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Existing neural explanations of spontaneous percept switching under steady viewing of an ambiguous stimulus do not fit the
fact that stimulus interruptions cause the same percept to reappear across many ON/OFF cycles. We present a simple
neural model that explains the observed behavior and predicts several more complicated percept sequences, without
invoking any “high-level” decision making or memory. Percept choice at stimulus onset, which differs fundamentally from
standard percept switching, depends crucially on a hitherto neglected interaction between local “shunting” adaptation and a
near-threshold neural baseline. Stimulus ON/OFF timing then controls the generation of repeating, alternating, or more
complex choice sequences. Our model also explains “priming” versus “habituation” effects on percept choice, reinterprets
recent neurophysiological data, and predicts the emergence of hysteresis at the level of percept sequences, with occasional
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Introduction

How does the visual system choose a specific percept at
the onset of ambiguous or conflicting stimuli? Percept
switching during continuous viewing (Alais & Blake,
2004; Blake & Logothetis, 2002) can be broadly
explained by how neural adaptation and noise eventually
disrupt the competitive short-term stabilization of the
current percept. However, it is a long-standing challenge
(Orbach, Zucker, & Heath, 1963) to find a mechanism that
explains how (multisecond) interruptions of an ambiguous
stimulus cause the same percept to reappear across many
stimulus ON/OFF cycles. Indeed, the first adaptation-
based attempt to explain ambiguous percept repetition
(Orbach et al., 1963) failed to reconcile such percept
repetition with spontaneous percept switching and with
the usual opposite-percept “aftereffect” of unambiguous
stimuli (aftereffect persistence across interruptions was
explained only recently; van de Grind, van der Smagt, &
Verstraten, 2004). Later psychophysical work showed that
shorter interruptions of ambiguous stimuli replace percept
repetition by alternation (Kornmeier & Bach, 2005;

Orbach, Zucker, & Olson, 1966) but that repetition occurs
for a wide diversity of stimulus types (Leopold, Wilke,
Maier, & Logothetis, 2002) and conditions (Pearson &
Clifford, 2004), even when various stimuli are presented
as interleaved sequences (Maier, Wilke, Logothetis, &
Leopold, 2003). The attribution of percept repetition after
long interruptions to “perceptual memory” (Leopold et al.,
2002; Maier et al., 2003) conflicts with the occurrence
of percept alternation after short interruptions, and
attributing both to “pattern completion” (Maloney, Dal
Martello, Sahm, & Spillmann, 2005) raises the question:
Which specific neural mechanism underlies these
phenomena?
We construct a simple neural network model that

generates the observed percept-choice sequences (as well
as spontaneous percept switching), without any “high-
level” decision making or memory. Percept choice and
switching prove to be qualitatively different dynamical
processes (Guckenheimer & Holmes, 1983), with the
choice process probing directly how even a single stage of
competing neural representations can show remarkably
complex ambiguity-resolution behavior. We show that the
percept-choice process depends crucially on a hitherto
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neglected, near-threshold interaction effect between the
local adaptation mechanism and a small neural baseline.
Stimulus ON/OFF timing then controls the existence and
stability of repeating, alternating, or more complex choice
sequences. Our model also explains the observed “pri-
ming” versus “habituation” (Pearson & Clifford, 2005)
effects on percept choice and predicts emergent longer
timescale phenomena such as hysteresis at the level of
percept sequences, with occasional noise-induced “hop-
ping” between sequence types. The stimulus-onset locked
dynamics of the fast, early choice process enable neuro-
physiological tests with crisp time resolution, and our
model actually puts such recent results (Kornmeier &
Bach, 2005; Krug, 2004) in a new light. We also envisage
that attention- or task-related signals may slowly modulate
the neural parameters that control the repertoire of choice
sequences.

Results

The guiding principle of our approach is to recognize
the process of ambiguity resolution as an instance of a
class of dynamically equivalent nonlinear processes that
occur throughout nature (e.g., Cross & Hohenberg, 1993;
Murray, 1990) and that are mathematically well charac-
terized (Cross & Hohenberg, 1993; Guckenheimer &
Holmes, 1983): bifurcation of a stable equilibrium (here,
the “null” percept during stimulus interruption) into a pair
of short-term stable equilibria (the two possible percepts
during the ambiguous stimulus), while the pair symmetry is
weakly broken by a “slow” variable (the difference in adap-
tation states). Formally, our problem belongs to the simplest
class of codimension-2 bifurcations (Guckenheimer &
Holmes, 1983), and much of what we will need stems
from Euler’s 1744 analysis (Euler, 1960) of elastic
buckling under compression. Our task then becomes to
specify and analyze a particularly simple, neurophysiolog-
ically viable model that is representative of the huge class
of neural networks capable of robustly producing the
hitherto unexplained percept-choice dynamics, in addition
to the better known percept switching.

Minimal neural model

Several models of percept switching (e.g., Laing &
Chow, 2002; Wilson, 2003) use the neural outputs as the
primary dynamical variables. Given the thresholded
sigmoidal shape of neural firing-rate functions, this makes
such models blind to a subthreshold side effect of unequal
adaptation that we will identify as sufficient for producing
all hitherto unexplained percept-choice phenomena. With-
out this, one would be led to assume much more
complicated mechanisms (see the Appendix for details).

In our approach, neural outputs occur only as sigmoidal
transformations S(Hi) of the primary dynamical variables
Hi, called “local fields”, which correspond to the percept
(i)-related component of the membrane potentials of the
neurons that encode the two rivaling percepts, indexed by
i Z {1, 2}. Reducing the fast (timescale C ¡ 1) neural
dynamics to one of the simplest forms that captures all the
phenomena of interest here, we employ the pair of
differential equations

C@tHi ¼ Xi j ð1þ AiÞHi þ "Ai j +S½Hj�;
i; j;Zf1; 2g; i m j; ð1Þ

which specify how each Hi integrates its (preprocessed)
visual input Xi with the “shunting”-type gain control (1 +
Ai)Hi that implements adaptation and the subtractive
cross-inhibition +S(Hj). The crucial role and meaning of
the term "Ai (or its equivalent alternatives) will become
clear in the course of our analysis. As adaptation
dynamics, we use the simplest possibility, a standard
“leaky integrator”

@tAi ¼ j Ai þ !S½Hi�: ð2Þ
As long as the Ai dynamics timescale (taken as 1) is

much slower than the Hi dynamics timescale (C ¡ 1), it
does not affect the pattern of our results. Unless stated
otherwise, we assume strictly ambiguous inputs Xi = X,
because we focus on how the system resolves ambiguities
based purely on its slowly evolving adaptation levels Ai.
Visit Supplementary Material for Simulink code of a
neural network directly matching this form of the model.

Percept choice versus percept switch

The first notable result is the fundamentally different
nature of the dynamical process behind percept choice
(directly after stimulus onset) compared to spontaneous
percept switching (after prolonged viewing): The choice
process (Figure 1a) corresponds to how Hi trajectories that
start near the origin (reached during the stimulus inter-
ruption) suddenly diverge when approaching the saddle
point (aptly named for its combination of stable and
unstable directions) that lies between the two coexisting
attractors that encode the two potential percepts. Hence,
ambiguity resolution is best probed by responses to the
onset of ambiguous stimuli. By contrast, a percept switch
(Figure 1b) occurs after prolonged stimulus presentation,
when neural adaptation of the current percept representa-
tion (here, A2 d A1) has slowly destabilized its own
attractor. Shortly before the attractor disappears by fusion
with the saddle point, neural noise will make the system
escape from the remnant of the attractor, followed by
motion toward the opposite percept attractor. As expected,
moderate stimulus perturbations (with no correlation or
with anticorrelation between the two Xi values) modulate
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the timing of each switch event (Kim, Grabowecky, &
Suzuki, 2006; Lankheet, 2006), and this can be a rich
source of information about how adaptation and noise
interact in triggering a percept-switch event. However, it
is important to realize that perturbing the percept-switch-
ing process probes how bistability is lost, not how the
neural network can choose systematically between per-
cepts with concurrently stable representations.

Choice alternation or repetition

Focusing on the choice process, the main question
becomes what determines the “fate” of trajectories after
onset of a fully ambiguous stimulus (X1 = X2). With
symmetric adaptation (A1 = A2, as in Figure 1a), the fate
depends only on whether the (H1, H2) state at onset of the
stimulus is below or above the diagonal H1 = H2.
Independently of ", the initial (H1, H2) is ideally exactly
on the diagonal and close to (0, 0), but it is instructive to
consider small perturbations of this, which then determine
the fate of their trajectories as shown in Figure 1a. One
also notices the existence of one special (unstable)
trajectory that ends at the saddle point; this special
trajectory is key to understanding the choice process in
any situation because it forms part of the “separatrix”, the
locus that separates all trajectories leading to Percept 1
from those leading to Percept 2. An immediate conse-
quence is that systems without such a separatrix (e.g.,
Freeman, 2005) do not cover the well-defined percept-
choice phenomena we address here.

For asymmetric adaptation (but not so extreme as to
destroy one of the attractors), the saddle point and the
separatrix attached to it shift leftward and upward when
A2 9 A1 and vice versa. Such adaptation asymmetry
occurs, for example, when the system was predominantly
in one of its attractors before the most recent stimulus
interruption. All models that (like our case " = 0) cannot
shift the initial Hi point relative to the separatrix thus
predict that the next percept choice is always opposite to
the previous one, contrary to the observations (Orbach
et al., 1963; say, for off-times of more than 1 s). Reduction
of adaptation asymmetry has been suggested (Blake,
Sobel, & Gilroy, 2003; Chen & He, 2004; Orbach et al.,
1963) as a possible cause of percept repetition, but our
analysis makes clear that this does not sufficeVeven small
Ai asymmetry in the usual (" = 0) types of models still
predicts choice alternation, and increasing the off-time
until the Ai asymmetry decays to the noise level only
produces random percept choices. The initial Hi point
must be shifted off the diagonal in the same direction as
the separatrix is shifted by adaptation asymmetry to allow
the previous percept to be chosenVin fact, the initial Hi

shift must overcompensate for the separatrix shift.
Reconsidering the Hi dynamics (Equation 1), one con-
cludes that the model must have " 9 0.
Mathematically, the term "Ai must be in the model

simply because it is the lowest order symmetry-allowed
term that, even when small, can drive a bifurcation, that is,
an addition or deletion of qualitatively different types of
system behavior. This standard demand on models is prior
to any interpretation of its equations or solutions. In our
case, all other formally allowed small changes to the
model are found to be either equivalent to " or incapable
of driving a bifurcation; thus, leaving all these irrelevant
but often “realistic” terms out of the model is safe, and it
reduces the analysis to the simplest possible level.
Psychophysically, capturing the hitherto unexplained
“repetition” choice sequences within the model requires
" 9 0, as loosely argued above. The precise dynamical
explanation is given in the rest of this article, together
with several new predictions. The switching process is not
substantially affected by the small " values that explain
observed choice sequences.
Neurophysiologically, there are several possible inter-

pretations of a " 9 0 term in the model, which often
explain other surprising findings as well. For example,
literal translation of both Ai and Hi equations into separate
neuron pools yields Ai signaling neurons coupled
(with strength ") to the Hi neurons whose gain they
down-regulate via shunting inhibition. Such Ai signals
explain the hitherto perplexing observation (Leopold &
Logothetis, 1996) that many of the neurons that carry
percept i signals when driven by unambiguous stimuli,
carry a signal with large phase shift relative to percept i
dominance when driven by steady ambiguous stimuli (i.e.,
under spontaneous percept switching, as in Figure 1b):
Switching from, say, Percept 2 to Percept 1 corresponds to

Figure 1. The dynamics of percept choice (a) differs qualitatively
from that of a spontaneous percept switch (b): Percept choice is
due to divergence of trajectories approaching the saddle point,
whereas percept switching is due to adaptation-driven destruction
of the currently active attractor (a standard “saddle-node”
bifurcation; Guckenheimer & Holmes, 1983). Both panels show
(i) the trajectories (black) of the choice or switch events, (ii) the
fast-dynamics flow field ¯tHi (arrows) defined by Equation 1,
(iii) the red (blue) null clines (loci where ¯tHi = 0) that summarize
the crucial, that is, geometric, structure of the Hi dynamics: The
saddle point is their on-diagonal intersection in Panel a, and the
attractors are their other two intersections (see the Appendix for
additional examples).
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A2 reaching its peak, and this implies that H2 peaked
nearly half a cycle earlier, shortly after Percept 2 started.
Alternatively, a purely formal substitution of the Hi by

shifted hi K Hi j " puts our model into the exactly
equivalent form

C@thi ¼ Xi j " j ð1þ AiÞhi j +S½hj þ "�; ð3Þ

@tAi ¼ jAi þ !S½hi þ "�; i; jZ 1; 2f g; i m j: ð4Þ

Hence, " can also be interpreted simply as a fixed signal
“baseline”. It now performs the same function purely intra-
neurally (note that this role is now less obvious from the
equations), but the existence of phase-shifted neural signals
(Leopold & Logothetis, 1996) could still be attributed to
separate Ai-carrying neurons. Visit Supplementary Material
for Simulink code of a neural network directly matching
this form of the model. More generally, any mixture of the
two equivalent model forms and their neural interpretations
is equivalent, and this extends to a much wider but
precisely delimited range of model variants (see the
Appendix).
In either form, the term parametrized by " interacts with

the shunting-type adaptation term j(1 + Ai)Hi to yield
offsets ,"Ai/(1 + Ai) in the Hi value at each stimulus onset,
relative to their nonadapted values (for details, see the
Appendix). As explained below, it is the size of these
Ai-dependent offsets that determines each choice of
percept. The fact that their values depend on percept
history (via the Ai) will then be shown to explain all known
percept-repetition sequences and to predict a host of others.
Before we analyze these two temporal scales of choice
dynamics, it is worth noting that the crucial Hi shift signals
,"Ai/(1 + Ai) arise from the shunting (or “gain control”)
adaptation we use (but if this is present, the effect is not
destroyed by common-mode subtractive adaptation, see the
Appendix). Most rivalry models (e.g., Hock, Schöner, &
Giese, 2003; Laing & Chow, 2002; Matsuoka, 1984;
Wilson, 2003) use purely subtractive adaptation. This leads
to the opposite of our predictions because it replaces our
product term (1 + Ai)Hi by a linear term of the same form
as our "Ai but with a strongly negative " value.

Percept-choice dependence on Ai and "

How does the combination of a fixed " with the slowly
varying adaptation state (A1, A2) determine whether the
less adapted or the more adapted attractor is chosen at
each stimulus onset? Having identified that the interaction
of these factors generates small offsets ,"Ai/(1 + Ai) in the
Hi at stimulus onset, one could guess that any (above-
noise) difference between these offsets simply gives one
of the two Hi a decisive “head start” in the “race” to

dominant activation. Analyzing the actual dynamics of
this race leads to less obvious but crucial insights and
predictions. The first result, illustrated in Figure 2a, is that
" must exceed a finite (but moderate) value before the Hi

offset that it creates is sufficient to overcompensate for the
shift of the separatrix caused by moderate Ai asymmetry.
In psychophysical terms, this “primes” the system to
choose the more adapted percept (Pearson & Clifford,
2005; Figure A2 explains how this does not prevent
normal aftereffects [van de Grind et al., 2004], that is,
choice of the lesser adapted percept [Pearson & Clifford,
2005], when unambiguous stimuli are used to induce
adaptation).
The second result is shown in Figure 2b: Given a

sufficiently positive ", the choice of the more adapted
percept persists in a large but finite regime of adaptation
states Ai, the two lower left sectors. However, for very
large Ai (upper right pair of sectors), the difference in Hi

offsets "Ai/(1 + Ai) can no longer surpass the separatrix
shift; the system then chooses the less adapted percept.

Figure 2. (a) Red/blue trajectories (destined for Percepts 1 and 2)
show how the interaction of a finite " 9 0 with any moderate Ai

asymmetry (here, {A1, A2} = {0, 0.1}) shifts the Hi initial conditions
sufficiently (blue) or insufficiently (red) to overcome the Ai

asymmetry-induced shift in the saddle point and separatrix (black
trace). (b) Red/blue (Percepts 1 and 2) sectors in (A1, A2) space
show that with a fixed " (here, " = 4/(3!)) that is large enough to
choose the more adapted attractor at low and moderate Ai values
(lower left sectors), there are still two upper right sectors at large
Ai where the less adapted percept is chosen. This inverted choice
regime is essentially due to saturation at large Ai of the shifts "Ai /
(1 + Ai) in the Hi fixed points, whereas the saddle point continues
to shift, eventually annihilating one of the attractors (Figure 1b).
The curved boundary between the two sets of sectors shifts to the
lower left for smaller ", and it completely disappears for a small
" 9 0, as already suggested in Panel a. The crossing of the
sector boundaries is, of course, nongeneric under input asymmetry
(X1 m X2), such as after unambiguous adaptation of preprocessing
stages; this causes the system to produce a normal aftereffect,
that is, choice of the least adapted percept (see Figure A2 for
details).
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Choice sequences: Role of ON/OFF timing

In experiments, it will generally be difficult to control
the adaptation states Ai directly, especially because any
induction of unbalanced adaptation states in the preceding
stages destroys the ambiguity of the inputs Xi to the
percept-choice network, thereby obliterating the process
of interest. The simplest suitable stimulus sequence is a
periodic ON/OFF cycle of the same ambiguous stimulus,
which allows indirect control over the Ai state at each
stimulus onset by means of the TON and TOFF durations.
This is precisely the type of stimulus by which interrupt-
induced percept repetition and alternation were discovered
(Orbach et al., 1963, 1966). The ensuing choice sequence
can then be understood fully in terms of the Ai dynamics
during the on and off phases of the cycleVthe fast (Hi)
dynamics of the percept-choice map shown in Figure 2b
acts only at each stimulus onset. This also reduces the
choice-relevant Ai dynamics to a discrete-time process,
Ai(t) Y Ai(t + TON + TOFF). This (effectively discontin-
uous) Poincaré map (Guckenheimer & Holmes, 1983)
thus contains all information about the existence and
stability of all possible choice sequences.
In Figures 3a and 3b, the Ai trajectories are plotted for

the two most prominent types of percept-choice sequences
that can be produced: For relatively long TOFF (Panel a),
the Ai trajectories quickly settle into an attractor that
corresponds to repeatedly choosing the same percept,
either Percept 1 or Percept 2 depending on the initial
condition. For much shorter TOFF (Panel b), the system
settles into a sequence of choosing Percept 1 or Percept 2
in alternation. Here, the initial condition merely deter-
mines the eventual phase of the percept sequence. For
intermediate TON, TOFF values, the “repeat” and “alter-
nate” attractors coexist, leading to dependence on the
initial conditions, to hysteresis, and to noise-induced
hopping between the three possible choice sequences
(see Figure A4a and its discussion). Panel c shows the
(TON, TOFF) regimes in which various choice-sequence
types occur, when using low-adaptation initial conditions.
In addition to the repeat and alternation sequences, one
may note that, for large TON, the model also produces
sequences with spontaneous percept switches inserted
between, and nonlinearly interacting with, the choice
events. Given the known highly stochastic timing of
percept-switch events (as expected for noisy Hi and/or Ai),
these regimes are not optimally probed by regular ON/
OFF cycles; hence, we leave their detailed study to
another occasion.
Our model makes no assumptions about the specific

visual modalities of the stimuli, but it is an open question
whether the (hysteretic) transition between various choice-
sequence types can be found in all modalities that allow
percept-choice dynamicsVparameters such as ", which
are crucial to percept choice but hardly affect percept
switching, may well differ between the neural stages that
encode different visual modalities. So far, repeat and

alternation sequences have been reported with certainty
only for Necker cubes (Kornmeier & Bach, 2005; Orbach
et al., 1966). More diverse experiments and systematic
studies of the predicted stimulus timing dependence are
clearly called for.

Psychophysical test

As a first exploration, we have tested ambiguously
rotating spheres, as well as binocularly rivalrous gratings.
The results, summarized in Figure 4, are consistent with
the predicted patterns: Broadly speaking, using shorter
TOFF intervals tends to replace percept-choice repetition
by choice alternation. The crossover TOFF timescale we
found is roughly one order of magnitude smaller than the
(independently measured) timescale of spontaneous per-
cept switches. The neural adaptation timescale is
unknown, but it is probably of the same order of the
switching timescale. Thus, our finding of a relatively short
TOFF timescale for the coexistence and/or transition zone
between percept-repetition and alternation sequences
suggests that " is larger than the value used in plotting
Figure 3c, although the position and shape of the cross-
over region depends on all other parameters, including the
unknown effective shape of the nonlinearities. The cross-
over (TOFF, TON) regimes were roughly overlapping
among our four subjects, but the predicted lack of
reproducibility due to sequence hysteresis and noise-
induced sequence hopping makes precise comparisons
difficult. We avoided the long TON regime where sponta-
neous switching complicates the dynamics but sampled
TOFF down to very small values where temporal blurring
of short interruptions begins to make our modeled
processes break down (see the Appendix for details).

Discussion

Our model has shown how a rich repertoire of percept-
choice behavior emerges from the generic dynamical
properties of even a single neural stage of rapidly
competing and slowly adapting (proto-)percept represen-
tations. The results disprove the need to invoke high-level
decision-making or memory processes and provide a
coherent set of neural and perceptual predictions for
detailed experimental testing.
The local control of each percept choice by neural

adaptation has already been tested to some extent, and the
results fit our model: Inserting either ambiguous or
unambiguous stimulus pulses (Pearson & Clifford, 2005)
within interruptions has shown that ambiguous pulses
“prime” percept repetition (as we calculate for the long
TOFF used), whereas unambiguous pulses reduce percept
repetition (the classical aftereffect) by unbalancing the
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Figure 3. (a and b) Typical Ai trajectories, starting from various initial conditions A1 9 A2, during ambiguous stimulus ON/OFF cycles with
TON, TOFF values such that the percept-choice dynamics are attracted into either the repeat (a) or the alternation (b) type of percept
sequence (see Panel c for full sequence classification). The red/blue trace coloring is based on the initial Ai values and matches that in
Figure 2b. The fast choice (Hi) components of the full network dynamics can still be read from their effect on the Ai dynamics: Each
trajectory shows two sharply distinct segments per cycle: During the off-phase, the exponential decay of both Ai shows up as a leftward
and downward straight-line segment. During the on-phase, a smoothly curved segment is added. Its shape depends on the percept
choice, as decided by the sectors (red/blue) in Figure 2b: In Panel a, with TON = 1/2, TOFF = 1, each on-segment shows first the transient
of both Hi pair to the saddle point. When the choice is made (here, for a “repeated” percept), the trajectory bends away from the diagonal,
as the dominant percept Ai keeps accumulating while the other Ai decays again. Over a few cycles, all trajectories are seen to converge
on one of two attractors, corresponding to the “Repeat 1” or “Repeat 2” sequence. In Panel b, with TON = 1, TOFF = 1/4, the shorter off-time
shows up as shortened straight-line segments. In combination with the longer on-times, this causes the trajectories to leave the repeat
sectors in Figure 2b and quickly approach an alternation attractor, common to all trajectories (thus mixing up the red and blue traces).
(c) Example of the various percept-choice sequence types (colors) that are produced across (TON,TOFF) space, in a wide range of initial
conditions with low, asymmetric Ai. Sequence types are symbolized with “1” and “2”, labeling the two competing percepts, appearing
either alone or in sequential pairs within subsequent on-intervals; commas represent the off-intervals. On- and off-times are in units of the
adaptation time constant. Note: These sequence types are generic within the wide class of systems that our model is a particularly simple
representative of, but the positions, slopes, and shapes of the regime boundaries depend on all parameters of the model, including its
initial conditions, and on the pulse shape of the inputs Xi to our stage, which will actually depend on the impulse responses and adaptation
characteristics of all preprocessing stages. Nevertheless, as long as TON does not allow within-cycle switches, increasing " always favors
repetition over alternation, and a larger TOFF will do the same under most conditions. See Figure A4 for the effects of hysteresis and noise.
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inputs Xi to our stage through unbalanced adaptation of
preceding stages (see Figure A2 for details). Furthermore,
the disruption of percept repetition by retinally displacing
the stimuli during each interruption (Chen & He, 2004)
fits our result that the adaptation states of competing local
feature representations are required to enable the dynam-
ics of percept repetition.
Many of our predictions focus on the role of stimulus

timing (TOFF, TON) as a practical means of influencing the
adaptation state of the system at each stimulus onset so
that it favors percept repetition or alternation sequences
(although this bias is also predicted to show hysteresis and
noise effects). An early psychophysical study (Orbach
et al., 1966) found some signs that percept repetition
breaks down at short TOFF, as we calculate, but studies
across several decades since then have focused on the
repetition regime (Leopold et al., 2002; Maier et al., 2003;
Pearson & Clifford, 2004, 2005)Vin the few cases where
some percept alternation was reported, it appears to be due
at least partly to the insertion of unambiguous stimuli or
other perturbations (Chen & He, 2004; Kanai, Moradi,
Shimojo, & Verstraten, 2005; Maloney et al., 2005;
Pearson & Clifford, 2004, 2005; see also the Appendix).

Very recently (Kornmeier & Bach, 2005), however,
alternating choice sequences evoked by Necker-cube
stimuli with short TOFF were used to allow stimulus-
locked EEG measurements intended to probe the switch
process. Our analysis indicates that this experiment, in
fact, probes the very different process of percept choice,
but this only increases the relevance of this experiment to
understanding how the visual system handles actually
bistable (rather than temporarily monostable) percept
representations. The finding (Kornmeier & Bach, 2005)
of occipital choice-related signals at around 100 ms after
stimulus onset, well before any response in “higher”
stages, strongly supports our theory and contradicts the
attribution of the choice process to high-level factors
(Leopold et al., 2002; Maier et al., 2003; Maloney et al.,
2005).
The stimulus-onset locking of each choice event enables

the use of neurophysiological techniques with high time
resolution that can probe the nonlinear neural dynamics
underlying the choice process. The simple neural structure
we have shown to be capable of producing choice
sequences can be expected to exist at several stages. The
lowest level stage that resolves an ambiguity then prevents
subsequent stages from changing the percept sequence.
However, a next-level stage may be revealed by dynam-
ically “disabling” the first stage by specifically designed
ambiguous stimuli, for example, analogous to the “flicker-
and-eyeswitch” stimuli used to probe multilevel percept
switching (Pearson & Clifford, 2004; Wilson, 2003).
It would be worthwhile to test more specifically that

individual percept-choice events at stimulus onset are
causally independent of the neural decision-making (Gold
& Shadlen, 2001) processes that undoubtedly occur at
higher stages. Indeed, the seemingly “cognitive” ambi-
guity-resolution abilities of our model could well occur
even in the much smaller and simpler neural systems of
lower animals, and they should be relatively resistant to
moderate levels of anesthesia in higher animals. Note,
however, that it is perfectly possible, even likely, that
relatively slow top–down signals (encoding, e.g., attention
or instruction effects, Ooi & He 1999) can modulate the
effective parameters (especially ") that control the
stimulus-timing regimes where various choice sequences
occur, without deciding each individual percept choice.

Appendix A

Model construction and analysis

Interaction between neural processes with two clearly
separate timescales is a crucial ingredient of nearly every
theory about perceptual rivalry or ambiguity (Alais &
Blake, 2004; Blake & Logothesis, 2002): “fast” cross-
inhibition between the neural representations of distinct
percepts and a “slow” neural adaptation process. Indeed,

Figure 4. Percentage of “percept repetition”, averaged over four
subjects, measured at 44 points in (TOFF, TON) space, for very
different types of percept competition: binocularly rivalrous
gratings (a), and a depth/rotation ambiguous random-dot sphere,
rotating about a vertical axis. Statistical errors on the plotted
averages are about 10% throughout. Besides the broad pattern
(more alternation at small TOFF) that is common to both types of
stimuli, one may note the predicted breaking up of measured
regime boundaries due to the sequence hysteresis and noise-
induced sequence-hopping phenomena that are also character-
istic dynamical properties of our model. See the Appendix for the
slight increase in formal repetition probability at very small TOFF.
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the various forms of these processes implemented in different
models (Hock et al., 2003; Kalarickal & Marshall, 2000;
Laing & Chow, 2002; Lehky, 1988; Matsuoka, 1984;
Wilson, 2003) have all proven capable of broadly reproduc-
ing the dynamics of spontaneous perceptual switching,
which is usually thought to provide access to the core
mechanisms underlying the ability to resolve perceptual
ambiguity or conflict. Realizing that switch events only
probe how bistability is (temporarily) lost, we set out to find
an explicit mechanism that explains the dynamics of choice
between actually multistable percept representations.
In the main text, we proposed and analyzed the simplest

viable sets of dynamical equations that capture percept
choice as well as percept switching. Our explanation of
the known choice phenomena (Kornmeier & Bach, 2005;
Leopold et al., 2002; Maier et al., 2003; Orbach et al.,
1963, 1966; Pearson & Clifford, 2004, 2005), and
prediction of new ones, via analysis of this model also
identified why and how our model has to differ from all
known models. This first fully mechanistic explanation of
choice sequences also removes the hitherto perplexing
apparent contradiction between percept-choice repetition
and the normal aftereffect (van de Grind et al., 2004).
We also pointed out already how two neurophysiolog-

ically distinct schemes (in fact, any mixture of these
extremes) produce the same dynamical behavior, thus
inviting future neurophysiology to find which, if any, of
these schemes is actually used. Simulink code for both
schemes can be downloaded as Supplementary Material.
This allows hands-on experience that may help readers see
how the striking neural differences that directly involve
the “facilitatory” versus “habituation” effects, which
intuitive approaches have aimed to use for explaining
percept-choice dynamics, prove to be neither sufficient nor
necessary factors and, thus, cannot offer a full mechanistic
explanation. As we showed, the explanation becomes
clear only via analysis (mostly, the qualitative geometry
of attractors, saddle point, and separatrix) that extracts
what really matters from the confusingly diverse and rich
set of incidental aspects and “confounding factors” that
abound in any realization.
Below, we present several more detailed examples and

explanations of aspects that we summarized in the main text.

Importance of representing subthreshold states

As mentioned in the main text, using the membrane
potentials (Hi or hi), rather than neural outputs S(Hi), as
the primary dynamic variables of the model is not only
more realistic but also crucial to discovering that all
known percept-choice behavior already emerges from
extremely basic, one-stage rivalry models. This result
contradicts the long-standing and widely held intuition that
the production of percept-repetition choice sequences
requires some form of intervention by high-level processes
into the low-level neural competition and adaptation

dynamics that we modeled. In terms of explicit mecha-
nisms, it disproves the logical necessity of additional
mechanisms or stages or cross-level feedback. The pair of
sub-/near-threshold signals parametrized by " (in any of
their equivalent forms) play the central role: They enable
this simple type of models to describe all the known
relevant psychophysics, plus many detailed predictions. In
models that take the neural outputs S(Hi) as the primary
dynamical variables (e.g., as in Laing & Chow, 2002;
Wilson, 2003), subthreshold signals are typically unable to
determine the percept choice because, at stimulus onset,
both S(Hi) are at or near zero. As illustrated in Figure A1,
the observation of adaptation-dependent percept choice
then implies that multiple S(Hi) trajectories emerge from
the same (nonsingular) starting point, thus proving this
type of model to be insufficient.
When staying within the class of S(Hi)-based models, one

would thus be forced to attribute this (and other) percept-
choice type to other dynamical variables and interactions
that, in effect, take control over the neural output dynamics
in a manner that must depend on previous output states.
This approach has been explored very recently (H. R.
Wilson, personal communication), and it appears to require
doubling the number of equations, with many more
parameters and a specific choice of third-order nonlinear-
ity, so as to implement a two-state “memory” at the
synapse level in each of the two competing neural
populations. This pair of memory subsystems then controls
the S(Hi) dynamics at stimulus onset, producing a roughly
similar behavior as emerges from our much simpler and
generic Hi-based model. Of course, the brain may actually
use even larger complexity, but we favor the simpler
explanation until it is refuted by experiment.

Freedom in using variant forms of fast dynamics

The fast-dynamics flow field merely needs to have a
geometrically similar structure of null clines intersecting
in two attractors and a saddle point (Cross & Hohenberg,
1993; Guckenheimer & Holmes, 1983) as in our simplest
example (Figure 1). This allows a huge class of alternative
neural network schemes, far beyond the two types (and
any mixture thereof) that we explicitly showed to have
identical dynamical behavior. A directly relevant example
of this freedom in neurally interpreting the model is that
one may take all its dynamical quantities and parameters
as representing the corresponding average values over the
many millions of neurons and even larger numbers of
connections in a one-layer network with two (possibly
partly overlapping) competing subsets of neurons and
adaptation properties with any of the equivalent structures
we identified. More generally, it allows the presence of
“fast” interneurons, as have been used in some other
models (Wilson, 2003), and even some types of multilayer
structure, such as when there is percept-specific cross-
inhibitory feedback to lower levels. The fast dynamics and
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fixed-point dimensions of such “intermediate” neurons
may be adiabatically eliminated (Cross & Hohenberg,
1993) for the purposes of the “slow” analysis we identified
as relevant to understanding how each percept choice is
determined by the initial states of the fast part of the
network dynamics, which, in turn, is controlled by the
interaction of adaptation with ". We now sketch the role
of the fast-timescale null clines and fixed points in more
detail.
Given fully ambiguous inputs X1 = X2 = X, the fixed

points of the fast-timescale dynamics are determined by
the solutions Hi = Hi* of the two “null cline” equations

@tHi ¼ 0 ÁHið1þ AiÞ ¼ X þ "Ai j +SðHjÞ ðA1Þ

or their equivalents in terms of hi K Hi j " as dynamical
variables

hið1þ AiÞ ¼ X j " j +Sðhj þ "Þ: ðA2Þ

As explained in the main text (especially Figure 2), the
fate of the percept-choice process depends on (H1, H2) at
the end of the stimulus interruption. For all but the
shortest TOFF (i.e., at least a few times the C timescale of
all stages up to and including the stage[s] modeled here),

this (H1, H2) has effectively decayed to the fixed point
(H1*, H2*) for X = 0. In this regime, the sigmoidal terms
may be neglected; thus, we find Hi* , "Ai/(1 + Ai) and hi* ,
j"/(1 + Ai), respectively. In either form, one notices
that (H1, H2) acquires Ai-dependent shift components
,"Ai/(1 + Ai) that can compensate (or not, see Figure 2)
the oppositely Ai-dependent shift of the separatrix that
determines the fate of the trajectory after stimulus onset,
that is, the outcome of a percept choice.

Freedom in adding realistic adaptation components

In explaining how percept-repetition sequences arise
from the interaction of our " 9 0 term (in any of its forms)
with a shunting-type adaptation term such as (1 + Ai)Hi, it
also became clear that a purely subtractive adaptation
mechanism would not allow percept repetition. However,
this does not forbid the existence of any subtractive
components of adaptation in addition to the required
shunting-type component. As expected from the fact that
our basic model was the product of keeping only terms
with the relevant effect and i, j symmetry, we can freely
add back even large common-mode subtractive terms (e.g.,
j(Ai + Aj)) without losing any of our original types of
model behavior. For example, we find that adding twice as
much common-mode subtractive adaptation as our origi-
nal " term, that is, replacing the fast dynamics by

@tHi ¼ X j ð1þ AiÞHi j +SðHjÞ j "ðAi þ 2AjÞ;
ðA3Þ

makes no essential difference to the percept-choice
process after trivial recalibrations of some of the param-
eters (e.g., ! = 6, + = 3.5, X = 1.3). Note that with this
strong subtractive adaptation component, the effect of any
single adaptation change, say, in A1, on the local field H1

is now suppressive instead of stimulatory, that is, opposite
to what it was in the original model version. This
suppressive effect makes the model much more realistic
in terms of recordings from individual neurons. However,
what is important is that it is of no relevance to how
percept choice is produced within the antagonistic neural
network and that neurophysiological testing of our choice
mechanism is likely to require extracting the small but
crucial signals H1* j H2* from the probably larger but
irrelevant common-mode signals.

Sigmoid nonlinearity and coupling parameters

There is a large freedom in specifying the precise form
of the sigmoid “firing-rate” function and in the precise
value of all parameters because all of the phenomena of
interest here are generic under moderate changes in each
of these model ingredients. For example, we have verified

Figure A1. Two views (pre- vs. postsigmoidal signals) of the same
percept-choice dynamics (given a small excess of Percept 2
adaptation). Both panels show how the (blue, solid line) H2 null
cline for A2 9 A1 is a slightly H2 -scaled version of the (blue,
dashed) null cline for A1 = A2. This transformation shifts the
saddle point, with its attached separatrix, slightly upward and
leftward, but Panel a shows that an appropriate small bias in initial
(H1, H2) state (from any of our " term variants, see Figure 2a) can
still make the system choose Percept 2. The right panel shows
how the identical dynamics would appear in a model with neural
outputs S(Hi) as its dynamical variables: Trajectories with distinct
destinations then emerge from the same origin (or indistinguish-
able ones), thereby disproving such a model and falsely suggest-
ing the necessity of adding specific additional mechanisms to
control percept choice. In fact, the converse is true: Our model
shows that one only has to uncover the already present subthres-
hold mechanism from being hidden by the sigmoidal nonlinearity.
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that the same phenomena occur with a wide range of
firing-rate nonlinearities, even with the simplest choice
that may be viable at the single-cell level, namely, half-
wave rectification S(h) = max(h, 0). Our reason for not
using this is that its special feature (piecewise linearity) is
not stable under our averaging (Cross & Hohenberg,
1993) over the many neurons that make up a single
percept representation. This implies averaging over the
neural noise (say, J, with some distribution p(J)), which
renormalizes the cell-level firing-rate function, say s(H),
to the smooth and suitably generic population-level
sigmoid S(H) that appears in the model dynamics:

SðHÞ ¼
Z V

jV
sðH þ JÞpðJÞdJ: ðA4Þ

The same averaging also gets rid of possible differences in
the sigmoid shapes between subsets of neurons that
contribute to the same percept representation, and similar
simplifications emerge with respect to reasonable differ-
ences between the adaptation states of individual neurons
within the same sets. We note further that changes in the
scale and shape of the effective sigmoid S() are largely
exchangeable with changes in coupling parameters (e.g.,
+ , !); what matters is the effects on the gain and/or offset
of signals in the fast mutual inhibition feedback loop and/
or the slow adaptation loop.

Unbalanced inputs can override Ai-controlled priming

The intersection of sector boundaries in Figure 2 is
clearly nongeneric: Any Xi asymmetry will locally “bridge”
together a pair of same-colored sectors (red for X1 9 X2)
and generally bias the percept choice (see Figure A2). Note

that Xi asymmetry occurs not only when the current
stimulus is unbalanced but also when there is “gain”
imbalance in the (not bistability-generating) stages pre-
ceding the stage we model explicitly. Familiar sources of
such gain imbalance are adaptation with unambiguous
stimuli or “attention”. This simple mechanism explains
how percept-choice repetition can be overridden by a normal
aftereffect and how percept repetition is reduced by
unambiguous stimuli but enhanced by ambiguous stimuli
(Pearson & Clifford, 2005). It also captures how attention
can bias the choice process via gain imbalance in the
preprocessing and/or the choice-producing stage.

Effect of internal noise and “long-tailed” adaptation

The linear adaptation-decay dynamics used in our basic
model suffices for capturing the generation of repeat or
alternation sequences in a reasonably wide TOFF regime
around where these two types of sequence cross over into
another, but it falls short of capturing the known
occurrence of reasonably reliable percept repetition for
much longer TOFF values. As soon as TOFF exceeds a few
times the timescale of the linear adaptation decay we have
assumed so far, exponential decay of both Ai will reduce
the offsets "Ai/(1 + Ai) in the Hi or hi fixed points that
determine the next percept choice. The choice mechanism
(which always predicts repetition in this regime) becomes
unreliable when the difference between the two "Ai/(1 + Ai)
terms decays below the effective noise level of the
local field (Figure A3)Vthe actual noise level is
unknown, but this affects only logarithmically the max-
imal TOFF at which reliable percept repetition still occurs,
if the Ai decay exponentially.
To allow percept repetition after long off-times, one

needs a more realistic, long-tailed adaptation decay

Figure A2. Xi asymmetry can overrule the Ai control of percept repetition (cf. Figure 2). The left panel shows that a 1% difference in the
inputs Xi to the modeled stage already causes a significant reduction in the Ai regime where the model chooses the percept (Percept 2,
blue) with less stimulus support. For larger Xi asymmetry (right panel), the practically relevant part of this regime vanishes
completelyVpercept choice then simply follows the strongest input (here, Percept 1, red), except when its representation is adapted
extremely strongly (blue region at extreme right).
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instead of an exponential one. Indeed, single-cell record-
ings have revealed that, already at the retinal stage,
adaptation comprises a wide range of timescales, from
about 10j2 to 102 s (Fairhall, Lewen, Bialek, & de Ruyter
van Steveninck, 2001). Explicit representation of all the
contributing mechanisms, most of which are actually
unknown, is not requiredVthe net effect, replacing the
usual exponential decay of adaptation by a long-tailed
(say, hyperbolic) decay, can be captured most simply by

replacing the linear decay term in the adaptation dynamics
by a quadratic term, that is, replacing Equation 2 by

@tAi ¼ j A2
i þ !SðHiÞ: ðA5Þ

This dynamics may be said to have an adaptation-level-
dependent effective timescale 1/Ai. Its effect on the
percept-choice dynamics is small in the small-TOFF regime
where the system behavior crosses over from repeat to
alternation sequences. This is because large (here, ,1)
values of the relevant Ai occur in this regime (see
Figure 2), making the effective decay rate (here, Ai)
roughly as large as it was in our first linear approximation
of the Ai dynamics (Equation 2). The long-tailed adapta-
tion manifests itself at small Ai, thus increasing the longest
TOFF values where percept repetition occurs with large
probability.

Coexistence of stable sequences and noise-induced
attractor hopping

For X1 = X2, the Repeat 1 and Repeat 2 sequence
attractors are equally stable; hence, occasional noise-
induced choice “errors” lead to stochastic hopping
between these two coexistent sequence attractors. Here,
we stress that coexistence (and hopping) occurs also
between attractors that are not symmetry related, for
example, between the repeat and alternate sequences (see
Figure A4a), over a substantial range of timing parameters
along regime boundaries such as in Figure 3c. In many
experiments, these boundaries will therefore appear as
fragmented, irreproducible zones (e.g., as in Figure A4b),
and their position will depend on the particular
sequence of parameters used (hysteresis). A full analysis
of this suprasequence temporal structure is beyond the
scope of this article, but we stress the richness of choice-
sequence behaviors that emerges from our minimal
neural model.

Psychophysical experiment

Methods

Briefly, each run used a 2-min-long regular ON/OFF
sequence of stimuli (2- diameter, on a 1,024 � 768 pixel,
85-Hz display at 122 cm viewing distance). Subsequent
runs sampled the (TOFF, TON) plane (up to 44 points) in
random sequence, and this sampling was repeated twice
per subject. The stimuli (in separate sessions) were (a) a
depth/rotation ambiguous sphere, rendered by 40 dots/
(deg)2, randomly replaced at each stimulus onset, or (b) a
binocularly rivalrous dichoptic pair of gratings (orienta-
tion, T45-; spatial frequency, 1.75 cycles/deg, with a
Gaussian envelope of A = 0.5-). We asked our four
subjects to score percepts during the on-interval, as soon

Figure A3. Effect of internal noise on the control of percept choice
by the two adaptation signals Ai. For simplicity, this example uses
only Hi-level noise (of constant uniformly distributed amplitude,
5 � 10j3 in Hi units, which corresponds to noise at the level of
individual neurons that is larger by many orders of magnitude); in
reality, there will be noise in the Ai as well, with an amplitude that
scales roughly with the square root of the mean value of Ai. Its
effect should thus be negligible in the lower left corner of the
diagram but could add further scatter along the curved boundary
between the red and blue sectors elsewhere. In any event, the
diagram illustrates at least qualitatively how (i) in the large Ai

regimes, reached only for short TOFF and moderately long TON,
noise blurs the boundary between percept repetition and alter-
nation sequences; and (ii) in the low Ai regimes, reached for large
TOFF, the repetition sequence will contain scattered errors that
break up the percept sequence into episodes of Repeat 1 and
Repeat 2 sequence. As the Ai decay deeply into the noisy regime
shown here, the errors become so numerous that the percept-
choice sequence becomes almost unpredictable. Existing data
(Leopold et al., 2002; Orbach et al., 1963) suggest that this only
happens for TOFF values of dozens, perhaps even hundreds, of
seconds. This can be explained by the fact that real neural
adaptation shows a multi-timescale (Fairhall et al., 2001), long-
tailed decay, instead of the simple exponential decay we used in
the main text.
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as it could be classified as either of the two competing
percepts.

Interpretation details

In addition to the main text summary of results and
interpretation, we note two subsidiary aspects.

& We avoided sampling the long TON regime where
spontaneous percept switching interferes with the
onset-locked choice process that we focus on here.
The long TON regime yields interesting but more
complicated dynamics, an investigation of which is
beyond the scope of this study and, hence, necessitates
further research. For the timing conditions used in this
study, spontaneous percept switches begin to occur (but
remain below 10%), only at the largest on-times (2 s)
we tested, and even then, this hardly affected the
interruption-locked alternation, as predicted by the top
parts of our phase diagram (Figure 3c).

& For very small TOFF (here, roughly G1/10 s), temporal
smearing by the preprocessing stages prevents Xi from
decaying sufficiently close to zero to enable our choice
process to occur. This causes a crossover to the slow,
spontaneous percept-switching characteristic of unin-
terrupted (TOFF = 0) stimuli. Partial loss of interruption
locking at the smallest TOFF registers in our plots as a

formal increase in repetition probabilities. This regime
is irrelevant to our model, but it serves to differentiate
our loss of choice alternation for short TOFF from the
recently found (Kanai et al., 2005) increase in alter-
nation when a short, strong flash is added to a
continuous bistable stimulus: Our TOFF is then about
as long as their flashes; thus, the opposite nature of the
two effects excludes lumping them as due to some
nonspecific effect of stimulus transients. However, if
we assume (in line with the proposal of Kanai et al.,
2005) that their strong flashes cause temporary (,1/4 s)
shifts in attention, that is, dips in the neural gain
preceding (or within) the stage we model, then this
converts the short flashes into effective Xi interruptions
with a TOFF for which our model can predict percept
alternation. As noted before (Kanai et al., 2005), such
assumed gain dips also fit the fact that their flashes can
induce temporary disappearance of nonambiguous
percepts.

Computational details

Here, we summarize the computational aspects of the
results shown in the main-text figures. The choice of
parameters and sigmoid shape is such as to produce the
percept-choice repertoire that is typical within the wide
class of systems that our model is a particularly simple
example of. As shown throughout, the existence and

Figure A4. Attractors of various choice sequences can coexist (a), and noise can then make the system hop between these sequences
(b). Panel a is similar to Figures 3a and 3b, but with TON = 1/

ffiffiffi
2

p
and TOFF = 1/2, that is, just right of the boundary between the repeat and

alternate regimes shown in Figure 3c. Note that both sequence types attract some of the trajectories, depending on initial conditions. (The
boundaries in Figure 3c were computed with low, asymmetric initial Ai, appropriate for most experiments, which favor attraction to the
repeat sequences.) Such coexistence implies that most experiments will find different boundaries, depending on the history of stimulus
parameters used and on noise perturbations of the Ai state. Panel b shows the same system and initialization as in Figure 3c but with
added " noise (SNR = 30 at population level, allowing very much larger neuron-level noise). This (or other) noise causes occasional
choice errors, resulting in hopping between sequence attractors that coexist at the stimulus timing used. As illustrated here, this fragments
(or, after averaging, blurs) all parameter region boundaries.
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stability of the various types of model behavior differ
qualitatively between parameter regimes separated by
distinct boundaries (bifurcations), and all our conclusions
rest only on these robust patterns.
For definiteness, we used X = 1, ! = 5, + = 10/3,

C = 1/50, and sigmoid function S(z 9 0) = z2/(1 + z2);
S(z e 0) = 0 throughout and chose " = 4/(3!) except in
plotting the " dependence of the choice dynamics in
Figure 2a. All plots were composed by combining the Hi

null-cline equations with Hi(t) and Ai(t) trajectories
computed by adaptive numerical integration (Mathematica
“Dsolve”). In our classification of percept sequences
(Figure 3c), the numerical integration for each of 1282

points in (TOFF, TON) space was carried out over the first
seven cycles of the stimulus sequence, using the last two
on-intervals at each point to determine the sequence types
shown. All sequence types shown are stable, and the “run-in”
length used suffices for reducing transient-induced errors on
the boundary positions to below the plot resolution.
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