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Abstract—A model of a topologically organized neural network of a Hopfield type with nonlinear analog neurons
is shown to be very effective for path planning and obstacle avoidance. This deterministic system can rapidly provide
a proper path, from any arbitrary start position to any target position, avoiding both static and moving obstacles of
arbitrary shape. The model assumes that an (external) input activates a target neuron, corresponding to the target
position, and specifies obstacles in the topologically ordered neural map. The path follows from the neural network
dynamics and the neural activity gradient in the topologically ordered map. The analytical results are supported by
computer simulations to illustrate the performance of the network.
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1. INTRODUCTION

Human motor control reveals a versatility of function
and economy of space that is yet beyond the reach of
robots. One of the important themes of research in the
field of robotics is the design of a motion-planning sys-
tem. Such a system should guide a robot or a robot
manipulator from an initial position to a target position,
avoiding obstacles that are located between these po-
sitions. If we take into account that the obstacles as
well as the target can move and that the obstacles can
have any shape, it becomes clear that this problem is
not a trivial one. Planning a path for a robot in an
environment that is unknown and changing is an es-
pecially difficult problem.

In the past, several authors (Barraquand & Latombe,
1989; Crowley, 1985; Kant & Zucker, 1986; Krogh,
1984; Lozano-Perez, 1983; Yap, 1986) have worked
on the path-planning problem. Most work to date deals
with static environments and used global methods,
which can generally be viewed as a search process for
a path in a graph. However, global methods will limit
the real-time capabilities of robots in a cluttered en-
vironment, especially when new information about
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changes in the environment is becoming available con-
tinuously, because of the time needed to perform the
planning task. Later, the idea of using an artificial po-
tential field around each obstacle was proposed com-
bined with an attractive potential around the target
(Kathib, 1986; Krogh & Thorpe, 1986). Unfortunately,
the potential functions proposed suffered from several
problems, one being that of undesired local minima.
Later, several papers attempted to provide solutions to
this problem (e.g., Barraquand, Langlois, & Latombe,
1992; Barraquand & Latombe, 1990; Connolly, Burns,
& Weiss, 1991; Newman & Hogan, 1987; Warren,
1989). None of these articles mentioned offers an exact
potential-function-based algorithm that is guaranteed
to work. Recently, a new algorithm was proposed that
addressed the path-finding problem using an iterative
approach under the constraints of minimum time or
minimum energy (Seshadri & Ghosh, 1993). However,
this method will be very time consuming, especially
for many, complex objects in the environment.

In this article we present a path-planning system
that can control robot motion in a static as well as in
a dynamic environment with a guaranteed solution,
which is a shortest path in terms of the metric of the
representation, if one exists. We will assume that in-
formation about the position and shape of obstacles in
the environment is not known beforehand and that it
appears during the path planning, for example, through
real-time sensing. This may be rather artificial for path
planning in a static environment, but it is an inevitable
situation for path planning in an environment in which
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the positions of target and obstacles are changing con-
tinuously. This makes our approach distinct from other
approaches (Dorst, Mandhyan, & Trovato, 1991; Lo-
zano-Perez, 1983; Schwartz & Sharir, 1983), which
presume an algebraic representation of a robot envi-
ronment and which call for one-time off-line compu-
tation. In our approach we have only studied path
planning, and not trajectory formation such as in Wada
and Kawato (1993). In the latter approach, one has to
deal with forward and backward models of the system
under control before trajectories can be generated from
an initial to a final point. For complex paths, such as
in a cluttered or changing environment, the total path
has to be segmented to create a sequence of trajectories.

Our path-planning system is based on a Hopfield
type of network with continuous neurons (Hopfield,
1982). Analog neurons provide the possibility to make
such a system a fast computing device, which can pro-
cess the massive amount of sensory data necessary to
move in a changing environment. In early attempts to
understand biological computation, neurons were
modeled as two-state threshold devices only. However,
parallel computation with discrete neurons faces sta-
bility problems not found in sequential dynamics. Se-
quential dynamics—when neuron states are updated
one at a time—implemented in software on a conven-
tional computer is simply too slow for any large network
application. These stability problems associated with
parallel dynamics can be eliminated by using contin-
uous neurons (Marcus, Waugh, & Westervelt, 1990).
They also provide the possibility for hardware imple-
mentation.

In Section 2 we define the model and show its basic
properties. We define two types of dynamics: parallel
discrete- and continuous-time dynamics. We show for
both types of dynamics that the network, after receiving
an external stimulus, evolves towards a specific state of
neural activity that corresponds to a minimum of a
Liapunov function. The path is given by the neural
activity gradient. This path has the shortest length
among all paths connecting initial and goal position.
Computer simulations illustrating the performance of
the network are presented in Section 3. Section 4 sum-
marizes the conclusions.

2. THE MODEL
2.1. Work Space and Configuration Space

Consider a robot manipulator R, equipped with sensors
and actuators, is operating in a subset of the real world.
This robot should have the capability of planning its
own motion by generating a path specified by an initial
configuration, a final configuration, and by the position
of obstacles in the workspace. We assume that the non-
redundant robot manipulator has & degrees of freedom,
which may correspond to the 4 joints of the robot arm.
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We will only deal with the kinematics of the movement-—
trajectory of the manipulator. We will assume that the
d degrees of freedom span a d-dimensional configu-
ration space @. Each point in € defines a unique con-
figuration of the nonredundant robot manipulator in
workspace.

The obstacles O,, « = 1 ... m in workspace, are
represented in the configuration space as the subset of
those points in configuration space that cannot be
reached by the manipulator. This also includes config-
urations that are not allowed because it would require
that one of the links touches or passes through an object.
Therefore, the “forbidden™ regions in configuration
space are larger than the regions that correspond to the
positions of obstacles. In mathematical terms, the ob-
stacle regions are defined in @ by the points where the
objects and the links of the robot manipulator share at
least one point:

0.-{4€ECIR(QN O, * T}, (1)

where #(q) is an area occupied by R at configuration
q in the workspace.

Feasible paths between an initial configuration q;p;
and a target configuration qy,,, are continuous maps
from a closed real interval into the free configuration,
e, Space that remains after removing the points
0, from @

@freez @\U @a~ (2)
a=1

2.2. Neuronal Space and Phase Space

Our path-planning system consists of a large collection
of identical processing units called neurons. These
neurons are arranged in a d-dimensional cubic lattice
(CL). The number of neurons in the network is N.
They are connected only to their z nearest neighbors
by excitatory and symmetric connections 7};. Gener-
alization to other types of lattices can be obtained very
easily. We assume that the lattice represents a topolog-
ically ordered map, which can be obtained by a Ko-
honen type of learning ( Fritzke, 1991; Martinetz, 1993;
Ritter, Martinetz, & Schulten, 1989). This map gives
a discrete topologically ordered representation of the
robot configuration space €@ (Heikonen, Koikkalainen,
& Oja, 1993; Morasso, Sanguineti, & Tsuji, 1993;
Vleugels, Kok, & Overmars, 1993) with nodes homo-
geneously distributed over the configuration space. We
will call it the neuronal space V. To each neuron in
N corresponds a certain subset of € called its receptive
field. In this discrete representation of the configuration
space € the regions U, O, are represented by a subset
of nodes of the CL. We will call the nodes, which cor-
respond toU™ , @, occupied nodes. Similarly, the ini-
tial configuration g, and the target configuration s
are represented by one node each. The external input
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signals, which provide information about the position
of obstacles in workspace, are supposed to clamp the
activity of all neurons in the occupied nodes to the
value zero corresponding to the minimal activity of the
neuron. The activity of the neuron corresponding to
the target configuration node is clamped to the value
1. The initial configuration of the robot may correspond
to any node that is not occupied.

The activities of the neurons are characterized by
real-valued variables ¢; € [0, 1] and describe the state
of the system. The set § of all possible states ¢ of the
network is called the phase space of the system. In our
model & = [0, 1]V, where [0, 1]" stands for a hypercube
in RV,

2.3. Dynamics

The state variables o;, i = 1 ... N, of the neurons can
change due to inputs from other neurons in the network
and due to external sensory input. The total input ;
to the neuron i is a weighted sum of activities from
other neurons and of an external sensory input I:

N
ui(1) = 2 Tyo (1) + I (3)
J

where the strength of the synaptic connection from node
J to node i is represented by T;. In our model the con-
nections T; are excitatory ( 7j; > 0), symmetric ( T,;=
T;;) and short range:

1 if p(i,j)<r
Ty = (4)
0 otherwise.

Here r is a positive number and p(i, ) is the Euclidean
distance between neuron / and j in V.

The evolution of the configuration of this network
can be defined by the discrete-time or continuous-time
dynamics. In the case of a time-discrete evolution the
states of neurons are updated by

N
o (1 + l)=g(Z TijUj(f)+Ii) (5)

where g(x) is a sigmoid function.

The dynamics (5) may be parallel, sequential, or
may be a random, asynchronous sequence. In the con-
tinuous-time updating, all neurons continuously and
simultaneously change their states. The change of ac-
tivity of the neurons is then given by the set of nonlinear
differential equations (Grossberg, 1988)

N
dtzt(t)zg(z T,ya'j(l)"'li(t))_a"(t)' (6)

Both types of dynamics lead to the same equilibrium
state. The function

L) = =33 Tyno;— S Lo+ 3 6(ap) (1)
ij i i
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with G(o;) = [;' & '(x)dx, is a global Liapunov func-
tion for eqns (5) and (6). The vector ¢ refers to the
state of the neural network with components o;. The
existence of a Liapunov function guarantees that the
dynamics of the network always converges to a fixed
point. However, in the discrete-time parallel dynamics
L is a Liapunov function if the stability condition

6<|l/>‘minl (8)

is satisfied. Here 3 is the steepest slope of the function
g(x) and A, is the most negative eigenvalue of the
matrix T. If all eigenvalues are positive then L is a
Liapunov function for any 8. This can be understood
if we calculate AL = L(a(t + 1)) — L(a(2)):

1
AL = ) 2 TylAg;Ac; + 20i(t)As; ] — 2 LA,
ij i

+ 2 1G(ai(t + 1)) = Glai()]  (9)

where Ag; = o;(t + 1) — 0,(¢). By Taylor’s theorem
we obtain

G(o,(t+ 1)) = G(a: (1))
=G'(0i(t + 1))Ad; — § G"(£)(Ag;)?
< G'(ai(1 + 1))Ao; — § (Ag;)? min G"(x) (10)

where £ € [g;(¢), o;(¢ + 1)]. Inserting eqn (10) in eqn
(9) and using the definition of G(x) we obtain

1
AL < =35 2, [Ty + 8/ Bl AciAay (1
¥

where §; is the Kronecker delta-function. Here 1/8 =
min,G"(x) is the minimum curvature of the function
G(x) in the closed interval [0, 1]. The right-hand side
of the inequality (11) is negative if the matrix 7; + §;;/
@ is positive definite. A sufficient condition for matrix
T + 87'I to be positive definite is given by eqn (8).

In the case of the continuous-time dynamics, for
each finite value of 8 the dynamics (6) converges to a
fixed point that is a (local or global) minimum of the
Liapunov function. By differentiation of eqn (7) and
using eqn (6) we obtain

dL(a(1)) _ % OL(a(1)) dai(1)
df 80’1‘ dt

i

N
= =2 (g7 (o) — w)(o; — g(u)) <0 (12)

because ¢! (o) — u and ¢ — g(u) have the same sign.
Calculating the time derivative of eqn (3) we can also
obtain a representation of eqn (6) in terms of the input
variables ; :

i N
LD 5 Tugtu() + 1~ we).  (13)

The set of eqns (13) was first proposed by Hopfield
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(1984). There is a subtle difference though, between
eqns (13) and (6). Hopfield assumed that the activity
of neurons changes at the same time as when the neu-
rons receive input:

o (1) = g (1)). (14)

In the case of dynamics (3) and (6) this assumption
is only valid when the system has reached a stationary
state. The dynamical system defined by eqn (13) to-
gether with relation ( 14) has the same Liapunov func-
tion as eqns (3) and (6) (Hopfield, 1984). By direct
computation,

dL(o(1) _ 3. FL(a(0)) doi(0)
dt i aO’i dt
3wy,
- z( r )g(u,-)_O. (15)

Here we have used the symmetry of 7); and the mono-
tonic increase of the function g. The set of eqns (13)
and the Liapunov function (7) is a particular case of
the more general dynamical system, the stability of
which was studied by Cohen and Grossberg (1983).

2.4. Feasible Paths

To construct a feasible path we can use both discrete-
and continuous-time dynamics given by eqns (5), (6),
or (13). In our simulations we have used discrete-time
dynamics (5) for reasons of simplicity. At the initial
time, ¢t = 0, the activity of all neurons is set to zero.
Under influence of an external input, which clamps the
neuron at the target node to the value 1 and which
clamps all neurons in the occupied nodes to zero, the
state of the system begins to change according to the
dynamics of the network described by eqn (5). The
evolution of the network can be seen in the phase space
& as a motion of a point along the curve on which the
Liapunov function decreases. This down-hill motion
ends when the network reaches an equilibrium state,
which is a local or global minimum of L. The network
cannot display an oscillating behavior. This is guar-
anteed by condition (8). The final equilibrium states
are solutions of the fixed point equations

N
af=427@f+L) (16)
J
fori=1,..., N. This final equilibrium state is unique

when the Liapunov function is strictly convex. If the
second-order partial derivatives of L exist then L is
strictly convex iff the Hessian matrix L; = 8?L/da,do;
is positive definite. In our case

Li=-T;+3 <=Ty+8;/B8.  (17)

i
Yg'(g (a,))
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When all eigenvalues of the matrix 7); are negative,
then L is strictly convex function. If some of them are
positive then sufficient condition for strict convexity is
given by

B < 1/Amax- (18)

In the case of parallel discrete-time dynamics we have
to satisfy simultaneously the stability condition (8).
When we choose

6<1/>\a )\:max“)\min‘,l)\max'}, (19)

then the Liapunov function [eqn (7)] is strictly convex
on & and at the same time condition (8) is satisfied.
The strict convexity implies that a local minimum of
the function (7) is a global one and is unique. In this
case the set of eqn (16) has only one solution. This
equilibrium state depends only on the position of the
obstacles and on the position of the target.

Consider first the situation with static obstacles and
with a static target. If the neuron in the initial config-
uration node ji,;; is active, then a path connecting initial
position and target position is created in the following
way. A new configuration for the robot manipulator is
given by the position of the neighboring neuron with
the largest activity, which serves then as the starting
position for a new change. Every time when a new con-
figuration is reached a new decision is made concerning
the next configuration. This procedure is repeated until
the neuron corresponding to the actual position of the
robot becomes the target neuron. The created path 7
passes through a sequence of points ji,ii = Jjo, jis - - - »
Juarg = jm. The length of the path ? passing through
these sequence of points is given by

D(P) = 2 plJi, Jin)- (20)
i=0

In our case p(J;, ji+1) is equal to the lattice constant.
Because the path leads from one node of the lattice to
the neighboring node with the largest activity and ends
in the node with activity 1, the number of steps and
the length of the path on the grid is minimal. All other
paths, which pass through a sequence of points in which
the activity does not increase monotonically or does
not increase in the optimal way (i.e., largest increment),
consist of larger number of steps and have a length larger
than D(? ) because all steps have the same length. Due
to the discretization of the configuration space, the path
P has to stay on the nodes of the grid and is only an
approximation of a smooth curve in @. The degree of
accuracy is only limited by the grain size of the grid.

3. COMPUTER SIMULATIONS

In this section we illustrate some of the analytical results
of the algorithm outlined above. The range of possible
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applications includes problems classically handled by
the path-planning community, such as: controlling a
robot arm, car manoeuvring (Dorst et al., 1991), or
the piano movers problem. We have chosen four ex-
amples: an autonomous point-robot trying to find the
center of a labyrinth; a two-link robot manipulator
moving in a cluttered environment; a point-robot
avoiding a moving obstacle to reach the target; and a
point-robot following and trying to catch up with a
moving target.

In our demonstration we used a two-dimensional
lattice (d = 2) with N = 2500 neurons ordered in a 50
X 50 neural map. All four examples are two-dimen-
sional path-planning problems. Note, however, that the
model can easily be extended to higher dimensions and
may have other types of homogeneous lattices. Accord-
ing to eqn (4), each neuron is connected bidirectionally
to the neurons that are lying within a distance r in the
neural space around it. By choosing r = 1.5 each neuron
has eight neighbors (z = 8). Each simulation starts
with the activity of the neuron closest to the target po-
sition clamped to value 1. The activities of all neurons
that correspond to obstacle positions are clamped to
the value zero.

At each time step, neurons update their activations
in parallel, according to eqn (5). The changes in neuron
activations stop when the network reaches an equilib-
rium state.

The new actual neuron is the neuron with the highest
activity, chosen from the last actual neuron and its eight
neighbors. If two or more of the neighboring neurons
have the highest activation then one of them is chosen
randomly.

Any monotonically increasing function can be used
in our algorithm as the transfer function. In the sim-
ulations we chose both g(x) = tanh(Bx) and g(x) =
Bx. To choose a value of (8 that satisfies the condition
(19), we have to estimate the largest and the smallest
eigenvalue of the matrix T. Because each neuron is
connected to eight neighbors, the number of nonzero
elements in each row or column is at most equal to
eight. The nonzero elements are all equal to one. From
Frobenius theorem (see Bodewig, 1959) it follows then
that all eigenvalues A € [—8, 8]. In the absence of ob-
stacles and when we impose periodicity of the neural
map, all eigenvalues are positive and the largest eigen-
value is equal to eight. The matrix T in this case is a
double stochastic matrix. So we have to choose 8 € [0,
1.25) to guarantee the stability condition and unique-
ness of the equilibrium state.

For both, the linear and tanh( ‘) input/output be-
haviour of the neurons, we chose 8 = 0.1. The paths
generated by these functions are the same. The com-
putational time, however, is much shorter in the linear
case.

An optimal path can be found even before the net-
work settles into an equilibrium state. In our simula-
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tions the configuration of the robot manipulator starts
to change at the moment when one of the neighboring
neurons of the actual neuron is activated by the target
neuron. This is essential when the trajectory must be
planned in a changing environment. To understand that
planning can start before a stable state is reached, we
consider the activity in the neural map at equilibrium.
The shape of the activity in the map is a hill with the
top located at the target neuron and activity zero at the
obstacle neurons. In this activation pattern lines of iso-
activation can be defined. The structure and shape of
these lines depend only on the location of the target
and obstacles. Assume that target and obstacles are
fixed. At time zero only the target neuron has a nonzero
activity. Initially, due to the dynamics of the neurons,
all neurons located on the first iso-activation line receive
input from the target neuron and are activated. In the
following moment they raise their activity and send in-
formation to the neurons on the second iso-activation
line. This will go on, and the activity of neurons on
successive iso-activation lines is raised from zero until
the activation landscape is stable. During this dynamics
the shape of the iso-activation lines is constant and the
amplitude of activity decreases with increasing number
of the iso-activation line. Hence, the maximal gradient
on every position has a constant direction from the
moment when the activation front reaches that location.

3.1. The Labyrinth

In the first simulation we test the performance of the
network in the complex environment of a labyrinth.
Each configuration of a point-robot moving in a two-
dimensional workspace is described by the two position
coordinates x and y. In the case of the point-robot the
configuration space is isomorphic to the two-dimen-
sional work space. Hence the topological neural map
represents a discretization of the workspace. Each neu-
ron in it corresponds to a small unit area in the work-
space. Neighboring neurons correspond to neighboring
areas. By correspondence, neurons in the neural map
represent the target position, the initial actual position,
and the obstacles. We simulated several situations. In
each case, if a continuous path between target and initial
position existed, the neural net found it. In the case
that more than one solution was possible, the one with
the shortest path length was chosen. In Figure 1 we
show the neural map with a set of obstacle neurons
that correspond to labyrinth walls. The initial actual
position is chosen outside the labyrinth at point .S and
the target position is chosen in the center of the laby-
rinth, at point 7. The obstacle neurons are represented
by black dots and the neurons corresponding to the
actual position in successive time steps by open circles.
Note that several paths may lead to the target position,
but that the path generated by the network has the
shortest length.
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FIGURE 1. The labyrinth. Black dots represent neurons corre-
sponding to walls of the labyrinth. The sequence of open circles
gives the path generated by the network. These dots also cor-
respond to the actual neuron at the successive time ste;fs. The
initial position is at point S, the target position at point 7.

3.2. Planar Robot

In this example we consider a two-joint robot arm
moving in a two-dimensional workspace in the presence
of obstacles. In contrast with the point-robot, all objects
have real physical dimensions. The configuration of the
robot arm is described by two joint angles 8, and 6,.
We assume no constraints on the joints. In this case,
we impose periodic boundary conditions: the neurons
on the border of the map are connected to the neurons
on the opposite border. The two-dimensional map is
topologically equivalent to a torus and the joint angles

(A)
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can vary from O to 2= periodically. Both joints can
move simultaneously or move only one at a time. The
optimal path generated by the system is given by the
minimum joint motion of the robot arm in the work-
space.

In workspace we can choose an initial configuration
of the two-link manipulator, a target configuration, and
the obstacle positions. The shape of the obstacles in
the configuration space depends on the exact shape of
the robot arm.

In Figure 2A the workspace with the two-link ma-
nipulator is presented. The gray circles are obstacles.
The manipulator has been drawn at each time step,
illustrating the movement. In Figure 2B we show the
corresponding neural space that is a discretization of
the configuration space. The black dots represent the
neurons that correspond to the forbidden configurations
of the manipulator. The open circles drawn in Figure
2B show the successive actual neurons that correspond
to the manipulator configurations at every time step.

3.3. Changing Environment

3.3.1. Moving Target. Consider a situation in which
the target is moving and the robot’s task is to follow
and to try to catch it. In this case the sensory infor-
mation has to be processed continuously to update the
network for changes in the environment. The activity
of neurons will change all the time in the direction of
the equilibrium configuration imposed by the instan-
taneous position of the obstacles and the target. The
path, as in the static case, is determined by the neural
activity gradient. The difference with the static envi-
ronment is that the network cannot settle in an equi-
librium state because the neuronal representation of
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FIGURE 2. Two link robot manipulator. (A) Representation of the workspace. Gray circles represent obstacles. The robot manipulator
is drawn in successive positions. (B) The configuration space. Black dots represent the neurons corresponding to the obstacles.

Open circles show the actual neuron at successive time steps.
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FIGURE 3. The pursuit. Black dots represent the target position
in successive time steps. Open circles show the actual position
at successive time steps.

target and obstacles will change all the time. This will
influence the direction of the gradient that will change
not only from node to node but also change with time
for a given node. This gradient contains the relation
between neural activities and the direction of move-
ment. A collision-free path is generated only when the
speed of the moving obstacles is smaller than the rate
of change of neural activities.

As an example of how the network generates a path
in this case, we displaced the target by one step, after
each iteration. Generally, the path made by the network
1s always shorter than the trajectory of the target ( Figure
3). This gives the robot the opportunity to catch up
with the target, even if both have the same speed.

(A)

xxxxxxx

T T
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3.3.2. Moving Obstacles. In addition to avoiding static
obstacles, path planning must also include collision
avoidance with moving objects. To illustrate this, we
consider the case in which the point-robot can reach
the target in two ways. At the beginning of the simu-
lation one path is blocked. During the simulation, after
the robot moves along a substantial part of the path
(Figure 4A)), we move the obstacle to obstruct this path
and free the other. This causes a rapid change of neural
activities and the direction of the neural activity gra-
dient. As a result, the robot reverses and reaches the
target via the other path (Figure 4B).

4. CONCLUSIONS

We have proposed a model for path planning and ob-
stacle avoidance based on an analog neural network.
The network is a large collection of locally and sym-
metrically connected elementary processors. The evo-
lution of the network is given by parallel discrete- or
continuous-time dynamics. When the network receives
an external input, the neurons in the network start to
change their activity towards a specific value that cor-
responds to a minimum of the Liapunov function. The
direction of the motor response, the path, is determined
by the neural activity gradient.

Our neural network algorithm to compute optimal
feasible paths is an activity wave propagation, analogous
to the Huygens principle. A distance transform method
{(Jarris, 1985) is an example of this kind of algorithm
used in robotics for path planning. However, our net-
work can more easily respond to sudden changes in the
environment, like moving obstacles and target, and with
the possibility for hardware implementation the neural
network is more powerful than the distance transform.

®)
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FIGURE 4. Maving obstacle. (A) Black dots represent neurons corresponding to the labyrinth walls and the obstacle. Open circles
show the actual position of the point-robot at successive time steps from the start until the moment when the obstacle is moved.
(B) When the open pathway is blocked, the robot changes its direction towards the new open ‘“gate.”
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Our method resembles Dijkstra’s algorithm of find-
ing the lengths of the shortest paths from a given vertex
(target neuron) to all the remaining vertices of the
graph. However, the time taken by Dijkstra’s algorithm
on a graph with N vertices is O(N?)and in our method
itis O(N).

Four points are worth noting about the functional
properties of the network. First, pilot computer exper-
iments demonstrated that the system could remain
functional despite local damages in the network. The
quality of the path will be somewhat degraded, but it
will still be a feasible path. Second, we want to stress
the network’s insensibility to the choice of the transfer
function. The system is able to perform correctly, even
if different transfer functions are used for the neural
map. Third, continuous neurons eliminate oscillations
related to parallel dynamics of discrete neurons ( Mar-
cus et al., 1990). Fourth, the parallel architecture and
dynamics of the model give it the large speed needed
for real-time processing of sensory information because
all neurons simultaneously and continuously change
their analog states. Because the basic idea of the network
can be expressed by electrical circuits, modern tech-
nologies should provide the possibilities to implement
the network with a large number of processing elements
in hardware. Graf et al. ( 1986 ) were able to make cus-
tom chips with N = 256 fully connected units, using
2N? ~ 130,000 resistors. Because in our network all
connections are positive and local, the number of re-
sistors required will be of the same order as the number
of neurons in the network.
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NOMENCLATURE

J¥] the steepest slope of the function g(x)

e configuration space

Crree not occupied part of the configuration
space

CL cubic lattice

By Kronecker delta

D(P) length of path 2

d dimension of the configuration space or
the number of degrees of freedom

G(ao;) integrated sigmoid function

g(x) sigmoid function

I; external sensory input to neuron i

Jinit neuron j corresponding to the initial

configuration
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neuron j corresponding to the target
configuration

the most negative eigenvalue of matrix T

Liapunov function

number of neurons

neuronal space

obstacle « in workspace, a = 1...m

subset of @ corresponding 1o obstacle «

number pi

path

vector in configuration space

initial configuration

target configuration

the Euclidean distance between neuron
fand jin V.

a positive real number

robot manipulator

set of real numbers

phase space, set of all possible states o

system state

state of neuron { at time ¢

joint coordinates in configuration space

synaptic connection from neuron j to i

time

total input to neuron { at time ¢

space coordinates in configuration space

number of nearest neighbors



