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Visual Cortex Allows Prediction of Perceptual States during
Ambiguous Structure-From-Motion

Gijs Joost Brouwer and Raymond van Ee
Helmholtz Institute, University of Utrecht, 3584 CC Utrecht, The Netherlands

We investigated the role of retinotopic visual cortex and motion-sensitive areas in representing the content of visual awareness during
ambiguous structure-from-motion (SFM), using functional magnetic resonance imaging (fMRI) and multivariate statistics (support
vector machines). Our results indicate that prediction of perceptual states can be very accurate for data taken from dorsal visual areas
V3A, V4D, V7, and MT� and for parietal areas responsive to SFM, but to a lesser extent for other visual areas. Generalization of prediction
was possible, because prediction accuracy was significantly better than chance for both an unambiguous stimulus and a different
experimental design. Detailed analysis of eye movements revealed that strategic and even encouraged beneficial eye movements were not
the cause of the prediction accuracy based on cortical activation. We conclude that during perceptual rivalry, neural correlates of visual
awareness can be found in retinotopic visual cortex, MT�, and parietal cortex. We argue that the organization of specific motion-
sensitive neurons creates detectable biases in the preferred direction selectivity of voxels, allowing prediction of perceptual states. During
perceptual rivalry, retinotopic visual cortex, in particular higher-tier dorsal areas like V3A and V7, actively represents the content the
visual awareness.

Key words: perceptual bistability; structure-from-motion; fMRI; visual cortex; ambiguously rotating spheres; multivariate classification

Introduction
An important goal of neuroscience is to explain how the brain
represents our conscious experience in terms of neural mecha-
nisms. Especially useful are ambiguous stimuli: viewing such
stimuli results in randomly occurring alternations between per-
ceptual states (Blake and Logothetis, 2002), dissociating percep-
tual from underlying sensory processes.

Here, we use ambiguous structure-from-motion (SFM), a
powerful cue that allows reconstruction of an object in depth
from motion cues alone (Miles, 1931; Wallach and O’Connell,
1953). Such stimuli can be made perceptually bistable: ambigu-
ously rotating spheres, perceived to rotate in opposite directions
(Treue et al., 1991; Andersen and Bradley, 1998; Hol et al., 2003).
Exploiting its ambiguous nature, single-cell studies found corre-
lations between MT activity and perceived direction (Bradley et
al., 1998; Dodd et al., 2001).

In a parallel study, we revealed transient activation correlating
with alternations, but no significant sustained activation related
to perceptual states was found using conventional univariate sta-
tistical methods (G. J. Brouwer, F. Tong, P. Hagoort, and R. van
Ee, unpublished observations). Finding sustained activation re-
lated to perceptual states using functional magnetic resonance
imaging (fMRI) is inherently difficult: although perception-

specific modulations in neural activation can be found through-
out visual cortex (Logothetis and Schall, 1989; Leopold and Logo-
thetis, 1996, 1999), few fMRI studies have been able to show
neural correlates of perceptual phases (Tong et al., 1998; Polon-
sky et al., 2000). Although individual neurons can show
perception-related modulations, a voxel contains many neurons,
some responsive during one, some during the other perceptual
state. As a result, no net activation changes are observed between
states. Investigation of perceptual phases, therefore, requires a
departure of conventional univariate approaches. Several groups
used multivariate approaches to model and classify brain activa-
tion (McIntosh et al., 1996; Haxby et al., 2001; Cox and Savoy,
2003). Recently, multivariate methods have been used to classify
perceived orientation and motion direction using activation
from visual areas (Kamitani and Tong, 2005, 2006), although
theoretically the resolution of fMRI is below that of orientation-
columns within these areas. Furthermore, it is possible to predict
perceptual states during binocular rivalry using activation from
visual cortex (Haynes and Rees, 2005b). The underlying hypoth-
esis of the multivariate approach is that one voxel can still show
selectivity, brought about by variations in the underlying topog-
raphy of neuronal selectivity.

Here, we use a multivariate approach to investigate the role of
retinotopic visual cortex and motion-sensitive areas in represent-
ing the content of visual awareness during the viewing of ambig-
uously rotating spheres that rotate about the vertical axis. We
focus on perceptual states. This then complements our study
using the ambiguous sphere in which we investigated fMRI activ-
ity associated with perceptual alternations (Brouwer, Tong, Ha-
goort, and van Ee, unpublished observations).

In the present study, subjects viewed ambiguously rotating
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spheres and indicated their perceptual states. Multivariate classi-
fiers were then trained on imaging data taken from several re-
gions of interest (ROIs), and the accuracy of prediction was de-
termined. Results indicate that accurate prediction of perceptual
states is possible using activation taken from area MT�, dorsal
areas V3A, V7, and V4D, and parietal areas responsive to SFM.

Materials and Methods
Subjects
Five subjects participated, and informed written consent was obtained
before every scanning session. Subjects had normal or corrected-to-
normal vision. All procedures were approved by the FC Donders Centre
for Cognitive NeuroImaging.

Stimuli
Stimulus presentation. Stimuli were presented using an EIKI projector
(model LC-X986, resolution 800 � 600 pixels; EIKI International, Ran-
cho Santa Margarita, CA) onto a transparent screen positioned at the rear
end of the MR scanner. Subjects viewed stimuli through a mirror at-
tached to the head coil. Distance to the screen via the mirror was 80 cm.

Ambiguous and unambiguous sphere stimuli. Spheres (width and
height, 8.2°, 500 dots), rotating around the vertical axis, were created
using custom software. Individual dots measured 5.8 arcmin in width
and height. All stimuli contained a central fixation dot of 11.7 arcmin;
angular velocity of the sphere was 16°/s. This low velocity ensured that
perceptual phases were relatively long lasting, as we have demonstrated
previously (Brouwer and van Ee, 2006). Average dot speed was � 0.75°/s,
but note that dot speed depended on dot position. We presented both
ambiguous and unambiguous spheres. For the ambiguous spheres, only
nondirectional ambient lighting was simulated, making all dots equal in
luminance and rotational direction ambiguous. To examine the possibil-
ity of generalization, we also presented subjects with unambiguous
spheres. For the unambiguous spheres, we added a light source in front of
and above the sphere pointing toward its center, increasing the illumina-
tion of the dots that ought to appear closer to the observer, disambigu-
ating its rotational direction and stabilizing perception to a single per-
ceived rotation. During these runs, the sphere physically changed
direction at randomly chosen times (randomly between 4 and 10 s) to
mimic the stochastic nature of the bistable process. The same disambig-
uated stimulus was also used for the SFM localization runs (see below).

Procedure
Ambiguous and unambiguous sphere experiments. During the main am-
biguous sphere experiments, subjects viewed an ambiguous sphere con-
tinuously for 200 s. They were instructed to strictly fixate the central dot
and to press one button when the front surface reversed from a rightward
to a leftward direction [clockwise (CW)] and another button when the
opposite occurred [counterclockwise (CCW)]. Subjects can also perceive
the stimulus as two convex surfaces or two concave surfaces (Hol et al.,
2003); however, they still perceive one surface to be in front of the other,
meaning that they could still do the task. Scanning started 20 s after the
start of the experiment to remove any stimulus onset-specific activation.
All subjects performed 10 of such runs. For the disambiguated runs,
subjects were instructed to fixate and detect the physical changes in ro-
tation but did not report these alternations. Subjects performed four of
such runs.

Anatomy. A high-resolution T1-weighted anatomical scan (three-
dimensional magnetization-prepared rapid gradient echo; field of view,
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Figure 1. Multivariate analysis method. A, A priori, we identified ROIs by independent
mapping procedures. B, The reported perceptual states, as indicated by the subject using
button presses, were convolved with a canonical hemodynamic response function (HRF). This
created two separate models for expected neural activation: one for activation as a function of
perceiving CW rotation and one for activation as a function of perceiving CCW rotation. The
resulting two time courses were subtracted and thresholded. As a result, whenever the pre-
dicted signal for CW perceived rotation is higher than the expected signal for CCW perceived
rotation, that point in time was assigned to CW perceived rotation and vice versa. The main
effect of this convolution approach is a temporal shift to account for the hemodynamic delay
associated with the BOLD signal. C, We extracted voxel time courses from a particular ROI.
These time courses were normalized (z-score normalization) and each volume of the voxel
time course associated with a particular perceptual state, which were obtained from the time
courses in B. D, Nine of 10 runs were then used to train our classifiers (SVM, perceptron, and
differential mean) (see supplemental methods, available at www.jneurosci.org as supple-
mental material). For the SVM, this results in the creation of support vectors within the mul-
tidimensional feature space (features � voxels). For the perceptron model, this results in a
weight vector such that if voxel intensities are multiplied with this vector, summed and
thresholded, the model outputs a predicted perceptual state associated with these voxel
intensities for a volume. Finally, for the differential mean approach, we obtained two weight
vectors (one for each perceptual state) that were multiplied with voxel intensities and

summed (dot-product between the voxel and weight vector). The predicted perceptual state is
then equal to the perceptual state belonging to the weight vector with the highest associated
dot-product between voxel intensities and the weight vector. E, The resulting classifiers were
then used to predict the perceptual states for each volume in the remaining run. Both the SVM
and differential mean produced a graded, continuous output and these were thresholded by
determining, per volume, the sign of the output. The predictions were then compared with the
actual perceived states over time and the accuracy of prediction calculated through dividing the
number of correct predictions by the total number of predictions.
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256 � 256; 1 � 1 � 1 mm 3 voxel size) was obtained for segmentation and
flattening purposes.

Localization of SFM-responsive areas within parietal cortex. To identify
activation specifically related to the area of the stimulus and to localize
areas sensitive to SFM, we ran two same-session localization runs. In a
conventional block design of 16 s epochs interleaved with 16 s blank
fixation screens, we alternated stationary spheres with rotating spheres.
The contrast between spheres and fixation screens localizes activation
within retinotopic cortex associated with the size and location within the
visual field of our stimulus. This enables us to limit mapped visual areas
such that they include only voxels truly activated by the stimulus itself.
The statistical threshold for including voxels as being activated by the
stimulus was set to p � 0.001, corrected. The contrast between stationary
and rotating sphere localizes motion-sensitive areas in general and SFM
sensitive areas in particular. Previous studies have shown the existence of
four SFM-sensitive areas within parietal cortex, two of which are located
on the posterior side of the intraparietal sulcus (IPS), ventral IPS and
parieto-occipital IPS, and two on the anterior part of IPS, dorsal IPS
medial and dorsal IPS anterior. We combined all anterior voxels signifi-
cantly activated by the contrast (rotating spheres � stationary spheres;
p � 0.001 corrected) into a single region of interest [SFM-anterior IPS
(aIPS)]; the same principle was applied to the more posterior voxels
[SFM-posterior IPS (pIPS)].

Polar retinotopic mapping and localization of MT�, fusiform face area,
parahippocampal place area, and frontal eye field. Polar retinotopic map-
ping was done using methods described previously in detail (DeYoe et al.,
1996; Tootell et al., 1998; Wandell, 2000; Brouwer et al., 2005a). All
subjects performed three polar mapping runs, consisting of 10 cycles (full
hemifield rotation), lasting a total of 456 s. Subjects performed two runs
of MT� localization. MT� localization runs (400 s) consisted of six 16 s
epochs of stationary dots and six 16 s epochs of moving dots, interleaved
with 16 s blank fixation screens. Voxels on the middle temporal gyrus
were included as part of MT� when the significance of the contrast for
that voxel (moving dots � stationary dots) exceeded a preset statistical
threshold; p � 0.001, corrected). It is important to note that the full-field
method we used did not allow us to dissociate between MT and its satel-
lite areas, medial superior temporal visual area and fundus of the supe-
rior temporal visual area. We therefore refer to the localized activation as
MT�. We identified the fusiform face area (FFA) (responsive to faces),
the parahippocampal place area (PPA) (responsive to scenery and land-
scapes) and the frontal eye fields (FEFs) in all subjects using standard
methods. In short, we presented subjects with photographs of houses,
scenery and landscapes, human faces, and scrambled versions of these
images, as described previously in detail (Kourtzi and Kanwisher, 2000).
Contrasting faces with all other areas localizes the FFA on the fusiform
gyrus. Contrasting scenery and landscapes with all other images localizes
the parahippocampal place area. For the localization of the frontal eye
fields, we used a simple saccade/fixation task (Luna et al., 1998): subjects
either fixated a stationary target in the center of the screen (12 s epochs)
or fixated a target changing to a randomly chosen new position within a
15° visual aperture every 2 s (12 s epochs), requiring subjects to make
saccades to fixate the target. Contrasting epochs containing saccades with
fixation epochs localizes the frontal eye fields on the lateral part of the
precentral sulcus. For all three functionally defined areas, voxels were
included in the region of interest when the significance of the contrast for
that voxel exceeded a preset statistical threshold: p � 0.001 (Bonferonni
corrected).

Magnetic resonance imaging
All images were acquired using a 3 Tesla Siemens (Erlangen, Germany)
TRIO with exception of the high-resolution T1 anatomical scan, which
was acquired using 1.5 Tesla Siemens Sonata. Scanners were located at
the FC Donders Institute for NeuroImaging (Nijmegen, The Nether-
lands). All functional images were recorded using gradient echo planar
imaging using an eight-channel phase-array head coil. The same se-
quence was used for all experiments [repetition time (TR), 2000 ms; echo
time (TE), 35; 64 � 64 matrix; voxel size, 3 � 3 � 3 mm], with exception
of the retinotopic mapping experiment (TR, 3000 ms).

Cortical flattening and area border delineation
The cortical sheets of the individual subjects were reconstructed as poly-
gon meshes based on the high-resolution T1 scans. The white-gray mat-
ter boundary was segmented, reconstructed, smoothed, inflated, and
flattened (Kriegeskorte and Goebel, 2001). Area border delineation using
the polar retinotopic mapping was done using methods described previ-
ously (Brouwer et al., 2005a; Tootell et al., 1997, 1998; Wandell, 2000).
Using the correlation between wedge position and neural activity, bor-
ders were identified on the basis of field sign alternations, and areas were
drawn in on the flattened sheet manually.a

Preprocessing of imaging data
We used BrainVoyager (BrainInnovation, Maastricht, The Netherlands)
for preprocessing of the functional data as well as for the creation of
flattened cortical representations. Before analysis, we removed the first
three volumes of every scan. All remaining functional images were sub-
jected to a minimum of preprocessing steps: motion correction, slice
timing correction, and transformation of the functional data into Ta-
lairach coordinate space (Talairach and Tournoux, 1988).

Classification and prediction
The methods described below are almost identical to those described by
Haynes and Rees (2005b), with the exception of the used classifier.
Whereas Haynes and Rees (2005b) used Fisher Linear Discriminant anal-
ysis, we used the Support Vector Machine algorithm (Burges, 1998; Vap-
nik, 1998) (see supplemental methods, available at www.jneurosci.org as
supplemental material). We extracted all 10 time courses (intensity val-
ues over volumes) for a particular group of voxels from a ROI. These time
courses were normalized to a mean of zero and a SD of one (z-score).
Each volume was then assigned to a particular perceptual state. Because
the blood-oxygen-dependent signal (BOLD) signal is delayed relative to
events, we convolved the perceptual state time course with the canonical
hemodynamic response function of the SPM2 package (http://www.fil.
ion.ucl.ac.uk/spm), creating a model time course for each perceptual
state (Fig. 1b). These two model time courses were subtracted from each
other. Negative values were assigned 1 (associated with CW), and posi-
tive values were assigned �1 (CCW). The main effect of this convolution
is a temporal shift of the perceptual states, although it also smoothes out
short perceptual durations. Justification for the use of the particular
hemodynamic response function is given in the supplemental methods
and in supplemental Figure 2 (available at www.jneurosci.org as supple-
mental material). We did not correct for the time between experiencing
an alternation and pressing the button to indicate it. Using a leave-one-
out approach, we trained our classifier on 9 of 10 data sets and used the
10th data set for testing. For the SVM, training results in the creation of
support vectors within the multidimensional feature space (with fea-
tures � voxels) that maximize the separation between intensity values
belonging to each perceptual state. For the perceptron model, this results
in the creation of a particular set of weights for each voxel within the ROI
such that if voxel intensities are multiplied with these weights, summed,
and thresholded, it outputs a perceptual state associated with these voxel
intensities during a volume. Finally, for the differential mean, we obtain
two weight vectors (one for each perceptual state) that can be multiplied
with voxel intensities and summed (dot-product between the voxel and
weight vector). The predicted perceptual state is then equal to the per-

aWe present our criteria for area delineation because they are subject to some uncertainty, especially in higher
retinotopic visual areas. Some groups define V7 as an area adjacent and anterior to V3A that contains a crude
representation of at least the upper visual field, mirror-symmetric to that in V3A (Press et al., 2001; Tsao et al., 2003).
Tootell and Hadjikhani (2001) further define V4d-topo as the human topographic homolog (topolog) as an area
situated: (1) superior to V4v, (2) anterior to V3a, and (3) posterior to MT�. This area has been previously called
LOC/LOPS. We used this nomenclature previously (Brouwer et al., 2005a). However, some uncertainty still exists on
the organization of the dorsal retinotopic areas. Although a number of groups accept the existence of at least two
additional retinotopic areas beyond V3A, the controversy centers on the naming, function of these areas, and their
relationship to known macaque visual areas. Approximately the same location in visual cortex to what we call
V4d-topo has been termed the kinetic occipital region because of its sensitivity to motion-defined borders (van
Oostende et al., 1997). Also, it has been termed V3b to signify its relationship with neighboring area V3A (Press et al.,
2001). For consistency with our previous work, we maintain the label V4d-topo. However, because our areas were
mapped using simple flickering wedges, we refrain from making any definitive statements about the functional
properties of this area.
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ceptual state belonging to the weight vector with the highest associated
dot-product between voxel intensities and the weight vector. After train-
ing, we used the resulting classifiers to predict perceptual state on the
basis of voxel intensities during a particular volume of the test data.
Because both the SVM and differential mean produce a continuous pre-
diction value, we determined the sign of the prediction. By definition, the
perceptron model output is already binary, because it was thresholded
internally. Accuracy was determined comparing the predicted sign with
the actual sign of the perceptual state for each volume (87 volumes in
total). Leaving each run out in turn results in a mean accuracy and a SD,
allowing statistical testing of significance of the accuracy. For an overview
of the procedure, see Figure 1.

Eye movement recording and analysis
Eye movements were recorded during scanning using a custom-made
camera and mirror system. The camera, positioned at the feet of the
subjects, pointed toward the head coil where a mirror reflected the image
of one eye toward the camera. An infrared LED was used to illuminate the
eye so that it was visible for the camera. The iView software package was
used to record eye movements at a frequency of 50 HZ. For our off-line
eye tracking experiments, we used a commercial head-mounted infrared
eye tracker (Eyelink2; SMI, Berlin, Germany), sampling eye position at
250 Hz. Native gaze positions were rotated, sheared, and scaled to align
the fixation positions maximally with the location of the calibration
points (specified in visual angle). After this, we median filtered the data
(van Dam and van Ee, 2005) and applied drift correction, removing all
components with a frequency below 0.1 Hz. Velocities were calculated
using a sliding window of five samples [for details, see van Dam and van
Ee (2005)]. Blinks were detected as samples in which no gaze positions
were recorded (no pupil) and included all preceding and subsequent
samples with a velocity �12°/s. (Micro)saccades were identified as ex-
cursions (lasting more than two samples) to velocities �12°/s. The direc-
tion of the saccades was determined by calculating the angle between the
start and end points.

For the off-line experiments, eye movements of all five subjects were
recorded during strict fixation in a design identical to the main imaging
experiment. In addition, two subjects also participated in a second ex-
periment during which beneficial eye movements were encouraged. Dur-
ing scanning, we measured eye movements during strict fixation for two
subjects, while three subjects participated in a second imaging experi-
ment during which eye movements were allowed and encouraged. We
calculated gaze position densities for each perceptual state to determine
whether average gaze position differed between perceptual states. In ad-
dition, we determined whether alternations were preceded or followed
by specific eye movements. Finally, we used eye movement data to train
an SVM to classify, using these eye movements, the perceptual state of the
subject (CW/CCW). These measures included horizontal and vertical
position per sample, horizontal and vertical displacement (velocity) be-
tween samples, and the presence of a blink during a sample. Similar to the
imaging experiments, we used 90% of the data to train (9/10 runs) and
the remaining run to test the accuracy of the SVM. Because the gaze
position data were sampled at a frequency of 50 Hz, a very large number
of examples were available for training and testing compared with the
imaging data (acquired at a frequency of 0.5 Hz; TR, 2000 ms). Therefore,
we resampled the eye movement data to contain an equal number of
samples as the imaging data and retrained the SVM for a fair comparison
between methods.

Results
Psychophysics
We deliberately had the stimulus rotate (Fig. 2a) at a low angular
velocity to ensure that perceptual phases were relatively long last-
ing (Brouwer and van Ee, 2006). Mean percept duration was 9.4 s.
Figure 2b shows the distribution of perceptual phase durations.
The distribution of the perceptual durations (bars) can be ap-
proximated by a gamma-distribution (solid line), as has been
found for numerous other bistable stimuli. The fitted shape and
scale parameter for this distribution were 2.5 and 3.8, respec-

tively, and the fit quality was high: no significant difference was
found between fit and data ( p � 0.35; as quantified by a Kolmog-
orov–Smirnov test) (Brascamp et al., 2005; Brouwer and van Ee,
2005). This indicates that our particular stimulus is a representa-
tive example of a bistable stimulus; even when its rotation has
been slowed down to evoke relatively long-lasting perceptual
phases.

Predicting perceived rotation during ambiguous SFM
We first determined whether the activation of visual areas could
be used to predict the time course of perception. Using a leave-
one-out strategy, we trained a classifier (support vector machine
with a linear kernel) to predict perceptual states. The data from
the remaining run were then used to predict, per volume, the
perceptual state. Finally, the accuracy of this prediction was de-
termined. We used the voxels of separate visual areas, including
only those voxels that were significantly activated ( p � 0.001,
corrected) by the stimulus. When the raw and thresholded (using
a sign function) prediction of the classifier trained on the voxel
data of V7 is compared with the actual perceptual time courses
(Fig. 3a), it is apparent that the prediction of the classifier (linear
SVM) can be highly accurate over the course of a 180 s experi-
ment. Activation of MT�, higher dorsal visual areas V3A, V4D,
and V7, as well as the localized regions responsive to SFM (SFM-
aIPS, SFM-pIPS) could be used to predict perceived rotation
accurately: for these areas, the average accuracy was significantly
greater than chance ( p � 0.001) for all individual subjects (Fig.
3b). Prediction on the basis of the remaining visual areas was less
accurate, although significantly greater than chance in some areas
in some subjects.

In an additional analysis, we also determined whether the ac-
tivation of other, commonly localized visual areas could be used
to predict perceptual states. We localized the FFA, PPA, and FEFs
in all subjects. Prediction accuracy on the basis of these areas was
not significantly greater than chance (Fig. 3b). This demonstrates
that prediction accuracy is limited to a subset of visually respon-
sive areas and is not an aspecific meta-effect.

One issue with accurate prediction of the time course of per-
ception on the basis of BOLD data is the relatively low temporal
resolution of fMRI, compared with the average duration of per-
ceptual phases. If perceptual phases are short lasting, at least com-

Figure 2. Stimulus and psychophysics. A, Arrows indicate the two perceived rotation direc-
tion of the front surface of the sphere: CW or CCW. B, The distribution of the perceptual phase
durations (bars) during viewing of the ambiguously rotating sphere can be approximated by a
gamma-distribution (solid line), as has been found for numerous other bistable stimuli. This
indicates that our particular stimulus is a representative example of a bistable stimulus, even
when its rotation has been slowed down to evoke relatively long-lasting perceptual phases
(mean, 9.4 s; dotted line).
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pared with the BOLD signal, the BOLD signal can no longer
accurately reflect the temporal dynamics of the perceptual
phases. We specifically slowed down the rotation of the ambigu-
ously rotating sphere to increase the length of these perceptual
durations. Although this was successful in all subjects, the accu-
racy of the prediction still depends on the length of perceptual
phases: as perceptual durations increase in length, so does the
accuracy of prediction. This is shown in Figure 4a for areas V1
and V7. It also explains the relatively low accuracy found for
subject JX: the perceptual durations for this subject are relatively
short, compared with the other four subjects.

In an additional analysis, we verified whether the accurate
prediction relied on sustained activation related to perceptual
phases or was related more to transient activation related to tran-

sitions between perceptual states. For our original sustained
model, used for all experiments, we modeled the duration of
perceptual states by convolving these states with a canonical he-
modynamic response function. This is important because the
BOLD signal that is measures is delayed, relative to the timing of
perceptual states. We compared this sustained model with a tran-
sient model, which was created by convolving not the duration of
perceptual states but alternations between these states, resulting
in a model that captures activation associated with both types of
alternations. Given the temporal sluggishness of the BOLD sig-
nal, transient and sustained models inevitably show some corre-
lation. Testing both models on the data acquired from visual
areas V1 and V7, it becomes apparent that signals from area V7
indeed reflect sustained activation, because the accuracies for the
sustained model are significantly higher in four of five subjects
(Fig. 4b). For subject JX, the sustained model does produce
higher accuracies, although not significantly higher. As pointed
out above, the perceptual states of this subject were relatively
short, thereby making the transient and sustained model for this
subject more similar. In contrast, performance between both
models does not differ for the signal changes from V1.

Figure 3. SVM accuracy. A, Raw SVM (black lines), thresholded predictions (blue lines), and
actual perceived states (red lines) based on the activation of V7 in three subjects, demonstrating
the striking accuracy of the prediction. Error bars represent SD of the mean. B, Average accuracy
of SVMs per subject per ROI. Prediction was accurate for retinotopic areas V3A, V7, and V4D, as
well as area MT�and the parietal areas sensitive to structure-from-motion. For the other visual
areas, accuracy is lower but in most cases still significantly greater than chance. For the FEFs,
FFA, and PPA, prediction was at chance level. The asterisks indicate the areas for which in all
individual subjects, accuracy was significantly greater than chance ( p � 0.001).

Figure 4. Intersubject differences in accuracy. A, Dependency of the accuracy (based on the
voxels of V1 and V7) on the mean perceptual durations per subject (color coding) for all 10 runs.
As perceptual durations decreased in length, so did the accuracy. This explains the relatively
poor performance for JX, as well as the high performance for AK. B, Comparison of sustained and
transient models. For the data of V7, the sustained model (assuming signal changes correlate
with the perceptual durations) outperforms the transient model (assuming signal change cor-
relate with the transitions between perceptual states) in terms of the accuracy of the classifier
that has been trained. For the data of V1, sustained and transient models do not differ in the
accuracy. Error bars represent SD of the mean.
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Between-design, between-stimuli,
between-session generalization
Although we have demonstrated that within-stimulus, same-
session prediction is indeed possible and in some instances very
accurate, it is important to establish whether the classifiers can
generalize over sessions and/or different stimuli. To test this, we
first used an identical design containing disambiguated spheres
(see Materials and Methods). At random times, these spheres
changed rotational direction, mimicking as closely as possible the
perceptual alternations subjects would experience when viewing
ambiguous spheres. Subjects were instructed not to report such
changes in direction. In addition to being disambiguated, the
spheres also rotated at a higher velocity as did the ambiguous
spheres but were identical in size. We hypothesize that even in
light of these changes (no behavioral response and different ve-
locities), generalization should still be possible if the classifiers are
sensitive to the neural activation related to perceived rotation,
rather than the specific behavioral response or stimulus velocity.

The disambiguated data were used to train a classifier. Apply-
ing the classifier to the data of each ambiguous run, we again
obtained an average accuracy. Results show that generalized pre-
diction is poorer but follows the same trend as obtained previ-
ously (Fig. 5). Again, MT� and visual areas V3A, V4D, and V7, as
well as the parietal SFM-responsive areas, show an accuracy that
is significantly greater than chance ( p � 0.001) than the remain-
ing visual areas. Perhaps more important, activation of these ar-
eas can be used for generalized prediction (from disambiguated
spheres to ambiguous spheres) with an accuracy significantly
higher than chance.

As a second generalization, assessing the influence of our par-
ticular design (short runs, slow rotating spheres) on prediction,
we used the data obtained in a previous experiment (Brouwer,
Tong, Hagoort, and van Ee, unpublished observations) consist-
ing of much longer runs and a sphere rotating at a much higher
velocity to predict perceptual states. More specifically, we trained
classifiers on the data acquired in the present study and predicted
perceptual states using the data acquired in the previous experi-

ment performed on the same subjects. This produced a similar
pattern to those obtained for the disambiguated spheres: accu-
racy of the prediction was poor but still significantly better than
chance for V3A, V7, MT�, and the parietal areas (Fig. 5). Some-
what interesting, accuracy for area V4D was less robust and not
significantly greater than chance.

Eye movements
A possible underlying source for the predictive accuracy of our
classifiers could be strategic eye movements. High accuracy in
our experiment was found within retinotopic visual cortex, areas
that are quite sensitive to eye movements. Two possible eye
movement strategies could, in principle, affect activation within
visual cortex in such a way that activation changes become con-
sistent with perceptual states and could therefore be used by our
classifiers to predict perceptual states. First, subjects could exhibit
a difference in mean gaze position for the two perceptual states
(e.g., during CW perceived rotation, fixation could be displaced
slightly leftward, compared with CCW perceived rotation). This
will shift the stimulus on the retina and activate different parts of
retinotopically organized areas as a function of perceptual states.
A second and more subtle effect could be that subjects uninten-
tionally experience optokinetic nystagmus: the eyes are captured
by passing dots, causing smooth pursuit of the dot for a small
duration after which the eyes saccade back to the fixation dot.
This, too, could result in subtle differences between perceptual
states in terms of neural activation within visual cortex.

To determine whether such potential effects are influencing
the prediction accuracy of our classifiers in the current experi-
ments, we measured eye movements during scanning and, be-
cause eye tracking during scanning was limited to 50 Hz sample
rate, we also performed an off-line eye tracking experiment, using
a head-mounted eye tracker, sampling at 250 Hz (Eyelink2, SMI).
The off-line experiment, which examined the same five subjects
that participated in the imaging experiment and an identical
stimulus, demonstrated that fixation was highly accurate, with
95% of all gaze positions centered �1° of visual angle around the
fixation dot, shown for three subjects in Figure 6a. Additionally,
the frequency of (micro)saccades and blinks is relatively low,
limiting their influence on ongoing neural activity. Analyzing the
direction of saccades revealed that some subjects have a tendency
to make more saccades in the horizontal direction, as opposed to
more vertical saccades, but that this did not depend on perceptual
state. Most importantly, we determined whether significant shifts
between gaze positions could be observed between perceptual
states. Only one subject (subject GB) showed a minimal but sig-
nificant shift in mean horizontal gaze position between percep-
tual states (t31 � 2.3653; p � 0.02126). Furthermore, no consis-
tent pattern is observed between the remaining subjects: for some
subjects, mean gaze position related to CW perceptual states are
displaced to the left of the mean gaze position related to CCW
perceptual states; for some subjects, this is reversed.

During scanning, we recorded eye movements in all five sub-
jects. For two subjects, these were recorded during the original
experiment, performed under strict fixation. The remaining
three subjects participated in a second experiment, identical to
the first except that now deliberate and beneficial eye movements
were encouraged. Figure 6b compared the gaze position densities
during fixation (subject GB) and during eye movement condi-
tions (subject LD). Clearly, subject LD used strategic eye move-
ments, as her gaze positions depended heavily on the perceptual
state. For subject GB, no such effects are observed.

Comparing the prediction accuracies between fixation and

Figure 5. Generalization. Accuracy of the prediction when the SVM was trained on the data
from the disambiguated sphere experiment (black discs) and on the data from an entirely
different experiment (gray discs) of Brouwer et al. (2007). Accuracy is reduced, but significantly
greater than chance for areas V3A, V7, and MT� and the two parietal areas SFM-aIPS and
SFM-pIPS. This indicates that generalization, a key feature in prediction, is possible between
sessions and stimuli. Error bars represent SD of the mean.
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eye movement conditions reveals that allowing eye movements
actually reduces prediction accuracy on the basis of cortical acti-
vation (Fig. 6c). These combined results indicate that predictive
accuracy of the SVM based on BOLD signal changes is not con-
founded by eye movements, although it remains possible that
small, undetectable changes in gaze position underlie our predic-
tive accuracy.

Discussion
In a first study using fMRI and ambiguous
structure-from-motion, we showed that
accurate prediction of the content of vi-
sual awareness during ambiguous SFM is
possible on the basis of the activation
taken from area MT� and dorsal retino-
topic visual areas V3A, V4D, and V7, as
well as two parietal areas responsive to
SFM. The activation of the remaining vi-
sual areas was not as reliable in predicting
perceptual states, but in most subjects it
was still significantly above chance level.
This demonstrates that activation of visual
areas reflects the content of awareness
during perceptual bistability.

An important study, on which our
methodology is based, was recently con-
ducted for binocular rivalry. This study re-
ported that the activation of lower-tier
retinotopic areas (e.g., V1 and V2) can be
used to predict perceptual states (Haynes
and Rees, 2005b). Here, we found that for
ambiguous SFM, prediction on the basis
of these lower-tier areas was only modest,
although significant in three of five sub-
jects. This difference likely reflects the dif-
ference between perceptual and binocular
rivalry. An important distinction between
binocular rivalry and perceptual rivalry is
the difference in the phenomenological
quality of both the perceptual states and
the alternations between them. Binocular
rivalry is best characterized by changes in
visibility of each half-image. When a half-
image is suppressed, it can no longer be
seen. In contrast, perceptual rivalry (in-
cluding ambiguous SFM) is less about vis-
ibility but more on interpretation of cues
and the conflict that exists between these
cues (clockwise or counterclockwise rota-
tion). We argue that the differences in the
accuracy of visual areas between both
classes of rivalry is related to the phenom-
enological difference between them. Be-
cause of technical limitations, Haynes and
Rees (2005b) could not assess the accuracy
of visual areas beyond V3, making it some-
what difficult to directly compare neural
correlates of binocular and perceptual ri-
valry in higher-tier areas. However, in
their study and in the present study, area
MT� was localized. The difference in ac-
curacy between binocular rivalry (Haynes
and Rees, 2005b) and perceptual rivalry

(our study; ambiguous SFM) is as striking as it is interesting.
Activation of MT� could not be used for accurate prediction of
perceptual states during binocular rivalry. In contrast, perceptual
rivalry prediction on the basis of MT� activation reached high
accuracies. This discrepancy likely reflects an additional differ-
ence in the processing between the two stimuli. For ambiguous
SFM, it is the motion that is ambiguous or conflicting, whereas

Figure 6. Eye movements. A, Gaze position density plots for three subjects during the off-line eye tracking experiments with
strict fixation instructions. In these density plots, the color gradient coding indicates how frequent a particular location was visited
during the two perceptual states; the white circle reflects the stimulus circumference. The inset shows the region around fixation.
Dark ellipses indicate the region containing 95% off all gaze positions. In all subjects, gaze positions fall within an area �1° of
visual angle around the fixation spot. Furthermore, differences in mean gaze positions between perceptual states were minute. B,
Gaze position densities for two subjects during the imaging experiments with strict fixation (subject GB, left) and with beneficial
eye movements allowed and encouraged (subject LD, right). Subject LD used strategic eye movements, as her gaze positions
depended on the perceptual state. C, A comparison of prediction accuracy based on the activation taken from visual areas that
showed the highest accuracy in the main experiment, during strict fixation (light bars) and during eye movement conditions (dark
bars) for the three subjects who participated in both imaging studies. Prediction accuracy is reduced when eye movements are
allowed, demonstrating that even beneficial and strategic eye movements are not responsible for the observed accuracy in the
main (fixation) imaging experiment.
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for binocular rivalry, it is the dissimilarity in input between the
orientation of gratings in the two eyes. The specific binocular
stimulus used by Haynes and Rees (2005b) contained identical
pattern rotation direction for the half-images of the two eyes. We
speculate that if the pattern rotations were in opposite directions,
the activation of MT� would have been predictive of perceptual
states.

In addition to MT�, activation of dorsal retinotopic visual
areas V3A, V4D, and V7 provided high accuracy for prediction of
perceptual states. This provides converging evidence for the role
of these areas in both motion processing and motion perception,
as a number of studies have already implicated at least V3A as an
additional motion-sensitive area (Tootell et al., 1997; Kamitani
and Tong, 2006). V4D has also been termed the kinetic occipital
region and is responsive to motion and motion boundaries (van
Oostende et al., 1997), making it suitable for the processing of
structure-from-motion and representing the perceived direction
of rotation. A similar argument can be made for two SFM-
sensitive parietal regions (aIPS and pIPS), because there is exten-
sive evidence that, at least in humans, parietal cortex may contain
as many as four motion-sensitive areas, each responsive to
structure-from-motion to a varying degree (Orban et al., 2003,
2006). That the activation of these areas can be used to predict the
content of visual awareness with high accuracy suggests that neu-
ral correlates of perception can be distributed among several ar-
eas representing a particular (sub)modality, such as motion.

Eye movement recordings for both fixation and free eye
movement conditions demonstrated that for all subjects, fixation
was highly accurate when fixation was required. Furthermore,
only very small shifts in gaze position between perceptual states
were found in two of five subjects. When subjects were encour-
aged to make beneficial and strategic eye movements, this pattern
changed: now, gaze positions depended on perceptual states and
gaze densities spread out around the fixation dot, covering much
of the stimulus. At the same time, prediction accuracy on the
basis of cortical activation was reduced. These results imply that
the eye movements during ambiguous sphere experiments (un-
der strict fixation) are not confounding the prediction accuracy
of our classifiers on the basis of cortical activation. Note that for
two related studies, using a very similar ambiguously rotating
sphere, we analyzed eye movements and their correlation with
perceptual alternations in great detail (Brouwer and van Ee, 2006;
Brouwer et al., 2007) and also found that, although small but
significant correlations do inevitably exist, eye movements were
not the source of the activation underlying perceptual alterna-
tions experienced during SFM.

An important question that arises from both of the previous
studies (Haynes and Rees, 2005a,b; Kamitani and Tong, 2005,
2006) and the present study is what neural mechanisms allow for
accurate classification in the first place? Most likely, there exist
small but detectable biases in the distribution of direction-
selective neurons in the voxels of visual areas that allow for accu-
rate classification. As a result, these voxels show signal changes
(increases or decreases) when the perceived rotation alternates.
However, at any location on the sphere, regardless of perceptual
state, leftward and rightward motion is always present. Because of
this, no change in activation should ever be observed when neu-
rons within a visual area are sensitive only to two-dimensional
translational motion. The fact that dorsal visual areas can be used
to predict perceptual states during ambiguous SFM could imply
that already in these areas more complex motion-selectivity exists
(motion-in-depth). In single voxels, these signal changes are

weak and not significant. However, when pooled together, it is
possible to classify perceptual states based on the difference in
preferred direction of each voxel (Kamitani and Tong, 2006).
Alternatively, it is possible that the motion of the dots currently
belonging to the surface that is perceived to be front elicit a higher
response, compared with dots belonging to the back-surface.
This, in turn, could be attributable to observers’ attention to these
front-surface dots, or a competition between dots belonging to
the front and back surface for saliency. Finally, it could be that
differences in the focus of spatial attention between perceptual
states can evoke subtle but measurable changes in activation.

In principle, at least two separate neural correlates of bistable
perception can be present: sustained activation related to either
perceptual states or transient activation related to the transitions
between these states. Comparing these two models revealed that
modeling the activation of visual areas as being sustained pro-
duces significantly higher accuracies as when models are tran-
sient in nature, as found previously (Haynes and Rees, 2005b).

It is important that our multivariate classifiers can generalize
over certain aspects of the stimulus that we deem to be unrelated
to the phenomenon being predicted (perceptual states), because
successful generalization can indicate that our underlying as-
sumptions about these multivariate techniques are correct. We
demonstrated that generalization from unambiguous to ambig-
uous stimuli, as well as generalization between sessions, stimuli
and designs was possible. We hypothesized that, in principle,
such differences between stimuli and/or design should not reduce
accuracy below chance level if successful classification is de-
pended on perceived rotational direction, regardless of the char-
acteristics of the stimulus giving rise to such perceived states.
However, accuracy was reduced, suggesting that the pattern used
for classification can be very specific for a particular stimulus.

In conclusion, our results indicate that accurate prediction of
perceptual states during ambiguous SFM is possible on the basis
of the activation taken from area MT� and dorsal retinotopic
visual areas V3A, V4D, and V7, as well as two parietal areas re-
sponsive to SFM. This indicates that during perceptual rivalry
(SFM), like binocular rivalry (Haynes and Rees, 2005b), retino-
topic visual cortex actively represents the content of visual aware-
ness over time. We argue that in contrast to binocular rivalry,
accurate prediction of ambiguous SFM (a form of perceptual
rivalry) is more successful for the data of higher-tier, dorsal visual
areas. These differences could give rise to the phenomenological
difference between perceptual and binocular rivalry.
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