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Oscillatory activity of cells has been the topic of many studies. Oscillatory activity can be due
to action potential firing corresponding to the well-known Hodgkin-Huxley (HH) type dynamics of
ion-channels in the cell membrane or due to IP3-mediated calcium oscillations in the endoplasmic
reticulum (ER) causing periodic oscillations of calcium transients in the cytosol. In this study
we show that coupling of these two oscillatory mechanisms may reveal a complex, rich spectrum
of both stable and unstable states of cells with hysteresis. The predicted bi-stability corresponds
to experimentally observed states. This illustrates that the different behavior of cells is not the
consequence of differentiation in cells with different properties, but rather reflects different states of
a single cell type.
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Complexity and transitions among stable and unsta-
ble states are ubiquitous in biological systems [1, 2]. In
physics instabilities playing a role in emerging collective
properties have been studied since many years [3–6]. Re-
cently the phenomenon of multi-stability with hysteresis
has also awakened a large interest in biology [7]. Insta-
bilities, for instance, have been shown to be responsible
for genetic alterations in tumor development [8, 9] and
are also crucial for efficient information processing in the
brain, such as in odor encoding [10, 11]. Multistable sys-
tems allow changes among different stable states. These
transitions can be due to external input and in the ab-
sence of external input instabilities may serve as an al-
ternative to switch between different branches of stable
states [7]. Bistability is advantageous to prevent the sys-
tem from reaching intermediate states, such as for exam-
ple partial mitosis. In addition, hysteresis may help to
maintain the system in a particular stable state. Hys-
teresis locks the cell into a fixed state, preventing it from
sliding back to a previous state [12]. This is useful, for
instance, in cell mitosis. Once initiated, it should not be
terminated before completion [13].

At the network level, multistability, and in particu-
lar bistability, plays an important role in cell signaling
as well [14, 15]. Communication between cells takes
place at synaptic contacts, where an action potential ar-
rival releases a neurotransmitter, thus affecting the post-
synaptic potential of the target cell. Typically, each cell
receives input from thousands of cells mediated by many
different neurotransmitters, and consequently modifying
the post-synaptic potential by excitation or inhibition at
very different time scales [16].

This information at the cell membrane is transferred to
the cell nucleus by so-called second messengers. Calcium
is one such second messenger and calcium transients have

been observed over a wide range of frequencies, with a
chaotic or deterministic pattern [17].

In many systems, intercellular signalling takes place by
synchronized oscillatory behavior in networks of electri-
cally coupled cells. This oscillatory behavior is, typically,
the result of two different oscillating mechanisms. The
first mechanism takes place at the cell membrane and is
related to periodic action-potential firing, usually trig-
gered by repeated depolarization of the cell membrane
by action potentials arriving from cells elsewhere in the
system. Action potentials, arriving at the synapse trig-
ger the release of neurotransmitters, which modulate the
conductance of ion-channels in the cell membrane. These
changes in conductance modulate the flow of ions through
the ion channels, which modifies the membrane poten-
tial of the cell. When the membrane potential exceeds a
threshold (typically near -40 mV), the cell generates an
action potential.

Another mechanism for oscillatory activity is related to
oscillations in the concentration of free intracellular cal-
cium by calcium release from the endoplasmic reticulum
(ER) store. These intracellular calcium oscillations are
due to period oscillations of the so-called IP3- receptor in
the ER-membrane. The left panels in Fig. 1 show exam-
ples of intracellular calcium oscillations for various IP3-
concentrations. These oscillations start at some thresh-
old value for IP3 and continue until at relatively high IP3-
concentrations the oscillations stop and the IP3-receptor
remains open. This behavior of the IP3-receptor is char-
acterised by two Hopf-bifurcations (see [18]). Related to
these calcium oscillations the membrane potential is at
rest near - 70 mV, reveals action potential firing, or is
constant near -20 mV (right-hand panels in Fig. 1).

In this study we will show how coupling of the plasma
membrane oscillator and the intracellular calcium oscilla-
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FIG. 1: Intracellular IP3-mediated calcium oscillations in a
NRK-cell (left hand panels) and membrane potentials (right
hand side) for various concentrations of IP3 (increasing from
top to bottom). This figure is modified after [19].

tor, which are both relatively simple oscillators, leads to
a rich behavior with multiple stable and unstable states
with hysteresis. The bi-stability, that follows from the
theoretical analyses, corresponds to experimentally ob-
served states. The model, illustrated in Fig. 2, captures
the basic characteristics of normal rat kidney (NRK) fi-
broblasts reported in [20] and reproduces, on the basis of
single-cell and single-channel data [19], the kinetics for
both the membrane ionic currents and the intracellular
calcium oscillator.

THEORETICAL MODEL

Dynamics of membrane excitability

The dynamics of the NRK cell membrane excitability is
given by a set of equations, which describe the dynamics
of the most important ion channels that modulate the
conductance of the cell membrane and thereby affect the
membrane potential of the cell. Here we will give a short
description of the main characteristics of the model. For
the full details, see [20].

The rate of change of the membrane potential Vm due
to the currents of potassium channels (IK), L-type Ca-
channels (ICaL), calcium-dependent chloride channels
(ICl(Ca)), leak channels (Ilk), and SOC-channel (ISOC)
is given by

Cm
dVm

dt
= −(IK + Ilk + ICaL + ICl(Ca) + ISOC) (1)

FIG. 2: Schematic model for NRK cells. The membrane
excitability consists of inward-rectifying potassium chan-
nels (GKir), calcium-dependent chloride channels (GCl(Ca)),
L−type Ca−channels (GCaL), store-operated channels
(GSOC) and a PMCA pump. The membrane of the ER con-
tains the SERCA pump, the IP3-receptor (JIP3R) and leak
channels (JlkER).

Cm represents the capacitance of the cell membrane. The
equation describing the L-type calcium current (ICaL) as
a function of the Hodgkin-Huxley kinetics of the L-type
calcium channel, is given by ICaL = mhvCa GCaL (Vm−
ECaL). This current depends on a Hodgkin-Huxley-type
activation variable m, an inactivation variable h, and an
inactivation parameter vCa, which depends on the cal-
cium concentration in the cytosol. The dynamics of the
variables m, h and vCa are described by first-order differ-
ential equations of the type

dx

dt
= α(V )(1 − x) − β(V )x (2)

where α and β are nonlinear functions of the membrane
potential V.

The calcium-dependent chloride current ICl(Ca) is
given by

ICl(Ca) =
[Ca2+

cyt]

[Ca2+
cyt]+KCl(Ca)

GCl(Ca) (Vm − ECl(Ca)). (3)

The chloride current increases with cytosolic calcium con-
centration [Ca2+

cyt], causing a depolarization to the Nernst
potential of chloride ions ECl(Ca) near -20 mV.

The flux of calcium ions through the cell membrane
JPM is the sum of the fluxes of Ca2+ ions through the
L-type Ca-channel and through the SOC-channel and by
extrusion by the PMCA-pump

JPM = − 1
zCaFAPM

(ICaL + ISOC) − JPMCA (4)
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Here zCa represents the valence of the calcium ions,
F is the Faraday constant and APM is the surface area
of the membrane. The term zCaFAPM is necessary to
convert the currents (in Ampere) to fluxes of calcium
ions.

Finally, calcium in the cytosol is buffered by proteins
in the cytosol. The dynamics of buffering is described by
first order interactions between [Ca2+

cyt] and the concen-
tration of the buffer

d[BCa]
dt

= kon([TB] − [BCa])[Ca2+
cyt] − koff [BCa] (5)

where [TB] represents the total buffer concentration and
[BCa] represents the concentration of buffered calcium.

Dynamics of intracellular calcium oscillator

The dynamics of the intracellular calcium oscillator
is described by two differential equations. The dynam-
ics for the calcium concentration in the ER depends on
the sum of fluxes through the IP3-receptor (JIP3R), leak
through the ER-membrane (JlkER) and by removal by
the SERCA pump (JSERCA), which results in

d[Ca2+
ER]

dt
=

AER

V olER
(−JIP3R − JlkER + JSERCA) (6)

where AER

V olER
is a conversion factor which transforms

the flux of Ca2+-ions through the ER-membrane into
changes of Ca2+

ER-concentration by the ratio of the size
of the surface of the ER-membrane AER and the volume
V olER of the ER. The flux through the IP3-receptor is
described by

JIP3R = f3
∞ w3 KIP3R ([Ca2+

ER] − [Ca2+
cyt]) (7)

where [Ca2+
ER] − [Ca2+

cyt] is the concentration difference
between calcium in the ER and in the cytosol. KIP3R is
the rate constant per unit area of IP3-receptor mediated
release. f and w represent the fraction of open activa-
tion and inactivation gates, respectively, in the IPR3-
receptor. The dynamics of f(t) and w(t) is given by a
first order differential equation as in Eq. 2. The time
constant for activation is fast relative to the other time
constants. Therefore, we will use the steady state value
f∞ in Eq. 7 instead of f(t). f∞ and w∞ depend both on
the cytosolic calcium concentration and are described by

f∞ =
[Ca2+

cyt]

KfIP3 + [Ca2+
cyt]

(8)

and

w∞ =
[IP3]

KwIP3+[IP3]

[IP3]
KwIP3+[IP3]

+ Kw(Ca)[Ca2+
cyt]

(9)

The membrane oscillator and the IP3-oscillator are
coupled by the Ca-concentration in the cytosol (compare
Eqs. 7, 8 and 9 with Eqs. 1, 2 and 3). During an action
potential opening of the L-type calcium channel causes a
large inward current of Ca-ions in the plasma membrane.
The increased [Ca2+

cyt] activates the IP3-receptor by in-
creasing f∞ (Eq. 8), causing an intracellular calcium
transient. In the opposite process, IP3-mediated calcium
oscillations cause periodic calcium transients, which open
the calcium-dependent chloride channels (Eq. 3). The
depolarization of the membrane towards the Nernst po-
tential near -20 mV causes activation of the L-type cal-
cium channels in the plasma membrane. After an action
potential or Ca-oscillation the reduction of cytosolic cal-
cium by the activity of the SERCA and PMCA pump
reduces ICl(Ca), such that the membrane becomes sub-
ject to the repolarizing to the rest membrane potential
near - 70 mV.

Dynamics of the complete cell

The dynamics of the complete single-cell
model depends on the time evolution d�x(t)

dt with
�x the 7-dimensional vector with components
�x(t) = (m, h, w, [BCa], Vm, [Ca2+

cyt], [Ca2+
ER])T . Us-

ing Eqs. 1, 2, 5 and 6 and keeping in mind the
conservation of calcium in the ER, cytosol and outside
the cell, this can be written as

�̇x(t) = �f(�x(t)) (10)

To determine the stability of the complete system �x we
have to find the singular states for the system and then
calculate the Floquet multipliers of these singular states.

In order to find the stable states of �x(t) it is important
to notice that the cell with calcium oscillations and action
potential firing corresponds to a nonlinear autonomous
dynamical system with periodic oscillatory behavior. For
a non-oscillating system, stability in a small neighbor-
hood of the singular points is easily found by linearization
around the singular points. The eigenvalues of the Jaco-
bian will tell whether a singular point is stable (real part
of λ < 0) or unstable (real part of λ > 0). In order to find
the stable periodic solutions of a periodically oscillating
system, we assume that �̃x(t) is the periodic solution of the
nonlinear dynamical system �̇x(t) = �f(�x(t)) (�x(t) ∈ IRn).
For any perturbation �y(t) around the stable periodic so-
lution �̃x(t) substitution of the solution �x(t) = �̃x(t) + �y(t)
in the differential equation, Taylor expansion around the
period solution �̃x(t) and retaining only linear terms gives

�̇y(t) = J(�̃x(t))�y(t) (11)

where J(�̃x(t)) is the Jacobian matrix ∇�xf(�̃x(t)) of
f(�x(t)). This differential equation for �y(t) has n linearly
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independent solutions �yi(t), which form the fundamental
matrix

Φ(t) = [�y1(t), �y2(t), ..., �yn(t)] (12)

It can be shown that any fundamental solution to the
matrix of the T-periodic system in Eq. 11 can be written
in the form Y (t) = Z(t)etΦ, where Y, Z and Φ are nxn
matrices ([21]) with Z(t) = Z(t + T ). In particular we
can choose Y (0) = Z(0) = I, so that Y (T ) = Z(T )eTΦ =
Z(0)eTΦ. It then follows that the behavior of the solu-
tions in the neighborhood of �̃x(t) is determined by the
eigenvalues of the constant matrix eTΦ. The (complex)
eigenvalues λ1, λ2, ..., λn of this matrix are called the Flo-
quet multipliers ([21]). Each Floquet multiplier provides
a measure of the local orbital divergence (|λi| > 1) or
convergence (|λi| < 1) along a particular direction over
one period of the periodic motion. The eigenvalues µi of
the fundamental solution matrix Φ are called the charac-
teristic exponents of the closed orbit �̃x.

Note that although the fundamental matrix Φ is not
uniquely determined by the solutions of Eq. 11, the
eigenvalues of Φ and eTΦ are. Also notice that the crite-
ria on the Floquet multipliers for convergence ((|λi| < 1)
correspond to the well-known criteria of Re(µi) < 0 for
convergence and stability of a simple non-periodic sys-
tem.

This procedure to find the stable states of a nonlinear
periodic oscillator is equivalent to finding the eigen values
of the monodromy operator (see [22]). The monodromy
operator is defined as the linear mapping which maps
the initial condition of ths system at t = 0 into the value
of the solution with this initial condition at T = 2π.
For periodic systems the monodromy operator is usually
called the Poincare return map or Poincare map. If the
eigenvalues µi of the (diagonalized) monodromy operator
are written as µi = e2πλi , then the nonlinear periodic
differential equation can be reduced by means of a linear
2π-periodic subsitution �x(t) = B(t)�z(t) to the equation
with constant coefficients �̇z = Λ�z where Λ is a diagnoal
operator with eigenvalues λi.

In this study we will explore the bifurcation behavior
and local stability of both the electrically excitable mem-
brane and intracellular calcium oscillator, separately, and
then compare the results with that for the complete
model, where the membrane oscillatoir and intracellular
calcium oscillator are coupled, using the software pack-
ages AUTO [23] and XPP [23].

NUMERICAL SIMULATIONS

Dynamics of the excitable membrane

The dynamics of the cell membrane can be easily stud-
ied using the complete model by setting the IP3 con-

FIG. 3: Nullclines for the isolated excitable membrane. The
solid line represents the V-nullcline, whereas the dashed line
represents the nullcline for cytosolic calcium concentration.
The intersections near (0.01 µM, -70 mV) and (-0.8 µM, -25
mV) correspond to the stable points. The point near (0.55
µM, -40 mV) is a saddle node point.

centration to zero. This eliminates the intracellular cal-
cium oscillations (see Eqs. 7 and 9). The membrane
dynamics are determined by the equations 1 and 2. Fig-
ure 3 shows the null clines for the membrane potential
Vm (dashed line) and for the slow variable [Ca2+

cyt] (solid
line). The two null-clines intersect at the stable points
near Vm = -70 mV and [Ca2+

cyt] ≈ 0.001µM and near Vm

= -20 mV and [Ca2+
cyt] ≈ 0.8µM . The intersection point

near (0.55 µM, -40 mV) is a saddle node point. Note
that figure 3 shows just a 2-dimensional projection of the
7-dimensional state space.

Because changes in the leak of Ca ions through the
ER membrane cause variations in Cacyt, the dynamics
of the membrane is studied as a function of the leakage
parameter KlkER. By changes of the leakage parame-
ter KlkER, the stable points change position. Figure 4
shows the stable (solid line) and unstable (dashed line)
states for the electrical membrane Vm and the calcium
concentration in the cytosol (Cacyt for various values of
KlkER. The arrows indicate trajectories for increasing
and decreasing values of KlkER. Starting at zero and
increasing KlkER (dashed line), the values for the cal-
cium concentration and the membrane potential increase
gradually, until KlkER ≈ 53.0 × 10−8dm/s. Then, the
calcium concentration opens the calcium-dependent chlo-
ride channels and the membrane potential depolarizes to
the Nernst potential of the Cl(Ca)-channels close to −20
mV . As a consequence, L−type calcium channels open,
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FIG. 4: The stable states for the electrical membrane. Using
KlkER as a control parameter, we represent the stable steady
solutions for the calcium concentration in the cytosol (Ca2+

cyt)
and for the membrane potential (Vm). Solid lines represent
stable states. Arrows indicate the direction for increasing and
decreasing values of KlkER. Dashed lines represent transitions
between stable states.

causing a calcium inflow from the membrane into the cy-
tosol. This explains the increase of Cacyt from ≈ 0.6 to
≈ 2.4 µM . When KlkER is decreased from a high values
of 60.0 × 10−8dm/s, the L−type calcium channels are
open, causing an increased Cacyt. This increased Cacyt

explains why the Cl(Ca)-channels are open and thus the
membrane potential near -20 mV. If the calcium in the
cytosol decreases until a low concentration, the Cl(Ca)-
channels close and the membrane potential repolarizes to
−70 mV . In figure 4, all the points in the hysteresis di-
agram are locally stable around the fixed point solution.

Dynamics of intracellular calcium oscillator

Following a similar plan as in the cell membrane, we
illustrate the bifurcation diagram for the calcium con-
centration in the cytosol as a function of the IP3 concen-
tration by blocking the L−type Ca−channels (GCaL=0).
For small values of IP3 there is one single stable steady
state. At IP3 ≈ 0.2 µM the dynamics reveals a sub-
critical Hopf bifurcation, and the system becomes a cal-
cium oscillator in the range. For high IP3 concentrations
(IP3 ≥ 3.4 µM) the system meets a subcritical Hopf bi-
furcation and remains stable at Ca-concentrations near
5 µM .

FIG. 5: The bifurcation diagram for the single-cell model,
showing the cytosol calcium concentration (panel A) and the
membrane potential (panel B) as a function of IP3. Solid and
dashed lines correspond to stable and unstable states, respec-
tively. The small arrows on the curves show the direction of
evolution of the system for increasing and decreasing values
of IP3. Experimental evidence on the decreasing direction
(from left to right) was reported in [24]. Details about the
parameters for this model can be found in [20]. The arrow
indicates the size of the IP3-range for hysteresis.

Dynamics of the complete cell

The bifurcation diagram for the complete single-cell
model is illustrated in figure 5. As a function of IP3

we show the cytosolic calcium concentration (panel A)
and the membrane potential (panel B). The solid and
dashed lines represent stable and unstable states, respec-
tively. For small IP3 values in the range (0.00, 0.15)
µM , the cell is in the resting condition with a single sta-
ble steady state. For IP3 > 0.15 µM the stable fixed
point becomes unstable in a subcritical Hopf bifurca-
tion. Calcium oscillations with action potentials (panel
B) occur for IP3 ∈ (0.15, 1.75) µM . In this regime, a
rapid calcium inflow from the ER into the cytosol opens
the Ca−dependent Cl−channel, causing an inward cur-
rent towards the Cl−Nernst potential close to −20 mV ,
thus leading to depolarization. After closure of the IP3-
receptor, calcium is removed from the cytosol by the Ca-
pumps in the cell membrane and ER, leading to repolar-
isation to -70 mV. For IP3 > 1.75 µM , the fixed point
(Cacyt, Vm) ≈ (3.00 µM,−20 mV ) becomes stable in a
subcritical Hopf bifurcation. Because IP3 is high, the
IP3-receptor acts as a constant leak of calcium into the
cytosol which opens the calcium dependent chloride chan-
nels, causing a depolarization to the Cl-Nernst potential
near −20 mV (panel B).

If IP3 decreases from this point, the cell reveals a com-
plex hysteresis pattern. For decreasing IP3 concentra-
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tions, the system stays in a single stable steady state
(solid line) until IP3 ≈ 0.85 µM with an elevated Cacyt

near 3 µM and a membrane potential near −20 mV .
Then, crossing through a Hopf bifurcation causes insta-
bility (dashed line) forcing the system to behave as a
stable oscillator with calcium oscillations with an am-
plitude of about 6 µM and small membrane potential
oscillations around −20 mV . At IP3 ≈ 0.45 µM the
stable oscillator with small amplitude becomes unstable
(dashed line), returning the system to the stable oscil-
lation with large amplitude (around 20 µM) and with
action potentials in the range (−70,−10) mV . Finally,
for IP3 values smaller than 0.15 µM the system coalesces
to a single stable state.

Summary and Conclusions

Summarizing, we present an integrated model re-
producing experimental data on calcium oscillations
and action potential generation. A bifurcation analysis
reveals hysteresis and a complex spectrum of stable and
instable states, which allows the system to switch among
different stable branches.
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