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We investigate the �ring characteristics of conductance-based integrate-
and-�re neurons and the correlation of �ring for uncoupled pairs of neu-
rons as a result of common input and synchronous �ring of multiple
synaptic inputs. Analytical approximations are derived for the moments
of the steady state potential and the effective time constant. We show that
postsynaptic �ring barely depends on the correlation between inhibitory
inputs; only the inhibitory �ring rate matters. In contrast, both the degree
of synchrony and the �ring rate of excitatory inputs are relevant. A coef�-
cient of variation CV > 1 can be attained with low inhibitory �ring rates
and (Poisson-modulated) synchronized excitatory synaptic input, where
both the number of presynaptic neurons in synchronous �ring assemblies
and the synchronous �ring rate should be suf�ciently large. The correla-
tion in �ring of a pair of uncoupled neurons due to common excitatory
input is initially increased for increasing �ring rates of independent in-
hibitory inputs but decreases for large inhibitory �ring rates. Common
inhibitory input to a pair of uncoupled neurons barely induces correlated
�ring, but ampli�es the effect of common excitation. Synchronous �ring
assemblies in the common input further enhance the correlation and are
essential to attain experimentally observed correlation values. Since un-
correlated common input (i.e., common input by neurons, which do not
�re in synchrony) cannot induce suf�cient postsynaptic correlation, we
conclude that lateral couplings are essential to establish clusters of syn-
chronously �ring neurons.

1 Introduction

Correlated �ring of cortical neurons has been observed in a series of exper-
iments (Vaadia et al., 1995; Riehle, Grün, Diesman, & Aertsen, 1997; Singer
& Gray, 1995), but opinions differ as to what extent such synchronization
contributes to information representation and to information processing by
ensembles of neurons (Philips & Singer, 1997) and about the contribution
of the underlying mechanisms responsible for correlated �ring. Broadly
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speaking, correlated �ring of neurons can be due to appropriate couplings
between neurons in a network, due to common input to otherwise uncou-
pled neurons or, most likely, a combination of these two causes. The case
of lateral couplings within a network has attracted a great deal of theoret-
ical interest (van Vreeswijk, 1996; Ernst, Pawelzik, & Geisel, 1998; Bush &
Sejnowski, 1996; Juergens & Eckhorn, 1997; Gerstner, 1998; Ermentrout &
Kopell, 1998; Brunel & Hakim, 1999). These studies have shown that syn-
chronization of the activity of neurons in a network arises in a large number
of cases and that the correlation depends on the strength and dynamics of
excitatory and inhibitory couplings.

Only a few studies have focused on the ontogenesis of correlated �ring
due to common input of uncoupled neurons. Feng, Brown, and Li (in press)
proved that two noiseless leaky integrate-and-�re (IF) neurons with equal
input streams in due time always synchronize perfectly; that is, the effect
of the initial condition vanishes. This result was reported earlier by Knight
(1972), but then synchronous �ring was mostly considered an undesired
artifact, which distorted the encoding of an input stimulus by the popula-
tion �ring rate. A drawback of the work by Feng et al. (in press) is that it
considers 100% common input, which is not biologically plausible. A more
general approach was taken by Shadlen and Newsome (1998), who simu-
lated IF neurons with large numbers of excitatory and inhibitory synaptic
input. These authors reported that the fractions of shared excitation and
shared inhibition affect the correlation between �ring of two neurons. They
found only modest correlation, which led them to conclude that the tem-
poral pattern of synaptic input could not be recovered from the pattern
of output spikes. However, they considered only conditions of balanced
excitatory and inhibitory input, which may not cover all possible biologi-
cally plausible cases of synaptic input. Diesmann, Gewaltig, and Aertsen
(1999) showed that the propagation of synchronous spiking from one neu-
ral layer to the next due to excitatory common input can be described by
attractor dynamics in the state-space of the number of spikes in a volley
on the one hand and the temporal dispersion of the spikes on the other
hand. The state-space portrait exhibits a basin of attraction such that large
enough volleys with small enough dispersion survive in the propagation
process.

In this article we study the effect of uncorrelated and correlated spiking
of excitatory and inhibitory inputs on the �ring characteristics of a sin-
gle neuron and the effect of uncorrelated and correlated common input
on the correlation of activity of a pair of neurons. In this analysis we use
a conductance-based IF model, which is introduced in section 2. Simula-
tions are required to obtain the �ring behavior of the conductance-based
IF neuron. Nevertheless, in section 3 we present relations for the mean and
standard deviation of the steady-state membrane potential and the effective
time constant that link the �ring behavior with the model parameters. The
effect of input correlation on the �ring of a single neuron is analyzed in
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section 4. Correlation between the �ring of a pair of neurons with common
input is studied in section 5. The results are discussed in section 6.

2 Model

2.1 Conductance-Based Integrate-and-Fire Model. The starting point
for many neuron models is the leaky IF model, where a membrane current
I(t), being the sum of all incoming synaptic currents, charges a membrane
capacitance C in parallel with a membrane resistance R:

tm PU(t) D ¡U(t) C RI(t), (2.1)

with U(t) the membrane potential and tm D RC the membrane time con-
stant. The neuron �res and resets its potential when the membrane potential
exceeds the threshold Ut:

U(tC ) D Ur if U(t) D Ut, (2.2)

with Ur < Ut the reset potential. A drawback of this model is that it assumes
that the synapses act as independent current sources, implying that it ne-
glects the decrease in the membrane resistance and the dependence of the
effective time constant on the input spike rates (Koch, 1999). Since we want
to study the correlation between the activity of neurons for a variety of input
frequencies and input synchrony, the assumption of independent current
sources is not justi�ed in this context, and we will use a more plausible yet
simple conductance-based IF model.

In this model, incoming spikes affect the conductance of channels for
excitatory or inhibitory currents. The membrane equation is given by

C PU(t) D Ie(t) C Ii(t) C Il(t), (2.3)

where Ie, Ii, and Il are theexcitatory, inhibitory, and leakcurrent, respectively:

Ie(t) D Ge(t)(Ee ¡ U(t)) (2.4)

Ii(t) D Gi(t)(Ei ¡ U(t)) (2.5)

Il(t) D Gl(Er ¡ U(t)), (2.6)

with Ee and Ei the excitatory and inhibitory reversal potentials, Er the rest
potential, and Ge(t), Gi(t), and Gl the excitatory, inhibitory, and leak con-
ductance, respectively. These equations can be combined to:

tm(t) PU(t) D ¡U(t) C U1(t) (2.7)

tm(t) D
C

Ge(t) C Gi(t) C Gl
(2.8)

U1(t) D
Ge(t)Ee C Gi(t)Ei C GlEr

Ge(t) C Gi (t) C Gl
, (2.9)
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with U1 the steady-state potential and tm the effective time constant. The
threshold-passing-plus-reset mechanism follows equation 2.2.

Neglecting spatial effects, the excitatory and inhibitory conductances
depend on the recent input spiking times and are modeled by

Ge(t) D
X

j2Ce

X

f2Fj

ge(t ¡ t f
j ) (2.10)

Gi(t) D
X

j2Ci

X

f2Fj

gi(t ¡ t f
j ), (2.11)

with t f
j the time of the f th spike of neuron j, Ce and Ci the set of excitatory

and inhibitory synaptic inputs, respectively, Fj the set of �ring instances,
and ge and gi synaptic conductance functions. In this study, the synaptic
conductance functions are pulses with a �nite amplitude Og and width t :

ge, i(t) D

8
<

:

0 t < 0
Oge,i 0 · t < te, i
0 t ¸ te, i.

(2.12)

For an arbitrary constant membrane potential U0 (compensating for the leak
current), the change in membrane potential DU due to a conductance pulse
approximately is

DU ¼ t Og(E ¡ U0)/C, (2.13)

with E the appropriate (excitatory or inhibitory) reversal potential.
The following parameters are used in this article: Er D ¡75 mV, 1/Gl D

40 MV, C D tmGl D 325 pF with tm D 13 ms, Ut D Er C 20 D ¡55 mV,
Ei D ¡75 mV, Ee D 0 mV, Oge D 1.2 nS, te D 1.5 ms, Ogi D 3.3 nS, and
ti D 1.5 ms. The rest potential, threshold potential, input resistance, and
time constant are in line with in vitro measurements on pyramidal neurons
of the rat visual cortex by Mason, Nicoll, and Stratford (1991). The choice of
the reversal potential of the excitatory and inhibitory synapses corresponds
well to the work of Protopapas, Vanier, and Bower (1998). Notice that Ei D
Er, meaning that an inhibitory input at rest potential does not induce an
inhibitory current. For the parameters chosen, it follows from equation 2.13
that an excitatory postsynaptic potential (EPSP) has a peak of 0.4 mV at the
rest potential and 0.3 mV near the threshold potential. The peak potential,
rise time, and half-width time are in line with the data of Mason et al. (1991).
Near the threshold potential, an inhibitory postsynaptic potential (IPSP) has
amplitude and rise time equal to an EPSP, that is, a peak of ¡0.3 mV (see
equation 2.13) and a rise time of 1.5 ms. These results are in line with data of
Matsumura, Chen, Sawaguchi, Kubota, and Fetz (1996), who reported about
equal amplitudes and rise times for EPSPs and IPSPs. The simulations in
this article use Euler integration with a time step D t D 0.1 ms.
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Figure 1: Neurons X and Y with unique and common excitatory (�lled circles)
and inhibitory (open circles) synapses. Nu

e and Nu
i are the number of unique

excitatory and inhibitory inputs for each of the neurons X and Y. Nc
e and Nc

i are
the number of common excitatory and inhibitory inputs, respectively.

2.2 Input Spike Series. We study the effects of synchronous presynaptic
�ring and partially common input on the induced �ring statistics of a pair of
neurons X and Y. The input signals of X and Y consist of six groups of spike
series (see Figure 1): Nu

e and Nu
i unique excitatory and inhibitory inputs,

respectively, for each of the neurons X and Y; Nc
e and Nc

i common excitatory
and inhibitory inputs, respectively, for both X and Y. Fractions of excitatory
(e) and inhibitory (i) common inputs are denoted by fe,i:

fe, i ´
Nc

e, i

Nu
e, i C Nc

e, i
. (2.14)

In the absence of correlation between the input spike series, each spike
series s(t) can be considered as the result of an independent Poisson pro-
cess. In the simulations, we apply the usual �rst-order approximation for
the probability P1 of a single spike in a small interval D t of a process with
�ring frequency l: P1 D lD te¡lDt ¼ lD t. The assumption of a Poisson
process ignores the effect of an (absolute) refractory period tr for the neu-
rons, which provide input to neurons X and Y. For a single Poisson process,
this simpli�cation is justi�ed if l ¿ 1/tr, such that the probability of a spike
in the refractory period is small: P1 ¼ ltr ¿ 1. If the input consists of N
Poisson processes with �ring rate l, then the effective input is a Poisson
process with �ring rate lN. If the total Poisson process generates two action
potentials within the refractory period tr, then chances are approximately
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ltr /N that this happens due to the double �ring of a single process and
(N ¡ 1)ltr /N that the event is caused by the �ring of two processes. Fol-
lowing this �rst-order reasoning, this implies that the refractory period can
be neglected if l ¿ N/tr. For any reasonable choice of tr, N, and l, this
condition is ful�lled; for example, tr D 2 ms, N D 100 implies l ¿ 5 104 Hz.

The correlation between two spike series sx(t) and sy(t) is de�ned by

Kxy (t ) ´
h(sx(t) ¡ hsxi)(sy(t C t ) ¡ hsyi)i

q
h(sx(t) ¡ hsxi)2ih(sy(t) ¡ hsyi)2i

, (2.15)

where hsi is the ensemble average of the spike process s, which is equal to
the time average given the ergodicity of the process. In our study, correla-
tion between synaptic inputs is taken into account by subdividing each set
of excitatory or inhibitory synaptic inputs into synchronization clusters. In
the visual system, neurons tend to �re in synchrony (Singer & Gray, 1995).
Although there is some controversy about the functional signi�cance of syn-
chrony of �ring, some authors have speculated that synchrony might serve
as a label for neurons encoding the same object (this is called the binding
hypothesis). Therefore, the idea was to investigate how various clusters of
neurons, �ring in synchrony while encoding the same object, might affect
the �ring of subsequent neurons. Therefore, a synchronization cluster was
de�ned as follows. In the jth synchronization cluster, Mj presynaptic neu-
rons �re independently according to Poisson processes with (background)
rates lb

j ´ (1 ¡ Kj)lj and �re synchronously according to a Poisson pro-
cess with rate ls

j ´ Kjlj . The total spike series is the “logical or” of the
independent and the synchronous contributions. For ljD t ¿ 1 the result-
ing spike series have �ring frequency lj and cluster correlation Kj; that is,
the cross-correlation between two spike streams sq(t) and sr(t) (q 6D r) in a
synchronization cluster is given by

Kqr(t ) D Kjd1(t ), (2.16)

with d1(t ) D 1 for t D 0 and d1(t ) D 0 for t 6D 0. Each neuron is part of only
one synchronization cluster, and there is no correlation between neurons in
different synchronization clusters. In this study, we always use a �ring rate
le equal for all excitatory inputs and a �ring rate li equal for all inhibitory
inputs. Furthermore, we apply equal numbers of excitatory and inhibitory
inputs Ne D Ni D 120. For simplicity, the inputs are divided in clusters of
equal size M, and the cluster correlation is Ke for excitatory inputs and Ki
for inhibitory inputs.

In conclusion, the relevant variables of the input spike series are the
excitatory and inhibitory �ring rates le and li, the fractions of excitatory and
inhibitory common inputs fe and fi, the cluster size M, and the excitatory
and inhibitory cluster delta correlations Ke and Ki.
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3 Single Neuron with Independent Inputs

3.1 Analytical Results. A analytical expression for the �ring character-
istics is known only for the nonleaky IF model (see equation 2.1 with R D 1)
(Tuckwell, 1988). For leaky IF models, numerical calculations are necessary
to obtain a solution for the threshold-passing problem. Some insight into
the �ring characteristics of a leaky IF model can be obtained by calculat-
ing the mean and variance of the membrane potential while neglecting
the threshold-passing-reset mechanism. Results of such calculations for the
current-based IF model of equation 2.1 are presented in Tuckwell (1988) and
Koch (1999). In this article, we derive expressions for the moments of the
steady-state potential and time constant of the conductance-based IF model.

The total excitatory and inhibitory conductances Ge and Gi are the sums
of the synaptic conductance pulses over all synapses and (recent) spike
times (see equations 2.10 and 2.11). Since the input spike trains are Poisson
processes, the sums are Poisson distributions too. For the case of indepen-
dent inputs, the resulting distributions have frequencies ºe ´ Nelete and
ºi ´ Niliti, leading to mean conductances hGei D Ogeºe and hGii D Ogiºi for
the excitatory and inhibitory processes, respectively. If ºe,i À 1, these Pois-
son distributed total conductances are well described by gaussian processes
with means m e ´ Ogeºe and m i ´ Ogiºi and standard deviations se ´ Oge

p
ºe and

si ´ Ogi
p

ºi. For simplicity, we use Ne D Ni D 120 and vary the excitatory and
inhibitory �ring rates to achieve various ratios of excitation to inhibition.

The moments of the steady-state potential U1 and the time constant tm
can be calculated exactly using the de�nition of the expectation of a function
of two independent Poisson processes:

hc i D
1X

kD0

1X

lD0

c ( Ogek, Ogil) e¡ºe
ºk

e

k!
e¡ºi

ºl
i

l!
, (3.1)

with c the appropriate function (e.g., see equations 2.8 or 2.9). Figure 2
shows the analytically exact results for the mean and standard deviation of
the steady-state potential U1 and the effective membrane time constant tm.

Approximate relations for the mean andstandard deviation of the steady-
state potential and time constant can be derived by using the gaussian ap-
proximation for the sum of a large number of Poisson processes and ana-
lytically integrating a �rst-order approximation of the function c :

hc i D
1

2p sesi

Z 1

¡1

Z 1

¡1
c (x, y) exp

³
¡

(x ¡ m e)2

2s2
e

´
exp

³
¡

(y ¡ m i )2

2s2
i

´

£ dx dy (3.2)

D
1

2p sesi

Z 1

¡1

Z 1

¡1
exp

»
logc (x, y) ¡

(x ¡ m e)2

2s2
e

¡
(y ¡ m i)2

2s2
i

¼

£ dx dy (3.3)
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Figure 2: Results of exact analytical calculations (see equation 3.1) of the mean
(top) and standard deviation (bottom) of the steady-state potential U1 (left)
and time-constant tm (right) as a function of the excitatory (le) and inhibitory
(li) �ring rate for the conductance-based IF model. These exact results were
calculated using equation 3.1. The horizontal �at grid in the upper left graph
represents the threshold potential Ut D ¡55 mV. Its intersection with the curved
surface of hU1 i is emphasized by a thick line. In the other graphs, the solid
line represents the values of htmi, s(U1 ), s(tm ) for the values of le and li,
corresponding to hU1 i D Ut .

¼ 1
2p sesi

Z 1

¡1

Z 1

¡1
exp

»
logc (m e, m i) C (x ¡ m e)

1
c

@c

@x


m e ,m i

C(y ¡ m i)
1
c

@c

@y


m e ,m i

¡
(x ¡ m e)2

2s2
e

¡
(y ¡ m i)2

2s2
i

)
dx dy (3.4)

D c (m e, m i) exp

(
1

2c (m e, m i)2

³
s2

e

³
@c

@x
(m e, m i

´´2

Cs2
i

³
@c

@y
(m e, m i ))2

´ ¼
(3.5)
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The following equations were derived with this method:

hU1i ¼ Eem e C Eim i C ErGl

m e C m i C Gl
exp

³
s2

e j 2
e C s2

i j 2
i

2

´
(3.6)

s(U1) ¼

Eem e C Eim i C ErGl

m e C m i C Gl



£
q

exp(2(s2
e j 2

e C s2
i j 2

i )) ¡ exp(s2
e j 2

e C s2
i j 2

i ) (3.7)

je D (Ee(m i C Gl) ¡ Eim i ¡ GlEr)

£
±
Eem

2
e C Gl(Ee C Er)m e C (Ee C Ei)m em i

C Gl (Ei C Er)m i C Eim
2
i C ErG2

l

²¡1
(3.8)

ji D (Ei(m e C Gl) ¡ Eem e ¡ GlEr)

£
±
Eem

2
e C Gl(Ee C Er)m e C (Ee C Ei)m em i

C Gl (Ei C Er)m i C Eim
2
i C ErG2

l

²¡1
(3.9)

htmi ¼ C
m e C m i C Gl

exp
³

s2
e C s2

i

2(m e C m i C Gl)2

´
(3.10)

s (tm) ¼
C

m e C m i C Gl

£

s

exp
³

2(s2
e C s2

i )
(m e C m i C Gl)2

´
¡exp

³
s2

e C s2
i

(m e C m i C Gl)2

´
. (3.11)

The mean and maximum absolute differences between the exact statistics
shown in Figure 2 and the values obtained by equations 3.6 through 3.11 are
0.18 and 0.34 mV for hU1i, 0.04 and 0.13 mV for s (U1), 0.05 and 0.12 ms for
htmi, and 0.02 and 0.10 ms for s(tm), respectively. The zeroth-order approx-
imations of the mean values (excluding the exponential function in equa-
tions 3.6 and 3.10) are fairly accurate with mean and maximum errors of 0.11
and 0.53 mV, and 0.05 and 0.12 ms, respectively. This illustrates that equa-
tions 3.6 through 3.11 provide a good approximation to the exact results.

What do these statistical moments tell us about the �ring characteristics
of the neuron? Clearly, if the steady-statepotential U1(t) is below the thresh-
old level Ut, then U(t) < Ut, and no �ring can occur. Comparison of hU1i
with Ut in connection with its standard deviation s(U1) therefore provides
insight into the neuron’s �ring characteristics. We �rst consider the case for
which hU1i D Ut. The solid line in the upper left panel of Figure 2 represents
the relation between le and li for this case. Using the zeroth-order approx-
imation of hU1i, an analytical relation for this line can easily be derived:

li D w (le) D
leNe Ogete(Ee ¡ Ut) ¡ Gl(Ut ¡ Er)

Ni Ogiti(Ut ¡ Ei)
´ aw le ¡ bw . (3.12)
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Figure 3: The inhibitory frequency li for which hU1 i D Ut C ks(U1 ) as a func-
tion of the excitatory frequency le. Solid line with circles: k D 0; dashed lines:
k D §0.5; dash-dotted line with crosses: k D 1; dash-dotted line with asterisks:
k D ¡1; dotted lines: k D §2. Inhibitory �ring rates li with k > 0 imply frequent
and regular �ring; �ring rates li with k < 0 imply rare and irregular �ring (see
also Figure 4).

Notice that w (le) can be negative due to the offset bw , implying that hU1i <
Ut, even in the absence of inhibition. Now, if li ¿ w (le), then hU1i À Ut.
Therefore, being almost independent from variations in U1, output �ring is
regular. In this case, the mean interspike interval (ISI) can be approximated
by the deterministic case, where the ISI is set by the threshold potential Ut,
the reset potential Ur, the time constant tm, and the steady-state potential
U1, following the solution of the �rst-order differential equation:

Ut ¡ Ur D (1 ¡ exp(¡ISI/tm))(U1 ¡ Ur). (3.13)

Setting tm D htmi, U1 D hU1i, and ISI D hISIi we obtain the (upper bound)
approximation:

hISIi ¼ htmi log
³

hU1i ¡ Ur

hU1i ¡ Ut

´
. (3.14)

On the other hand, if li À w (le), then hU1i ¿ Ut, and output �ring is rare
and irregular.

A more general picture evolves if we also include the variation of U1 in
this analysis, which also depends on li and le. Figure 3 shows the inhibitory
frequencies li for which hU1i D Ut C ks(U1) with k 2 f0, §0.5, §1, §2g
as a function of le. We denote these inhibitory frequencies as lt

i (k, le), or
sometimes simply as lt

i (k). It follows from Figure 3 that the lines representing
lt

i (k, le) for different values of k diverge. This implies that the intermediate
frequency regime, where lt

i (k, le) · li · lt
i (¡k, le), becomes larger for

increasing excitatory �ring rates.
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Figure 4: Results of numerical simulations, showing mean ISI and CV as a
function of inhibitory �ring frequency li for a series of excitatory frequencies:
le D 50 Hz (dotted line), le D 75 Hz (dash-dotted line), le D 100 Hz (dashed
line), le D 125 Hz (solid line), le D 150 Hz (thick solid line). Circles denote the
points where hU1i D Ut, crosses denote the points where hU1 i D Ut C s(U1 ),
and asterisks denote the points where hU1i D Ut ¡ s(U1) (see also Figure 3).
Averages are based on 10,000 spikes.

3.2 Numerical Simulations. Now we proceed from the analytical re-
sults to simulation results of the conductance-based IF model and thereby
link the function lt

i (k, le) to the spiking behavior of the neuron. Figure 4
shows the mean interspike interval hISIi and its coef�cient of variation CV
as a function of the excitatory and inhibitory �ring rates. For increasing
inhibitory frequency, hISIi ! 1 and CV ! 1. For low inhibitory �ring
rates, hISIi is small and CV is relatively small, indicating that �ring of the
output neuron is frequent and regular. The incline of the graphs becomes
less steep for higher excitatory �ring rates. This is related to the increase in
the intermediate frequency regime lt

i (k, le) · li · lt
i (¡k, le) for large le,

shown in Figure 3. The stars, circles, and crosses denote the approximate
mean ISI and CV for which hU1i D Ut C ks(U1) with k 2 f¡1, 0, 1g, re-
spectively. The CV for a particular value of k is approximately constant with
CV(k D 1) ¼ 0.23, CV(k D 0) ¼ 0.45, and CV(k D ¡1) ¼ 0.90. However, the
mean ISI for constant k decreases for larger le. This can, at least partly, be
explained by the fact that the mean effective time constant htmi decreases
for increasing excitatory and inhibitory �ring rates (see Figure 2). A small
time constant implies a short rise time of the membrane potential toward
the threshold potential.

Figure 5 shows the prespike averages of the total synaptic conductances,
the membrane potential, the steady-state potential, and the time constant
for an excitatory �ring rate le D 100 Hz and for two inhibitory �ring rates:
li D lt

i (1) D 29.6 Hz (implying hU1i D Ut C s(U1)) and li D lt
i (¡1) D

88.0 Hz (implying hU1i D Ut ¡ s(U1)). In addition to the mean value plus
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Figure 5: Mean and standard deviation of prespike conductances Ge and Gi,
steady-state potential U1 , time constant tm , and membrane potential U for un-
correlated inputs (Ne D Ni D 120, le D 100 Hz) and two inhibitory �ring rates:
li D lt

i (1, le) D 29.6 Hz (top row) and li D lt
i (¡1, le) D 88.0 Hz (bottom row).

The solid and dashed lines represent the prespike mean § SD, averaged over
10,000 spikes in numerical simulations. The dash-dotted and dotted lines repre-
sent the mean § SD of approximated conductances, steady-state potential, and
time constant calculated by equations 3.6 through 3.11. The threshold potential
is Ut D ¡55 mV.

or minus the standard deviation of the simulation results (solid and dashed
lines), the graphs show the mean plus or minus the standard deviation
(dash-dotted and dotted lines) of the approximated statistics according to
equations 3.6 through 3.11. For large enough prespike times (t · ¡5 ms) the
simulated and approximated values correspond well. For li D 29.6 Hz, the
above-threshold value of hU1i leads to a constant increase in the membrane
potential U and to regular and fast �ring: hISIi D 8.0 ms, CV D 0.23 (see the
crosses on the dashed lines in Figure 4). This mean ISI compares well with
hISIi D 8.2 ms obtained with equation 3.14. Spiking is on average preceded
by a small increase in U1. For li D 88.0Hz, the steady-statepotential hU1i is
below threshold, output spiking is rare and irregular (hISIi D 116 ms, CV D
0.89, as is indicated by the asterisks on the dashed lines in Figure 4), and the
temporary conductance changes are necessary to induce spiking. Just before
spiking, the excitatory conductance exceeds its nonspiking mean value (i.e.,
the mean value for t ¼ ¡10 ms) by about twice its standard deviation,
and the inhibitory conductance undershoots its nonspiking mean value by
more than the standard deviation. For both inhibitory �ring rates, the time
constant tm before an action potential reveals only small variations. This can
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be explained by the fact that, on average, �ring is associated with both an
excitatory conductance increase and an inhibitory conductance decrease.

4 Single Neuron with Correlated Inputs

For our analysis of the effects of input correlation on the �ring characteristics
of a single neuron, we choose a single excitatory �ring rate le D 100 Hz and
vary:

1. The inhibitory �ring rate li 2 f0.0, 29.6, 56.7, 88.0g, representing the
cases no inhibition, hU1i D Ut C s(U1), hU1i D Ut, and hU1i D
Ut ¡ s(U1), respectively.

2. The cluster correlation Ke, i 2 f0.05, 0.10, 0.20, 0.40g, indicating that the
�ring rate of neurons in a synchronization cluster is ls

e,i D le, iKe, i and
that the background �ring rate is lb

e, i D le,i (1 ¡ Ke,i ).

3. The cluster size M 2 f15, 30, 60, 120g, indicating that the size of a
synchronization cluster can be 12.5%, 25%, 50%, or 100% of the total
number of excitatory or inhibitory inputs.

The �ringstatistics were simulated for these 64 cases (4 inhibitory �ringrates
£ 4 cluster correlations £ 4 cluster sizes) with correlation in both excitatory
and inhibitory clusters (see Figure 6), correlation only in excitatory clusters
(see Figure 7), and correlation only in inhibitory clusters (see Figure 8).

A number of characteristic features can be observed in Figures 6, 7, and
8. The upper panels show that in all cases, hISIi is remarkably insensitive for
changes in both the cluster correlation K and the cluster size M, except for
the high inhibitory �ring rate li D lt

i (¡1) D 88 Hz, when hISIi decreases for
larger values for the cluster correlation K. The decrease in Figures 6 and 7
for li D 88 Hz can be explained by the fact that long-lasting �uctuations of
the membrane potential near hU1i (remember hU1i < Ut) are prevented by
the synchronous �ring of the excitatory clusters, and more frequent �ring
of those clusters thus reduces hISIi. If hU1i ¸ Ut (for li 2 f0.0, 29.6, 56.7g
Hz), presynaptic excitatory cluster �ring is also likely to induce threshold
passing, but since regular �ring is already caused by the background �r-
ing and since the total excitatory �ring rate le D ls

e C lb
e is constant, the

mean ISI is hardly reduced in this case. The decrease in hISIi as a function
of the inhibitory correlation in Figure 8 can be understood by noting that
an increase in the cluster correlation is associated with a decrease in the
inhibitory background activity. Thus, inhibitory activity is most effective in
reducing the �ring rate of the postsynaptic neuron, if it is independent.

In contrast to the �ring rate, CV clearly depends on the input correlation
for all inhibitory �ring rates, except if only the inhibitory inputs are corre-
lated (in Figure 8). Figures 6 and 7 show a very similar dependency of CV
on the input correlation: larger cluster sizes and larger cluster correlation
tend to increase CV, except for high inhibitory �ring rates, where a rise in
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Figure 6: Firing characteristics of a single neuron with excitatory correlation and
inhibitory correlation. hISIi and CV as a function of cluster correlation Ke and
Ki, for excitatory �ring le D 100 Hz and a series of inhibitory �ring frequencies
li 2 f0, 29.6, 56.7, 88.0g Hz (columns 1–4). The cluster size M varies from 12.5%
to 100% of the number of excitatory and inhibitory inputs (Ne D Ni D 120):
M D 15 (dotted line, circles), M D 30 (dash-dotted line, pluses), M D 60 (dashed
line, crosses), M D 120 (solid line, asterisks). Both excitatory and inhibitory
clusters are correlated, but excitatory and inhibitory inputs are independent .
Averages are over 10,000 spikes.

the cluster correlation does not always lead to an increase in CV. In these
simulations, large cluster sizes are required to achieve CV > 1, but the in-
hibitory �ring rates may be relatively low. If only the inhibitory inputs are
correlated (see Figure 8), CV is mostly independent of the input correlation,
except for li D lt

i (¡1), where a slight decrease in CV as a function of cluster
size and correlation can be observed. This decrease is associated with the
decrease in the effect of the independent inhibitory input.

5 Uncoupled Neurons with Common Input

We now consider the correlation between the �ring of two neurons with
partially common excitatory and/or inhibitory input sources without corre-
lation in the input streams of each single neuron (cluster correlation K D 0).
Figure 9 shows the cross-correlation of neural activity of two neurons with
both common excitatory and inhibitory sources for various ratios of com-
mon input, and both for a low (li D 30 Hz) and a high (li D 90 Hz) in-
hibitory frequency. These frequencies are close to the �ring rates for which
hU1i D Ut § s(U1). The cross-correlation functions reveal three character-
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Figure 7: Firing characteristics of a single neuron with excitatory correlation.
hISIi and CV as a function of cluster correlation Ke, for excitatory �ring le D 100
Hz and a series of inhibitory �ring frequencies li 2 f0, 29.6, 56.7, 88.0g Hz
(columns 1–4). The cluster size M varies from 12.5% to 100% of the number
of excitatory inputs (Ne D Ni D 120): M D 15 (dotted line, circles), M D 30
(dash-dotted line, pluses), M D 60 (dashed line, crosses), M D 120 (solid
line, asterisks). Only excitatory inputs are correlated. Averages are over 10,000
spikes.

istics. First, the cross-correlation is oscillatory for li D 30 Hz, whereas it has
only a single central peak for li D 90 Hz. The oscillatory cross-correlation
for li D 30 Hz is due to the small coef�cient of variation (CV ¼ 0.23; see
Figure 4) of the neurons with low inhibitory input. This implies that after
synchronous spiking of neurons X and Y due to the common input, there
is a large probability that both neurons will �re again after a time hISIi. The
oscillation frequency of Kxy (t ) thus equals hISIi¡1. For li D 90 Hz the CV
is much higher (near one; see Figure 4), and therefore the cross-correlation
is not oscillatory. Second, the zero-time cross-correlation Kxy(0) increases
with the proportion of common input (as expected). Third, for the same
common contribution, Kxy(0) is larger for increased inhibitory �ring. The
more general picture of this phenomenon becomes clear from the graphs in
Figure 10. These show zero-time cross-correlation Kxy (0) as a function of the
inhibitory �ring frequency and the amount of common input for pairs of
neurons with only common excitatory input (A), only common inhibitory
input (C), and both common excitatory and inhibitory inputs (B).

Figure 10A shows that Kxy(0) increases for larger amounts of common
excitatory contributions. It also increases for small inhibitory �ring rates,
reaching an optimum at about li ¼ 75 Hz. The maximum correlation,
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Figure 8: Firing characteristics of a single neuron with inhibitory correlation.
hISIi and CV as a function of cluster correlation Ki, for excitatory �ring le D
100 Hz and a series of inhibitory �ring frequencies li 2 f0, 29.6, 56.7, 88.0g Hz
(columns 1–4). The cluster size M varies from 12.5% to 100% of the number
of inhibitory inputs (Ne D Ni D 120): M D 15 (dotted line, circles), M D 30
(dash-dotted line, pluses), M D 60 (dashed line, crosses), M D 120 (solid line,
asterisks). Only inhibitory inputs are correlated. Averages are over 10,000 spikes.
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Figure 9: Cross-correlation Kxy (t ) between output spikes of two conductance-
based IF neurons X and Y with partially common excitatory (le D 100 Hz) and
inhibitory input (upper row: li D 30 Hz, bottom row: li D 90 Hz). The columns
represent10%, 30%, 50%, 70%, and 90% common excitatory and inhibitory input.
Averages are over 16,500 to 25,000 spikes; bin size is 0.5 ms.
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Figure 10: Cross-correlation Kxy(0) at time zero between the output spikes of
two conductance-based IF neurons with partially common excitatory (le D 100)
and inhibitory input as a function of the common contribution and the inhibitory
�ring rate li. (A) Only common excitatory input. (B) Both common excitatory
and inhibitory input. (C) Only common inhibitory input. Notice that the z-axes
differ. Averages are over 16,500 to 25,000 spikes; bin size is 0.5 ms.

which is attained for 100% common excitatory input and near li = 75 Hz,
is Kxy (0) D 0.092. Notice that this value is much lower than the maximum
value (Kmax

xy D 1) due to the completely independent inhibitory inputs. How
can we understand the initial incline of Kxy (0) with increasing li and the
decrease of Kxy (0) for large li? We observed in section 3 that an increase
in the (independent) inhibitory input induces an increase in hISIi and CV,
re�ecting that �ring requires the coincidence of a momentary increase in ex-
citatory input and/or a decrease in inhibitory input. The timing of excitatory
input pulses is thus more important under the in�uence of inhibitory �ring.
The effect of coincidental excitatory synchronous �ring of common inputs
becomes more effective for larger inhibitory �ring, leading to the initial in-
crease in the cross-correlation. For large inhibitory �ring rates, postsynaptic
�ring requires both an increase in the excitation and a decrease in the inhi-
bition. Since the inhibitory �ring series for the two neurons were chosen to
be independent for the simulations shown in Figure 10A, this implies that
the cross-correlation decreases for large inhibitory �ring rates.

Figure 10B shows that common inhibition strongly ampli�es the effect of
common excitation, that is, Kxy (0) is larger if both common excitatory and
inhibitory signals are present. This can be understood by the notion that
common inhibition tends to create an equal baseline level from which com-
mon excitation has an equal depolarizing effect on both neurons. Clearly,
the increase is largest if fe D fi tend to 100%, but a considerable increase of
77% is already attained for fe D fi D 50%.

The results in Figure 10C show that common inhibition alone induces
only a small correlation between the �ring events, giving a peak cross-
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Figure 11: Cross-correlation Kxy (0) at time zero between output spikes of two
conductance-based IF neurons with excitatory and inhibitory input (le D
100 Hz, li D 60 Hz) and partially common input as a function of the common
contributions fe, i and the cluster correlations Ke,i. Each of the six input groups
represents a cluster. (A) Only excitatory common input. The input correlation
leads to a large increase in Kxy(0) (compare with Figure 10A). (B) Both excita-
tory and inhibitory common input. Averages are over 25,000 spikes; bin size is
0.5 ms.

correlation Kxy (0) D 0.026. Although an equal baseline is set by the common
inhibition, the independent excitatory input is most important to pass the
threshold potential. Common inhibition is thus effective only in increasing
the cross-correlation in the presence of common excitation.

How is the correlation between �ring of a pair of neurons affected by
synchronization clusters in the input streams? Figure 11 shows the correla-
tion between the spiking of two uncoupled neurons with partially common
input and correlation between the neurons in a cluster. The inhibitory �ring
rate li is set to 60 Hz with Ne D Ni D 120 and le D 100 Hz. The clus-
ter sizes are maximum; all six groups of inputs (excitatory/inhibitory, 2£
unique, 1£ common) form a cluster. This implies that the cluster sizes vary
as a function of the amount of common input. Comparison of the results
in Figure 11 and Figures 10A and 10B (for li D 60 Hz) leads to the conclu-
sion that the cross-correlation is strongly enhanced by the input correlation,
which now comprises both a spatial component (the common inputs) and a
temporal component (the cluster synchronization). For instance, 20% com-
mon input leads to a correlation peak of 0.013 without synchronous inputs,
whereas a correlation peak of 0.06, about �ve times larger, is attained for
input correlation K D 0.1.

6 Discussion

6.1 Pros and Cons of the Neuron Model. The conductance-based IF
model is an extension of the leaky current-based IF model, which uses con-
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ductance pulses instead of current pulses to drive the membrane potential.
It is more in line with experimental data and adds the feature of varia-
tion of the effective time constant, which may be important in the study
of timing effects of the neuron’s input. For both the conductance-based
and the current-based leaky IF model, one has to rely on simulations to
characterize its �ring behavior. Nevertheless, relations for the �rst and sec-
ond moments of the membrane potential for the current-based IF model
(Tuckwell, 1988) and for the moments of the steady-state potential and the
effective time constant of the conductance-based IF model (this article) pro-
vide an analytical link between pre- and postsynaptic �ring. Only for the
nonleaky IF model are analytical expressions of its �ring behavior known
(Tuckwell, 1988). However, having in�nite memory, the nonleaky IF model
is not useful for a study on the effects of synchronous input (Kempter, Ger-
stner, van Hemmen, & Wagner, 1998) or for a study on correlation due to
common input, since even in the case of 100% common input, synchronous
�ring is achieved only if the initial conditions are identical in the absence
of noise.

The statistical moments of the steady-state potential and the time con-
stant were derived by assuming that a spike induces a constant and �nite
increase in the conductance for a short time. Such a conductance pulse rep-
resents a further abstraction from more biologically plausible conductance
functions like the a function (Koch, 1999). However, the total conductance
induced by a summation of independent conductance pulses tends to a
gaussian distribution for a large number of input spikes, irrespective of the
precise form of the conductance pulses. Therefore, the speci�c shape of the
conductance function becomes of minor relevance for the case of a large
number of inputs; only its effective amplitude and duration are relevant.
For correlated inputs, the relevance of the speci�c conductance function de-
pends on the size of the synchronization clusters with respect to the total
number of inputs. Further abstraction of the conductance function to a delta
peak leads to Stein’s model with reversal potentials (Tuckwell, 1988), which
was used in related studies of Feng and Brown (1999; Brown & Feng, 2000),

dU(t) D ¡
(U(t) ¡ Er)

tm
dt

C ae(Ee ¡ U(t))dne(t) C ai(Ei ¡ U(t))dni(t), (6.1)

with ne(t) and ni(t) the number of excitatory and inhibitory input spikes,
ae and ai weights of excitatory and inhibitory inputs and the meaning of
the other variables as in section 2.1. Stein’s model with reversal potentials
is a �rst-order approximation of the conductance-based IF model, which
holds well if the pulse duration of the synaptic conductance is much shorter
than the effective membrane time constant. However, in the case of mas-
sive synaptic input, the effective time constant of the conductance-based IF
model can be strongly reduced, such that the change in membrane potential
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caused by an input spike is reduced in comparison with Stein’s model with
reversal potentials.

The conductance-based IF model has no spatial variation (it is a single-
compartment model) or synaptic noise. Inclusion of suchmechanisms would
induce extra jitter in the output spiking (Tuckwell, 1988) and would reduce
the cross-correlation between the �ring of neurons with common input.
Furthermore, it assumes a constant voltage threshold-passing mechanism
for spike generation. In general, the dynamics of the stimulus determine
whether this is a good model (Koch, Bernander, & Douglas, 1995). Reason-
able agreement between the �ring of a voltage-threshold leaky IF model
and a compartmental model of a pyramidal cell was attained by Marsalek,
Koch, & Maunsell (1997).

In conclusion, we consider the conductance-based IF model a suitable
compromise between the numerical complexity of a compartmental neuron
model with active gates (and the loads of parameters to be chosen) and the
analytical tractability of the (oversimpli�ed) nonleaky IF model.

6.2 Single Neuron Firing Characteristics. In this study, we did not
make assumptions regarding the balance of excitatory and inhibitory ef-
fects in cortical neurons (as in the study by Shadlen & Newsome, 1998), but
rather included a considerable variation of inhibitory versus excitatory con-
tributions. Balance roughly depends on (li/le)£(Ni/Ne)£( Ogi/ Oge)£(ti/te)£
(|Ei ¡Et | / |Ee ¡Et |) (see Troyer & Miller, 1997). This range of excitation versus
inhibition was achieved by varying the excitatory and inhibitory �ring rates
le,i, while the respective population sizes Ne, i, as well as the other parame-
ters of the neuron model, were constant. For independent input spiking, the
output �ring depends on the effective �ring rates le,iNe, i and thus variations
of le, i or Ne,i are equivalent.

In line with related modeling studies (Shadlen & Newsome, 1998; Feng
& Brown, 1999) we chose Ne D Ni, since this allowed us to use equal sizes
of the synchronization clusters and the common input for excitatory and
inhibitory synapses. However, it should be realized that anatomical studies
show that the ratio of excitatory to inhibitory inputs of cortical neurons
is typically about 9:1 (Braitenberg & Schüz, 1998). Notice that it would be
easy to attain equal input and output �ring rates in the model by choosing
appropriate numbers of excitatory and inhibitory inputs. For example, since
hISIi D 10 ms is attained for le D 100 Hz, Ne D 120, li ¼ 33 Hz, and Ni D 120
(as is shown in Figure 4), choosing li D 100 Hz and Ni D 40 results in equal
input and output �ring rates.

The derived expressions for the moments of the steady-state potential
U1 and (to a lesser extent) the effective time constant tm provide a valuable
link between the parameters of the conductance-based IF model and the
input �ring rates on the one hand and the output �ring characteristics on
the other hand. In particular, we found that the CV was about constant for a
range of excitatory and inhibitory presynaptic �ring rates if the excitation-
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inhibition distribution was such that hU1i D Ut C ks(U1) (see Figure 4). For
k D 0, we observed CV ¼ 0.45, similar to results of Feng and Brown (1999)
for the current-based IF model and Stein’s model with reversal potentials.
Furthermore, we found that for constant k, the induced �ring rate increases
as a function of the presynaptic �ring rate, especially for small k.

The analysis of the effect of synchronization clusters was performed for
an excitatory �ring rate le D 100 Hz and inhibitory �ring rates li D 0 and li
such that hU1i D Ut C ks(U1) for k 2 f¡1, 0, 1g. The choice of the excitatory
�ring rate hardly affects CV, since CV was shown to be approximately con-
stant for constant k. This choice affects the output �ring rate, but we expect
the observed trends to be valid for other excitatory �ring rates as well.

A clear in�uence of the inhibitory �ring rate was found on the depen-
dence of the postsynaptic �ring rate as a function of the input correlation.
An increase in the �ring rate of excitatory synchronous clusters for low to
medium inhibitory input �ring rates (leading to CV < 0.5) did not affect
the output �ring rate, but induced a clear increase in the output �ring rate
for high inhibitory input frequencies. Furthermore, the postsynaptic �r-
ing rate was found to be almost independent of the cluster size, especially
for low to medium inhibitory �ring rates. Input correlation thus affects
the postsynaptic �ring rate only if the inhibitory �ring rate is suf�ciently
high.

In contrast to the effectuated �ring rate, the variation of the interspike
intervals increased with the input correlation for low to medium inhibitory
�ring rates and was often constant for large inhibitory �ring rates. In addi-
tion to the cluster correlation K (Brown & Feng, 2000), the cluster size also
appears to be an important determinant of the variation in the spiking times.
To achieve CV > 1, both independent excitation and inhibition, as well as
suf�ciently large synchronous excitatory clusters, were essential, although
the inhibitory �ring rate could still be relatively low. In this case, the impact
of the variations in the membrane potential due to the independent exci-
tatory and inhibitory input, as well as due to the synchronization clusters,
was suf�ciently large to exceed the CV of a Poisson process.

The effects of the cluster correlation and the cluster size depend on the
independent excitatory and inhibitory background spiking. Given constant
effective frequencies lb

e, iNe, i, the impact of a synchronization cluster on the
membrane potential (and thus on postsynaptic �ring) does not depend on
the population sizes.

We considered correlation between excitatory inputs and/or between in-
hibitory inputs, but not between excitatory and inhibitory inputs. We expect
that a positive correlation between excitatory and inhibitory inputs reduces
the effective excitatory and inhibitory �ring rates, since excitation and in-
hibition now tend to cancel each other. A negative correlation is expected
to amplify the effect of excitatory input, since it implies that the probability
that inhibitory input cancels the effect of excitatory input is reduced and
thus the threshold potential can be reached earlier.
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In this study, we assumed delta correlation between the �ring times in
a synchronization cluster, which was motivated by the notion that we did
not want to introduce yet another (dispersion) parameter. Figures 6 through
8 show that the postsynaptic �ring rate is not greatly affected by the sizes
of the synchronization clusters (sizes from 12.5% to 100% of all inputs). In
other words, it does not make a large difference whether all inputs receive
a spike simultaneously or whether different synchronization clusters are
used. Therefore, we do not expect that the “no dispersion” assumption
affects our conclusions with respect to the postsynaptic �ring rate to a large
extent. Only for large inhibitory contributions may some effect of dispersion
on the postsynaptic �ring rate be expected. In contrast, dispersion of the
�ring times in a synchronization cluster is expected to have a signi�cant
impact on the CV. Therefore, the size of an excitatory synchronization cluster
needed to induce a particular CV, as we found in this study, represents a
lower bound of the required cluster size if dispersion of the input spikes
is considered. Given the delta correlation, the results of this study already
show that large synchronization clusters are likely to be necessary to achieve
CV > 1. Direct experimental evidence is needed to determine the size of
synchronization clusters in vivo.

6.3 Cross-Correlation Due to Common and Synchronous Input. The
cross-correlation between the �ring of uncoupled neurons with common
input depends on several parameters, such as the excitatory and inhibitory
�ring rates, the fraction of common input, and the presence of synchroniza-
tion clusters in the input spike series. Interestingly, we found that common
input may induce oscillatory cross-correlation patterns, which resemble the
cross-correlation patterns obtained in measurements on neurons in the vi-
sual system encoding the same object (Singer & Gray, 1995). However, in
our model, these oscillatory cross-correlation patterns were found only for
small coef�cients of variation (CV < 0.5) in the output spiking, whereas
CV ¼ 1 is usually measured for cortical neurons (Shadlen & Newsome,
1998).

We found that even in the arti�cial case of completely identical excitatory
inputs, the maximum cross-correlation is strongly reduced by independent
inhibitory �ring to about Kxy (0) D 0.09. For 50% common excitatory in-
put Kxy (0) D 0.03 and for assumingly even more realistic ratios of less
than 20% common input, Kxy (0) falls below 0.01. Interestingly, we found
that the cross-correlation initially increases with increasing inhibitory �r-
ing rate but decreases again for large inhibitory �ring rates. The incline of
the cross-correlation is due to the increase in the importance of coinciden-
tal (common) excitatory �ring to achieve postsynaptic �ring for low and
medium inhibitory �ring rates. Its decline illustrates the rising importance
of both a coincidental increase in (common) excitatory �ring and a decrease
in (independent) inhibitory �ring for high inhibitory �ring rates.

If, in addition to the excitatory input, the inhibitory input also is partly
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common, the zero-time cross-correlation is increased to Kxy (0) D 0.05 for
50% common input and Kxy (0) D 0.013 for 20% common input. These values
are likely to be optimistic, though, since noisy synaptic transmission will
further diminish the cross-correlation.

Much higher cross-correlation can be achieved if (large) synchronization
clusters exist in the input streams. For instance, if presynaptic spikes are part
of a synchronization cluster 1 out of 10 times (K D 0.1), we found in our
simulations Kxy(0) ¼ 0.06 for 20% common input and Kxy (0) ¼ 0.20 for 50%
common input. Even if these correlations were attenuated by noisy synap-
tic transmissions, they still would represent signi�cant coincidental �ring,
similar to experimentally obtained values of about Kxy (0) ¼ 0.08 ¡ 0.10 by
Vaadia et al. (1995). Thus, if synchronization clusters are part of the common
input, the output correlation can be suf�cient to maintain synchronization
clusters from one neural layer to the next. This conclusion is in line with the
results of Diesmann et al. (1999), who furthermore reported on the required
relation between the size of synchronization clusters and their dispersion
such that synchrony can be maintained.

In conclusion, large fractions of common input would be required to in-
duce signi�cant correlations of output spikes of pairs of neurons for input
streams without synchronization clusters, but only modest fractions would
be required if synchronization clusters are part of the input spike streams
if there exists no correlation between the excitatory and inhibitory inputs.
Concerning the ontogenesis of synchronization clusters, this implies that
they are unlikely to be generated by common input alone, but that lateral
interactions are essential. Given the existence of suf�ciently large synchro-
nization clusters, signi�cant postsynaptic synchronization may be main-
tained by common input.
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