5) the quality of fits to the distributions we pre-
sented to our subjects. Because we drew the presented du-
rations from a gamma distribution, it comes as no surprise 
that the gamma duration distribution fits best. The more 
interesting finding comes from the right panel that displays 
fit quality to the distributions that were inferred from the 
subjects’ key presses. Even though there seems to be some 
improvement in the rate fits, the gamma duration fit has 
retained its superior quality, and the gamma rate fit (the 
best fit to our actual data) fits worst by far. Therefore, our 
results cannot be explained by a bias introduced by the mo-
tor response, but should instead be interpreted in terms of 
the perceptual process itself. 

Interstimulus comparison 

Methods 
As a first step in comparing the distributions between 

stimuli, we reexamined the previously determined accep-
tance levels of our fits, now treating the results of the four 
stimuli separately. We were particularly alert to differences 
in the results of binocular rivalry versus other forms of ri-
valry that might reflect the alleged differences in neural 
basis. One should keep in mind however that in such an 
analysis of the extent to which the empirical distributions 
deviate from the fitted ones, one neglects all information 
on the manner in which they deviate. In other words, two 
empirical distributions might fit a given model equally well, 
but if one of them consistently undershoots where the 
other overshoots, this similar fit quality does not reflect a 
similar shape. We therefore performed an additional analy-
sis in which we compared the distributions’ shapes in a 
more direct way, by looking at the nature of the deviations 
between empirical and fitted distributions. For this pur-
pose, we calculated for all three fits the mean fit residual as 
a function of position along the CDF, averaging over all 48 
distributions associated with a particular stimulus. Because 
every CDF spans a different domain of rates (or durations), 
the data had to be standardized to combine them and cal-

culate this average. A simple but effective way to achieve 
this is to consider the residuals as a function of the value of 
the fitted CDF, instead of as a function of the rate (or du-
ration). Our procedure is illustrated in Figure 7. 
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Figure 5. Fit quality as measured by the Kolmogorov-Smirnov p
value. The fraction of fits that would be accepted is plotted as a
function of the critical pKS level. Irrespective of the particular
critical p level that is chosen, the gamma duration distribution,
represented here by the lightest shade, clearly fits the data less
well than the beta' rate distribution (intermediate shade) and the
gamma rate distribution (darkest shade), which fits best. The
vertical line at p = .1 crosses the three curves at 0.69, 0.86, and
0.92: the fractions of accepted fits when testing at the 10% level.
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Figure 6. In this control experiment we presented our subjects
with a sequence of two alternating images that resembled the
two percepts of binocular grating rivalry, and asked them to re-
port every alternation by means of a button press. By drawing
the durations between successive alternations from a gamma
distribution, we mimicked the time course of a Poisson-driven
bistable perception experiment. The left panel shows (in the
manner introduced in Figure 5) the quality of the gamma rate,
the beta' rate, and the gamma duration fits to the distributions we
presented to our subjects in this way. The gamma duration dis-
tribution fits best, as was expected, because we drew the pres-
entation durations from a gamma distribution. In the panel on the
right, showing fit quality to the distributions of alternations that
our subjects reported, this superior fit quality is maintained. This
experiment indicates that the inferior gamma duration fit in our
real experiments is probably not due to a bias introduced by the
motor response. 
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Figure 8. Fit quality as measured by the Kolmogorov-Smirnov p
value, separated by stimulus. The fraction of fits that would be
accepted is plotted as a function of the critical pKS level. For
grating, house/face, and Necker cube rivalry, the results conform
to the overall pattern, with the gamma duration distribution (light-
est shade) fitting our data less well than the beta' rate distribution
(intermediate shade) and the gamma rate distribution (darkest
shade). The results for the bistable slant stimulus form an excep-
tion, with no clear difference in quality between any of the three
fits. There is however no indication of a dichotomy between the
binocular rivalry stimuli (grating and house/face) and the other
two. All curves are built up of 48 data points. 
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igure 7. Analyzing fit residuals. To compare the distributions’
hapes between stimuli, we analyzed the deviations between our
mpirical and fitted distributions. A. An example of an empirical
DF of percept durations (gray dots) and the corresponding
amma duration fit (drawn line). B. Residuals of the same fit, as
 function of percept duration. The values plotted here are simply

he differences between the empirical and the fitted distribution
epicted in A. C. For each distribution, panel B may span a dif-
erent domain of percept durations, preventing us from averaging
esiduals over distributions. Therefore, in panel C we standard-
ed the x-axis in panel B by replacing each x-value with the cor-

esponding value of the fitted CDF. Note that in statistics, plots
uch as these, depicting residuals as a function of cumulative
robability, are referred to as “detrended Q-Q plots.” D. The
ame data as in panel C, after averaging over bins spanning 0.1
nit on the x-axis. After this final step, residuals could be com-
ined over fits. Note that this step of binning over 0.1 unit slightly
ecreases the amplitude of the curve.  
esults 
Figure 8 depicts the acceptance of fits in the same way 

s Figure 5, except that now the results of the four stimuli 
ere treated separately. This procedure reveals that the iso-

ated results for the bistable slant stimulus (top right) devi-
te from the general pattern, showing hardly any difference 
n acceptance between the three distributions. However, 
he results for the remaining stimuli do conform to the 
verall finding that the rate distributions outperform the 
amma duration distribution. Therefore, contrary to what 
ne might predict, no dichotomy between the binocular 
ivalry stimuli (grating and house face) and the other stim-
li can be made on the basis of this figure. On the contrary, 
ny separation would be between the isolated results for the 
istable slant stimulus, and those for the other stimuli. 

The results of our second analysis, comparing fit re-
iduals between stimuli, are depicted in Figure 9. This fig-
re agrees with our preliminary impression that gamma 
uration fits deviate from the empirical distributions in a 
ighly consistent way (bottom left panel; see also figure cap-
ion). Because the gamma duration distribution has a fairly 
ad fit quality, it is not so surprising to see that this pattern 
f deviations is similar over all four stimuli: This simply 

the four groups of distributions are overshadowed by the 
gamma duration distribution’s large structural fit error. In 
terms of the interstimulus comparison, the more interest-
ing panels are the top two, depicting residuals for the two 
(better fitting) rate distributions. As is apparent from these 
panels, the pattern of deviations is comparable for all but 
the slant stimulus (second lightest shade). Regarding the 
remaining three stimuli, we can therefore state not only 
that they are similar in their fit quality to the tested distri-
butions, but also that the minute fit residuals that do exist 
follow a similar pattern. This again provides no evidence 
for a dichotomy between the binocular rivalry stimuli and 
the remaining stimuli, but rather between the slant stimu-
lus and the other three stimuli. On a side note, it is worth 
mentioning that the pattern of residuals is similar for the 
gamma rate and the beta' rate distribution. 

Discussion 
As addressed in the Introduction, we are not the first 

to show a fairly bad fit quality for the gamma distribution 
fitted to distributions of percept durations. Previous au-
thors to do so have proposed a number of alternative dura-
tion distributions, but none considered taking the recipro-
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cal of their percept durations. This makes it all the more 
remarkable that we find this simple operation to improve 
fit quality so greatly. The distributions that previous au-
thors compared to the gamma distribution never showed a 
notably better fit, except in one particular case. This one 
case was provided by Zhou et al. (2004), who showed the 
lognormal distribution to fit their data dramatically better 
than the gamma distribution. To find out how these find-
ings relate to our results, we performed a lognormal fit to 
our duration distributions as well, and we can confirm an 
improved fit quality compared to the gamma duration dis-
tribution. However, this improvement was modest, and not 
as large as what we have shown for the two rate distribu-
tions. Using, as we did earlier, the fraction of accepted fits 
at a 10% significance level as a brief indication of fit qual-
ity, the lognormal distribution, with a fraction of 0.78, falls 
right in between the values of the gamma duration distribu-
tion (0.69) and the two rate distributions (0.86 and 0.92). 
These rate distributions should therefore be preferred to 
the lognormal distribution when judging merely on the 
basis of fit quality, but a few additional notes on the log-

normal distribution are required. First of all, one might 
wonder why Zhou and coworkers found such a large differ-
ence in fit quality between the gamma and the lognormal 
distribution, while we find only a small one. We think a 
possible explanation for this is that their comparison is bi-
ased by their use of an inferior fitting routine for their 
gamma fits (namely parameter estimates based on their ana-
lytical relationship with a distribution’s first and second 
order moment) compared to their lognormal fits (for which 
they used a more sophisticated, numerical fitting routine). 
Zhou and colleagues therefore performed their analysis of 
fit quality on suboptimal gamma fits. Although this might 
account for the big difference they showed between their 
gamma and lognormal fits, it cannot explain why their log-
normal fits are better than the ones we performed. There-
fore, it does appear that their data for some reason con-
form to the lognormal distribution better than ours. As a 
second note we think it is worth mentioning that, like the 
beta' distribution, the lognormal distribution is invariant 
under inversion, so a lognormal duration fit is equivalent 
to a lognormal rate fit (also see Introduction). 
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Figure 9. Average residuals of our three fits, separated by stimu-
lus. Each curve represents the binned residuals averaged over
48 distributions, as a function of fitted CDF value (see Figure 7).
A positive residual means that the empirical data overshoot the
fit; a negative value means the data undershoot the fit. Standard
deviations on the points in these graphs (not shown for the sake
of clarity) are in the order of 0.02. The clearest panel is the one
depicting the results for the gamma duration fits (bottom left). For
all four stimuli, the curves show the same pattern of the empirical
data initially undershooting the fit, then overshooting it near the
mean, and again undershooting it toward the end. The two rate
distributions (top panels) give rise to more noisy residuals, as
was to be expected in light of their superior fit quality. Still, for
both rate fits, the pattern of residuals is fairly consistent for all but
the slant stimulus. We can therefore state that, in agreement with
our previous analysis, the distributions associated with the bista-
ble slant stimulus are slightly different from those associated with
the other stimuli. 

We consider it beyond the scope of this study to pre-
sent an exhaustive comparison of fit qualities of the nu-
merous distributions that have over the years been pro-
posed in this context. As mentioned previously, many can 
be discarded because other studies showed their fit qualities 
not to exceed that of the gamma duration distribution. 
One last distribution that we do wish to discuss here how-
ever is the “dual Gaussian rate distribution.” Because this is 
a rate distribution of some renown in the field of saccadic 
search, it seems appropriate to include it here. When using 
this distribution, which is actually a composite of two sepa-
rate distributions, in the conventional way, one assumes 
that a part A of an empirical rate distribution, the part con-
taining low rates, can be described by one truncated Gaus-
sian distribution ΦA , and the remaining part B by another 
one ΦB (Carpenter & Williams, 1995; Reddi & Carpenter, 
2000). The raw data are plotted on probability paper, so the 
distinction between data section A and B can be made by 
eye, after which the parameters of ΦA and ΦB can be esti-
mated (see Figure 10, left panel). If we want to compare the 
fit quality of the dual Gaussian distribution to that of the 
ones we investigated, this approach will not do, mainly be-
cause it involves visual inspection. Because it does seem 
that the combination of two Gaussians describes rates of 
saccadic eye movements well, we adjusted the dual Gaus-
sian distribution to investigate its fit quality to our data on 
alternation rates. According to this adaptation, the prob-
ability density function at rate r  is given by 

1 1 2 2 1 1

2 2

( | , , , , ) ( | , )

                                      (1 ) ( | , ) .

f r a a r

a r

µ σ µ σ ϕ µ σ

ϕ µ σ

= ⋅ +

− ⋅
 

Here, ϕ is a Gaussian distribution. Note that instead of 
fitting two truncated Gaussians to separate parts of the em-
pirical distribution, we fit a mix of two Gaussians to the 
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entire distribution, and introduce a free scaling parameter 
a to ensure a total cumulative probability of 1. This mixed 
Gaussian distribution was introduced over a century ago 
(Pearson, 1894), and similar mixed distributions are pres-
ently used in numerous fields of research (McLachlan & 
Peel, 2000). This dual Gaussian model produced excellent 
fits to our data (all were accepted at a critical pKS level of 
0.1, after removal of nonconvergent fits), but a direct com-
parison to the other models is not possible because these 
contain only two free parameters instead of five (the dual 
Gaussian distribution is over-parameterized, as witnessed by 
the convergence problems we experienced). In addition, it 
is worth mentioning that our adapted dual Gaussian fits 
often reach quite different results than the conventional 
ones (see Figure 10). A final conceptual problem one might 
have with these fits is that both in the original form and in 
our adaptation, they allow for the occurrence of negative 
alternation rates. 

As discussed in the Introduction, the gamma duration 
distribution is associated with a so-called “Poisson clock” 
model. Because we showed a fairly bad fit quality for this 
distribution, it is important to address a recent study by 
Murata et al. (2003), presenting data that seem to provide 
strong support for this model. According to the Poisson 
model, the gamma duration distribution’s shape parameter 
k reflects the number of Poisson ticks after which a percep-
tual transition takes place (see Introduction). On the basis 
of the model, one might therefore predict that this shape 
parameter should be a natural number. What Murata and 
coworkers showed is that the gamma duration distributions 
they fitted to their data indeed had shape parameters that 
grouped around natural numbers. It would seem that this 
result cannot be explained unless by accepting the idea of a 
Poisson clock and the associated gamma duration distribu-
tion, but we see two reasons why such a conclusion is pre-

mature. First of all, Murata and coworkers did not support 
their claim with a statistical analysis. A straightforward way 
of statistically testing for grouping around natural numbers, 
using estimated shape parameters from gamma duration 
fits, would be to subtract the nearest natural number from 
each of these estimates. This operation would produce  
a distribution of residual shape parameters ranging from  
–0.5 to 0.5 that should be peaked around 0 in case of natu-
ral k values. One can statistically test for the presence of 
such a peak using a standard test. We have performed such 
an analysis on our data without finding any evidence for 
natural shape parameters; however, Monte Carlo simula-
tions show that a data set as large as ours (192 distributions 
of 243 points on average) does not provide enough statisti-
cal power to demonstrate natural k values in this way, even 
if they are present. This is because the parameter estimates 
from any fitting procedure have only a limited accuracy, 
and we do not have enough data to detect a signal in this 
noise. Similar simulations show that Murata and col-
leagues’ data set (227 distributions of 350 data points) 
might be just large enough to successfully perform such an 
analysis, but it should be noted that these simulations were 
performed without adding any noise. 
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Figure 10. Dual Gaussian fits to one of our distributions. Both
plots depict cumulative probability as a function of alternation
rate, on probit scale. Left. The conventional method. The data
(dots) are divided into two sections, each of which can be de-
scribed by a Gaussian distribution: the two straight lines. This
method does not readily lend itself for a comparison of fit quality.
Right. An adapted method, applied to the same data. The two
straight lines depict two Gaussian distributions that together
comprise the fitted distribution (curved line). The relative contri-
butions of the two Gaussians, determined by weighing factor a,
are displayed next to the corresponding lines.  

On top of this statistical issue, we have a second reser-
vation regarding the alleged finding of natural shape pa-
rameters. This reservation is centered around possible neu-
ral interpretations for the gamma rate distribution. At pre-
sent, we do not have any concrete neural model, but we 
might speculate that a perceptual alternation might occur 
as a threshold is reached by some decision signal that is 
itself the sum of a number of rising signals. If these rising 
signals would, in analogy to the classic Poisson model, have 
rates that are drawn from a Poisson distribution, perceptual 
alternation rates would follow gamma distributions, and 
these would have natural k values. Clearly, this is only 
speculation, and Poisson distributed rates are less intuitive 
than Poisson distributed latencies, but we think mention-
ing this interpretation is worthwhile because of a particular 
characteristic of the gamma shape parameter: When a  
data set reasonably fits both a gamma duration distribution 
and a gamma rate distribution, the k values of these two 
distributions are equal. This relation can be proven 
mathematically2, and we can confirm it for our fits  
(when we plotted the k values from the fits to our  
192 distributions against each other, linear regression gave 
krate = –0.02 + 1.02kduration, with an r2 of 0.998). The impor-
tant implication of this characteristic is that should one be 
able to support the Poisson clock model by finding the  
k values of gamma duration distributions to take on natural 
values, this would automatically mean the same for a 
gamma rate model. 

The distributions associated with the bistable slant 
stimulus seem to differ from the ones produced using other 
stimuli. They are exceptional in that they fit the gamma 
duration distribution just as well as the two rate distribu-
tions, and also in their pattern of fit residuals. Because an-
other notable characteristic of the bistable slant stimulus is 
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the relatively low rate of perceptual alternations it elicits, it 
is tempting to associate both features. As previously men-
tioned, and illustrated by Figure 2, the gamma duration 
distribution mainly differs from the other two in the sense 
that there is less probability mass near short percept dura-
tions (or near high rates). Our findings might therefore be 
in agreement with some extension of the classic Poisson 
model, in which the addition of some low-pass filter results 
in the Poisson-generated gamma distributions being de-
formed at shorter percept durations. This idea would ex-
plain the improved gamma duration fit for the slower al-
ternating slant stimulus, and seems somewhat in agreement 
with Figure 9, which shows that the difference in fit residu-
als between the slant stimulus and the other stimuli, is 
partly concentrated in the region of short durations (high 
rates), although also at the other extreme. 

Our analyses did not reveal any difference between 
binocular rivalry and other forms of rivalry. In fact, differ-
ences among nonbinocular rivalry stimuli (Necker cube and 
slant) were larger than between binocular and nonbinocu-
lar rivalry stimuli. Should we now conclude that the two 
phenomena have a shared neural basis? Obviously, this 
would not be justified. After all, absence of proof is not the 
same as proof of absence, so there might be differences in 
aspects of temporal dynamics that we have not addressed. 
In fact, such differences have been found in the extent to 
which subjects can voluntarily control the rivalry process 
(Meng & Tong, 2004; Van Ee et al., 2005). In addition, as 
Blake (2001) put it “. . . comparable temporal fluctuations 
may reflect a fundamental property of neural dynamics, but 
not necessarily a common neural mechanism.” Neverthe-
less, there are two conclusions that we think are justified. 
First, the claim of similar temporal dynamics of binocular 
and other rivalry, hitherto based on no more than a broad 
resemblance of the distributions, still holds after detailed 
analysis. Our results therefore render it more convincing as 
one of the pieces of converging evidence linking the two 
phenomena. Second, any model placing binocular and 
other rivalry in different brain “modules” should be able  
to account for the highly similar distributions of alterna-
tion rates. 

Conclusion 
In summary, the prominent position in the literature 

of the gamma duration distribution is not supported by its 
fit quality to empirical data. Instead, our data show two 
straightforward rate distributions, the beta' rate distribution 
and the gamma rate distribution, to conform to our data 
much better. This, together with the notion that they form 
a more direct representation of the neural decision process, 
makes rate distributions more appropriate than duration 
distributions for studying the time course of bistable per-
ception. Furthermore, our results demonstrate that the 
temporal dynamics of binocular rivalry and ambiguous fig-
ure perception are similar up to a high level of detail. 
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Footnotes 
1The gamma distribution and the beta' distribution are 

linked by the fact that dividing two gamma distributions of 
equal scale parameter produces a beta' distribution. The 
beta distribution (a scaled version of the beta' distribution) 
previously made its appearance in bistable perception litera-
ture when Borsellino et al. (1972) made use of this feature 
in their analysis of supposedly gamma-distributed percept 
durations. 

2Based on the characteristic alluded to in the previous 
footnote, we can mathematically prove that the shape pa-
rameters from our gamma rate fits should be equal to those 
of our gamma duration fits. This can be understood as fol-
lows. If X and Y show gamma distributions with different 
shape parameters p and q, but equal scale parameter r, then 
X/Y shows a beta' distribution with parameters p and q 
(e.g., Pestman, 1998). Now by choosing for X and Y two 
halves of some set of percept durations that reasonably fits 
a gamma distribution, we make certain that p = q. Conse-
quently, taking either X/Y or Y/X will both yield the same 
beta' distribution with the two parameters equal. Clearly, if 
the same data set conforms to a gamma rate distribution, 
too, we might just as well divide 1/X by 1/Y to arrive at the 
same beta' distribution. We can conclude that if some  
data set shows a fair fit to both a gamma rate distribution 
and a gamma duration distribution, both have an equal 
shape parameter.  
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