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Abstract—The Population Vector as a measure for the interpretation of neuronal activity in terms of sensory or motor
events has been reliably used in the past for the case of uniformly distributed neuronal maps. In this study we will address
the problem of the interpretation of neuronal activity in terms of the Population Vector for non-uniformly distributed
maps. Based on mathematical analyses and on numerical computer simulations we demonstrate that, under some
assumptions, the Population Vector also provides a proper estimate for neural maps with non-uniformly distributed
neuronal response properties (i.e., the bias in the estimate, if present, is small). The main assumption is that the size of the
receptive fields is not constant but that it is related to the density of receptive field properties. The confidence level of the
results is expressed by the variance of the estimate in the limit of a large number of neurons. © 1997 Elsevier Science

Ltd. All rights reserved.
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1. INTRODUCTION

In general, sensory and motor activity in biological
neural networks is encoded by the activity of a large
number of neurons. In order to provide insight in the
representation of neuronal activity in motor cortex in
monkey, Georgopoulos et al. (Georgopoulos, Kalaska,
Crutcher, Caminiti, & Massey, 1984; Georgopoulos,
Kettner, & Schwartz, 1986; Georgopoulos, Ashe,
Smyrnis, & Taira, 1992) have formulated the hypothesis
that the interpretation of motor activity in terms of
planned movement direction could be estimated by a
summation of the preferred directions of all neurons in
an ensemble weighted by the firing rate of each single
neuron. This weighted summation was defined as the
Population Vector. A very similar approach was
followed by Gielen, Hesselmans and Johannesma
(1988) to interpret the neuronal activity in the cat audi-
tory nerve. In their approach they simply replaced each
action potential by the linear estimate of the impulse
response of each neuron and summated the results for
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all neurons. The result of this approach was a Population
Vector, which provided an estimate for the auditory
stimulus, that caused the activity in the auditory nerve.

In addition to the Population Vector other approaches
have been proposed (e.g., Abbot, 1994; Bialek & Rieke,
1988) to interpret neuronal activity. A frequently used
method is the Maximum Likelihood Estimator which
theoretically provides the optimal result. In order to com-
pare the performance of the Maximum Likelihood
Estimator and the Population Vector, Seung and
Sompolinsky (1993) considered the theoretical case of
a large set of neurons in visual cortex, each with a pre-
ferred direction, and studied the dependence of the per-
formance on the variation of the size of the receptive
fields of the neurons. In summary, they found that the
Maximum Likelihood Estimator gave the best perfor-
mance. However, the Population Vector appeared to be
useful for several reasons, one of them being that the
Population Vector is less sensitive to variations in the
shape of the receptive field.

Most studies mentioned above explicitly or implicitly
assumed a uniform distribution of preferred directions
(or more generally, a uniform distribution of receptive
field properties). However, non-uniform distributions of
receptive field properties and preferred directions are a
rule, rather than an exception in biological neural net-
works (see, for example, the receptive fields in superior
colliculus (van Gisbergen, van Opstal, & Tax, 1987;
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Rosa & Schmid, 1995) and in visual cortex (Hubel &
Wiesel, 1962). As a result, direct application of the Popu-
lation Vector to non-uniformly distributed neuronal
maps may fail to give a proper estimate of the sensory
or motor events, which are encoded in the neural activity.

In another study Salinas and Abbott (1994) proposed a
linear reconstruction method, called the Optimal Linear
Estimator, and tested this method on a set of neurons in
visual cortex in order to reconstruct the stimulus orienta-
tion from measured firing rates. The latter method is
based on a decorrelation of neuronal responses followed
by weighted summation of the decorrelated responses.
This method gives a faster convergence than the usual
Population Vector. The decorrelation procedure, how-
ever, requires non-local operations in order to calculate
the proper weight factor for the contribution of each cell,
which makes it a biologically implausible method.

In this article we study the concept of a Population
Vector for the case of non-uniformly distributed maps,
and we demonstrate how an unbiased estimate of the inter-
pretation of neuronal activity can be obtained under some
mild assumptions. We start with some theoretical analyses,
addressing the problem for non-uniformly distributed
maps, to find an expression for the expectation value and
its variance. We show that the Population Vector estimate
in general is biased but that the bias is small or absent
provided that a few assumptions are met. The Population
Vector can be used to interpret neuronal activity, since the
assumptions, which make the Population Vector applic-
able to non-uniformly distributed maps, are approxi-
mately met by most neural maps known in sensorimotor
pathways. The theoretical results are illustrated by
numerical simulations.

2. THEORY

Similarly to the earlier paper by Seung and Sompolinsky
(1993) we will investigate the firing frequencies ry,..., ry
of N simplified neurons in response to a stimulus ..
These neurons can be thought to be the so-called
simple cells in area V1 of the visual cortex, which have
an orientation sensitive receptive field (Hubel & Wiesel,
1962). Let us assume that #; € [ — 7,x] is the orientation
of a visual bar-like stimulus. The responses r; of neurons
are modeled by independent random variables with a
Poisson probability distribution of the form

fO,— by, a)rke —f(8; — B, a)

Pl 0) ="

M
where f(8;, — 60;,a) > 0 is the mean response (r;) of
neuron k, @, is the preferred direction of neuron k and a
is the width of the receptive field of a neuron. The mean
firing frequency function is expressed by

f(os - ok’a)=
fmin

Fuin+ Uinas = Fin)o0S" (=0, = 0,) if 16, — 04l < a2
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Each neuron has a preferred direction 8, € [—=,7].
When the stimulus §; is close to the preferred direction
of the neuron, the probability of a large response ry is
high. If the stimulus is outside the receptive field of the
neuron, the response is small with a mean firing rate fi;,.

We shall investigate the accuracy of the Population
Vector estimate §” of an unknown stimulus 0,. Unlike
Seung and Sompolinsky (1993) we will consider non-
uniform distributions of neurons assuming that the pre-
ferred directions @y of the neurons are distributed with a
probability density g(8). We chose for g(8) a Gaussian
distribution truncated to [—m,7].

iy
exp (—2)
g(0)= 2

3)
N (%)

Here, s is a real positive number and the error function is

defined as erf(x) = —=[gexp(— )dt. For large values
T

of s the distribution approximates a uniform distribution,
while for small values of s the density becomes sharply
peaked for preferred directions near zero.

We use the complex number representation z = e® for
a two-dimensional vector (cos 8, sin 6). Keeping this in
mind we define the Population Vector estimate as the
weighted sum of preferred directions

== D e @

where o € R is a normalization factor chosen in such a
way that z* becomes a unit vector in the limit of large N.
The estimate z” is an unbiased estimate if its expectation
value (z") is equal to e, where {...) represents the average
with respect to the Poisson distribution (eqn (1)).

In Appendix A we have derived the following expres-
sion for the expectation value (") for large N
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The expression for the estimated angle 8” is given by
—iln ———(Z*)
Kz

Since the first integral at the right hand side of eqn (5) is

0" =

2

otherwise.
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real valued, the first term in eqn (5) has always the same
direction as the optimal estimate (z*) = ™. The second
term is always orthogonal to the optimal estimate and,
therefore, it represents the bias of the estimate.

For a uniform distribution of preferred directions the
function g(¢) is constant (g(¢) = (27) "), which makes
the second term in eqn (5) equal to zero because of the
anti-symmetry of the sinus function. In this case the nor-
malization factor o reduces to [7 .f(¢,a)cos(¢d)de
which is equal to the first Fourier transform f1. This
implies that an unbiased estimate is obtained for a
uniform distribution of preferred directions.

For non-uniform distributions, the second term in eqn
(5) will be different from zero in general. The relative
magnitude of the first and second terms determines the
effect of the bias in the estimate of the angle.

The considerations above show that the Population
Vector estimator eqn (4) applied directly to non-
uniformly distributed maps is in general a biased estima-
tor. We shall show, however, that the Population Vector
defined by eqn (4) can still be unbiased or, at least, that
the bias will be sufficiently small, under some specific
conditions.

The basic idea is that the bias will be small or zero,
when the bias due to a changing density of preferred
directions is compensated by a change in receptive
field size. In detail, a bias induced by a larger number
of neurons at one side of a stimulus due to a non-uniform
distribution, could be compensated by reducing the size
of the receptive field of these neurons, such that the
number of neurons contributing to the Population Vector
in the direction of higher density decreases with the result
that the weighted summation of preferred directions is
close to the stimulus value.

Therefore, we shall investigate the Population Vector
for various combinations of distributions of preferred
directions and of receptive receptive field sizes a. We
shall demonstrate that for a particular choice of the func-
tion a(@), namely when the receptive field size decreases
for higher densities of preferred directions, the estimate
0" deviates only slightly from the stimulus 8.

To find the optimal function a(f) we define the follow-
ing cost function:

Cla(®)] =J_r(0*(a(0))—0s>zdes ©)

where 0 is the Population Vector estimate for stimulus
6,. The cost function is non-negative and for the unbiased
estimate it has a minimal value equal to zero.

Our second goal is to find an expression for the
standard deviation in the mean of the Population Vector
estimate, which is represented by the variance of the
estimate §°. An expression for this variance is derived
in Appendix B (eqn (9)) and is given by

o= EI—J f($, a)sin’(9)g(e + 0,)d
o -7
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For a uniform distribution g(¢) = (21r)_1
reduces to

the variance

d¢ f 0~
2Nf2
as derived earlier by Seung and Sompolinsky (1993).

Here f, = [* f(¢,a)e " "®de is the nth order Fourier
transform of f.

1 ™
= ?I_1f<¢, a)[ «:os(zas)]
1

3. NUMERICAL SIMULATIONS

In the numerical simulations we consider a sample of N
= 1000 neurons with preferred directions drawn from the
interval [—m, 7] with the probability density given by eqn
(3). For a finite number of neurons N the expectation
value for z* and the variance o} are given by

. 1< -
@ ON= g5 2. FO— 050"

0'0 N2 2 Zf(ok as’a(ok))snl 6, —90,)
where

1 &
=3 Zf(ok;a(ek))cos(ek)
k=1

Note that this normalization factor gives a unit vector
when the bias is zero, i.e., in the case of a uniform dis-
tribution of preferred directions, or when 6; = 0. The
orientation of the estimate does not depend on the nor-
malization factor «. In our simulations we use fy,;, = 10
and f. = 1000.

The task now is to find a function a(f) which mini-
mizes the cost function eqn (6).

A search procedure for a function a(f) without any
constraints is a difficult variational problem since it
requires to look for a minimum of the cost function in
the space of all functions for which the integral exists.
Therefore, we restrict our search to functions which are
polynomials in 8,. Because a(f,) has to be larger than
zero and because the distribution eqn (3) is symmetric
around zero we choose

L

a@B)= > clfl

=0

Neurons with preferred direction 8, and —0, should have
the same width of receptive fields because of the sym-
metric shape of g(6). We use a set of stimuli which are
uniformly distributed between —3.1 and 3.1 with step
size 0.1 to find a(#) which minimizes the cost function

averaged over all stimuli
6, €{-31, -30,.,3.0,3.1}

Our problem now reduces to minimization of the cost
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function
Clah= D 0" 0;) -0, @)

with L unknown coefficients c;. We look for the unknown
coefficients c; in the L-dimensional cube [ — 1,1]L using
a method of simulated annealing (Kirkpatrick, Gelatt, &
Vecchi, 1983). This optimization technique is well
accepted to find the minimum in an energy landscape
as defined by eqn (7). It provides the opportunity to
escape from local minima because steps to higher
values of the energy function are allowed with a finite
probability.

3.1. The Uniform Distribution

Figure 1 presents the mean of the variance over 10°
stimuli in the estimate z*(6) as a function of the receptive
field width a for two values for the number of neurons
(N = 103, 104). Clearly there is an optimum for values
near 0.8 radian. This value for a is similar to the result
obtained in previous studies (Seung & Sompolinsky,
1993; Gielen, Glasius, & Komoda, 1996) and corre-
sponds to the receptive field width which gives the opti-
mum in the amount of information in the neural activity.

This result can be understood from the following. For
values of a near zero each neuron responds very selec-
tively and many stimuli will not elicit any stimulus
related neuronal activity at all. As a consequence the
number of neurons responding to stimuli is small and
the variance in the Population Vector due to the stoch-
astic nature of the actionpotentials is large for very small
values of a. For large values of a almost all neurons will
respond to almost any stimulus. Hence, the accuracy to
estimate the proper stimulus will be low and the variance
will be large.

o s —_

o ©02 04 06 08 1 12 14 16 18 2
a (rad)

FIGURE 1. The mean variance (¢*) of the Population Vector esti-
mate (averaged over 10° trials) as a function of the receptive field
width a for N = 10° (dashed line) and N = 10* (solid line) for
homogeneously distributed preferred directions of the neurons.

R. Glasius et al.

A larger number of neurons gives a smaller variance
corresponding to a better estimate of the stimulus. The
minimum in the variance shifts to smaller values of a for
a larger number of neurons.

3.2. The Non-Uniform Distribution

The results for a non-uniform distribution are shown in
Figure 2. In this simulation, the Gaussian distribution of
preferred directions, as defined in eqn (3), has a standard
deviation s equal to one radian. If we minimize the cost
function eqn (7) by using the search algorithm outlined
before, we find the set of receptive field widths {a,}
shown in Figure 2a. The optimal values for a; in the
range between —2 and +2 radian vary by 1.2 radian
and increase rapidly outside this range. Values for a
receptive field width larger than 10 are not shown. The
largest receptive width was found for preferred directions
near 7 and —= and appeared to be as large as 1800.
Figure 2b (solid line) shows the bias when the receptive
fields are not constant but change as shown in Figure 2a.
For comparison, we included the results when a constant
value for a, which was optimal for the whole set of
neurons, was chosen for all neurons (dashed line). For
the former case (receptive field size related to density of
preferred directions) the bias is much smaller over the
whole range. However, the bias is not zero and the esti-
mate can be missed by 0.2 radian. The corresponding
variance in the estimate of the Population Vector is
shown in Figure 2c.

The oscillations in Figure 2b are due to variations in
the number of contributing neurons with a relatively
broad tuning in the regions [—2, —1.5] and [L.5, 2].
Therefore, and because of the low density of neurons
in the outer regions, these oscillations can be considered
to be a boundary artifact. In order to exclude these arti-
facts we have adjusted the cost criterion eqn (7) in such a
way that we look for the distribution of receptive field
widths which minimize the bias in the estimate, only in
the region which contains 95% of the total number of
neurons. For the Gaussian distribution with standard
deviation s = 1, the stimulus region is [—2,2] rad.
Hence, we took the sum in eqn (7) over this segment
for 8; € {—2.0, —1.9,...,, 1.9, 2.0 (rad)}. Note that we
allow all neurons to contribute to the estimate for the
proper stimulus.

Figure 3 shows the results of this analysis for the
truncted cost criterion for the same Gaussian distribution
(s = 1 rad). We have stopped the search procedure when
the estimates differ less than 0.0075 radian from the true
value, i.e., when Vy_ : 167(8;) — 8| < 0.0075. Figure 3a
shows the optimal distribution of receptive field widths.
Figure 3b (solid line) shows that with respect to the result
in Figure 2b the new distribution shown in Figure 3a
gives a bias which is significantly reduced in the interval
[—2,2] radian. The dashed line in Figure 3b shows the
bias for the case with the same (optimal) receptive field
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FIGURE 2. The results of a numerical simulation with distribution
g(6) and s = 1.0 and N = 1000. (a) The optimal width a for neurons
with various preferred directions. For each neuron the combina-
tion (0 k, aK) is indicated with an open dot. Receptive field widths
larger than ten are not displayed. (b) The bias b(¢’) in the estimate
as a function of the stimulus value 8, (solid line). In the case of an
optimal constant receptive fieid width for all neurons, i.e., a= 1.1
(dashed line). (c) The variance of the Population Vector for
stimulus values f,.
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width for all neurons, as in Figure 2b. The variance in
the range from —2 to 42 radian is small (Figure 3d)
and is comparable to the variance shown in Figure 2c.
Figure 3c illustrates that the optimization procedure
gives receptive field widths which are smaller for
higher densities.

To illustrate the fact that contributions of neurons with
a preferred direction far from the stimulus value can
contribute to a reduction of the bias we present the results
of Figure 3 in an alternative way in Figure 4. In Figure 4a
we have calculated the mean firing frequency for some
stimuli 8 € [0,7] and for all neurons. Figure 4b is a cross
section of Figure 4a, where the mean firing frequency of
all neurons is shown for the case 6; = 0. The graph is
symmetric. Near the stimulus value §; = 0 a group of
neurons responds and ‘‘votes’’ for an estimate near zero.
However, also in the far regions near = and —7 some
neurons with large receptive field widths respond to the
stimulus. Because of the symmetry however, the total
contribution to the estimate is zero. Hence an unbiased
estimate §” = 0 is the result.

When the stimulus orientation is §, = 0.2, there is a
cluster of responding neurons with preferred directions
near §; = 0.2 and a group of neurons with preferred
directions near 7 and —x (Figure 4c). Note that the
cluster of neurons with a preferred direction near 8, =
0.2 is symmetric with a large number of responding
neurons with preferred directions near zero due to the
larger density of preferred directions near ; = 0. This
asymmetry causes a bias in the Population Vector, which
is offset by the somewhat larger group of responding
neurons with a preferred direction near . As a result,
the bias in the Population Vector is small (Figure 3b,
solid line). For a stimulus value 6, = 1 (Figure 4d) the
two groups of responding neurons overlap.

The occurrence of two disconnected groups of
responding neurons does not agree with experimental
data (van Gisbergen et al., 1987, Hubel & Wiesel,
1962; Rosa & Schmid, 1995) which report only one
group of responding neurons. In fact the large receptive
field widths near the extremes —x and = are an artifactual
boundary effect. Therefore, additional constraints have
to be formulated in order to find results which will meet
the experimental results. We regard the group of neurons
with a preferred direction equal to or close to the stimulus
value as the main group. Neurons do not belong to the
main group if their response f(0; — 0y, a;) is larger than
the response of the neighboring neuron which has a pre-
ferred direction closer to the stimulus. We replace the
mean firing frequencies of all the neurons not belonging
to the main group by the minimal mean firing frequency
value f;,. The width of the receptive field a has been
adjusted so as to minimize the bias.

Figure 5 shows the result of the constrained search
algorithm. The bias in the estimate 0" is slightly larger
in Figure 5b than in Figure 3b. Figure 5c shows that the
optimal distribution of receptive fields corresponds to
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FIGURE 3. The results of the numerical simulations with distribution g(9) with s = 1.0 (rad), N = 1000. The cost is integrated over the
interval 0, € [ — 2.0, 2.0]. (a) The optimal width a for neurons as a function of preferred direction. For each neuron the combination (0 i, ax)
is indicated with an open dot. Receptive field widths larger than 10 are not displayed. (b) The bias b(¢ ‘) in the estimate as a function of the
stimulus value 9, (solid line) and for the case of an optimal constant receptive field width for all neurons (a = 1.1, dashed line). We have
stopped the search procedure when each estimate differs less than 0.0075 radian from the true value, i.e., when Voslil0'(0s) — 04 <
0.0075. (c) The optimal receptive field width a(0) as a function of the density g(¢). (d) The variance of the Population Vector for various

stimulus values 8,.

smaller receptive field widths for higher densities of
neurons. Due to the smaller receptive field width of
neurons at higher densities the number of neurons with
a preferred direction smaller and larger than the stimulus
value is approximately constant giving rise to the rela-
tively small bias in Figure 5b. The variance in the Popu-
lation Vector estimate is slightly larger in Figure 5d than
in Figure 3d.

The firing rate of the neurons responding to various
stimuli is shown in Figure 6. For all stimuli a single
cluster of neurons is responding. Notice that the cluster
of responding neurons is smaller than in Figure 5.
This is related to the fact that the width of the recep-
tive fields for this model in the range of preferred
directions [—1,1] is smaller than for the model shown
in Figure 3.

3.3. Robustness for Variations in Receptive Field Width

Although there is a general tendency for neurons in the
visual system and in the auditory system to have smaller
receptive fields when the density of neurons is higher (in
accordance with the result in Figure 5c) there is a consider-
able variability in receptive field width. Therefore, we have
investigated the robustness of the Population Vector esti-
mate for deviations of the optimal receptive field width
as shown in Figure 5c. The results are shown in
Figure 7.

Multiplication of all receptive field widths by a factor
of 1.5 did not have a large effect on the bias (compare
Figure 5b and Figure 7a). This illustrates that it is the
relative size of receptive field widths which is important
to minimize the bias in the Population Vector estimate,
rather than absolute size of the receptive field width.
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FIGURE 4. (a) The mean firing frequency of neurons versus the preferred direction of each neurons for some stimuli §,. N= 1000 and s =
1.0. (b) Cross section of (a) for 6, = 0. (¢) Cross section of (a) for 8, = 0.2. (d) Cross section of (a) for §, = 1. Note that the #-axis is scaled in
a way such that the density of neurons along the axis becomes uniform.

The Population Vector estimate is also robust for
random variations in the receptive field width a. Inducing
a variability in receptive field width by multiplication of
each g-value by the uniformly distributed random
variable z in the interval [0,5] for each neuron has only
a small effect on the bias (compare Figure 5b and
Figure 7b).

Simulations in which the density of preferred direc-
tions was randomly modified by 25% also demonstrated
that the bias and variance remained the same within 5%
in the interval [—2,2].

4. DISCUSSION

The Population Vector coding has been a popular way of
interpreting neuronal activity. However, this method has
frequently been associated with the assumption of homo-
geneous sampling of the input space by neurons. The
main result of this study is that the Population Vector
can also provide an accurate estimate of the sensorimotor

event when the distribution of receptive field properties
is not homogeneously distributed. In that case the Popu-
lation Vector can provide an accurate result if there is an
approximately inverse relation between the receptive
field width and the density of receptive fields. Random
variations in receptive field properties do have a small
effect only on the Population Vector estimate, presum-
ably because the variations in the contribution of cells
due to the variations in receptive field width disappear in
the summation of the contributions of all responding
neurons.

In this discussion we will first concentrate on the ques-
tion, whether the assumptions, which underlie our
method, are in agreement with experimental observa-
tions. After that, we will discuss the significance and
relevance of the results of this paper in the context of
previous publications.

In the visual system it is well known that the density of
receptive fields is much higher near the fovea than it is
towards the periphery. This has been found both in retina
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FIGURE 5. The results of a numerical simulation with distribution g(¢) and s = 1.0, N = 1000 and with the constraint of one single
responding group of neurons. The cost is integrated over the interval ¢, € [ - 2.0,2.0]. (a) The optimal width a for neurons with various
preferred directions. For each neuron the combination (¢, ax) is indicated with an open dot. (b) The bias b(¢") in the estimate as a
function of the stimulus value 6, {(solid line). In the case of an optimal constant receptive field width for all neurons, i.e., 2= 1.1 the bias is
indicated by the dashed line. (¢) The optimal receptive field width a(6) as a function of the density g{4). (d) The variance of the Population

Vector for various stimulus values 4.

(Peichle & Wissle, 1979) and in visual cortex (Peichle,
Wissle, Griinert, Rohrenbeck, & BoycottPeichle et al.,
1990; Rovamo & Virsu, 1984; Schwartz, 1980), where
the density of receptive fields decreases exponentially
towards the periphery. The fact that a larger part of
visual cortex is devoted to the central visual field is sum-
marized by the cortical magnification factor (Rovamo &
Virsu, 1984; Schwartz, 1980; van Essen, Newsome, &
Mannsellvan Essen et al., 1984). It is also a well known
fact, that the mean receptive field size increases from the
fovea towards the periphery in retina (Peichle & Wissle,
1979) and visual cortex (van Essen et al., 1984). In cat
retinal ganglion cells the receptive field size of the center
is approximately inversely related to the density of recep-
tive fields (Peichle & Wissle, 1979). In monkey visual
cortex the receptive field size decreases with the inverse

of the cortical magnification factor (van Essen et al.,
1984). These literature data indicate that, qualitively,
the receptive field size and density of receptive fields
in retina and cortex are inversely related, as suggested
by the results of this study.

Based on studies using electrical stimulation
(Robinson, 1972) van Gisbergen et al. (1987) proposed
a logarithmic function to describe the mapping from
retinal coordinates to the coordinates in the superior
colliculus. This logarithmic function implies that the
density of neurons decreases exponentially towards the
periphery, like in visual cortex. The receptive field size
was assumed to be constant in collicular coordinates
based on the findings of Mcllwain (1975). This implies
that the receptive field size increases logarithmically in
retinal coordinates (i.e., with the inverse of the exponential
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FIGURE 6. (a) The mean firing frequency of the neurons versus the preferred direction of the neurons for some stimuli 8,. N = 1000, s =
1.0. The constraint was imposed that only one group of neurons was responding for each stimulus. (b) Cross section of (a) for 6, = 0. {c)
Cross section of (a) for 8, = 0.2. (c) Cross section of (a) for 0, = 1. Note that the ¢-axis is scaled in a nonlinear way such that the density of

neurons along that axis is uniform.

density function). Due to this inverse relationship of the
functions which describe density and receptive field size
of neurons as a function of retinal eccentricity, the popu-
lation estimate of collicular activity in van Gisbergen
et al. (1987) gave a reliable, unbiased estimate of target
position in space.

In the auditory system, the distribution of fibers in the
acoustic nerve is ordered as a function of frequency. The
density of fibers is highest at the higher frequencies and
decreases for lower frequencies (Kiang, 1965). The
equivalent of the receptive field size for auditory nerve
fibers, the width of the frequency tuning curve or the
inverse of the sharpness of tuning, is smaller for nerve
fibers tuned at high frequencies (i.e., when the density of
fibers is high) and increases for lower frequencies
(Kiang, 1965). The fact that the Population Vector
could be used to provide a sensory interpretation of the
stimulus related activity in the acoustic nerve with its

non-uniform distribution of tuning curves (see Gielen
et al., 1988) was possible thanks to the inverse relation
between density of neurons and tuning curve of neurons.
These examples of previous studies, which have success-
fully used the Population Vector ideas for cases of non-
uniformly distributed receptive fields supports the
theoretical ideas outlined in this study.

The problem that a non-uniform distribution of recep-
tive fields might give rise to artifactual results for the
Population Vector has been recognized before in other
studies. Salinas and Abbott (1994) presented a method
which corrects for the correlation in firing rate of neurons
caused by the fact that the optimal stimulus is not ortho-
gonal for different neurons. This method also corrects for
non-uniformities in the distribution of neurons and in
addition gives a better signal-to-noise ratio than the
well known Population Vector. This method is certainly
a good way to interpret the neuronal activity. Whether or
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FIGURE 7. The bias b(8’) in the estimate as a function of the
stimulus value 6, (solid line), where N = 1000, s = 1.0, and with
the constraint of one responding group for each stimulus. The
dashed line represents the bias in the case of an optimal con-
stant receptive field width for all neurons (a = 1.1). (a) The para-
meter a has been multiplied by 1.5 for all neurons. (b) The
parameter a has been mulitiplied by z randomly chosen from
the interval [0,5].

not this method is also of relevance for our understanding
of neuronal information processing in biological neural
networks remains an open question, since this procedure
requires non-local operations on neuronal activity infor-
mation, which is in general assumed to be non-realistic
from a biological point of view. Since motocortical cells
are known to have monosynaptic contacts with motor-
neurons of distal muscles (Porter & Lemon, 1977) the
advantage of the Population Vector is that it bears more
resemblance with the way in which activity in motor
cortex becomes evident for external observation as the
summation of motor-unit twitches, which give rise to
force and movements.

The search procedure to find the optimal value for the
parameters a (which corresponds to half the receptive
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field width) gives a value of about 1.1 radian (Figure
3a), which is close to the optimal value of 0.8 radian in
Figure 1. However, it should be noted that the optimal
a-value in Figure 1 is found by minimization of the
variance az, whereas the optimal a-values shown in
Figure 3a are found by minimization of the bias.
Apparently, both procedures give similar results.

When the restriction is imposed that only one group of
neurons responds to each stimulus, the optimal a-value
appears to become somewhat smaller. We also found that
multiplication of all receptive field widths by the same
constant does hardly affect the bias (see Figure 7a). This
can be understood from the data in Figure 1, which shows
that the curvature in the minimum of the variance as a
function of a is rather small. As a consequence, the same
variations in a for all neurons will not have a large impact
on the variance of the estimate. Therefore, different
constraints on the model give rise to different values
for the optimal a-value without large effects on the
variance.

Random variations in the receptive field width hardly
affect the Population Vector estimate either. This is
mainly because any effects of the random variations in
receptive field width disappear by adding the responses
of many responding neurons. For stimulus values near =
and—= the averaging effect is smaller due to the
smaller density of neurons. Hence, variations in a give
rise to a larger bias and variance for smaller densities of
neurons.

In summary, we conclude that the Population Vector
can be used as an estimate for the sensory or motor
interpretation of neural activity for non-uniform maps
when the density of receptive field properties and recep-
tive field are inversely related. The latter assumption
seems to be in agreement with present knowledge
about neuronal information processing in most sensory
systems.
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APPENDIX A: THE EXPECTATION VALUE (z*)

In this appendix we derive an analytical expression for the expectation
value of the Population Vector estimate for the case of non-uniformly
distributed preferred directions.

1 N
€)= <m§ 0>

= okzlfwk—os,a)e"’k

If N is large the sum can be replaced by an integral

)= éj _ f(0—b,,a)eg(6)d

Changing variables ¢ =  — 6, and assuming a symmetric function of
the density of preferred directions results into

10

& )— — ,f(d», e g(¢+0)dd
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APPENDIX B: VARIANCE OF THE
DIRECTIONAL FLUCTUATIONS

For large N z*, as a sum of independent random variables, has a two-
dimensional Gaussian distribution. This distribution is completely
determined the correlation matrix

_ ( (x—1% «x—fcxy—y»> ®
(k=30 -7 -3

where x = ReZ and y = ImZ.
To calculate the variance in z~ we define

N
R 1
x=Re(z’) = mkzl ricos(8y)

N
N 1 .
y=Im@) = -2 nsindy)

Using the shorthand notation f;, = A8, — 8, a), the variance in x is

2
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In the latter two steps we use the fact that (r;, — f}) are independent
random variables and the fact that < (r; — f,()2 > =di=fu
Likewise we calculated the variance in y and the covariance
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x—0;

1 1
— x-S (& a)[i— ECOS(2¢)] 8(¢ +0;)do &)

The two eigenvalues of the matrix correspond to eigenvectors, in the 1
direction of the orientation # and in the direction of the magnitude R = o3 = _I
* . . N . N 2

Iz'|. Hence the fluctuations in 6 are given by the eigenvalue correspond- o
ing to the eigenvector in the direction 6. It is equal to

x—0,
1
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T N2



