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Abstract

• Exact inference on a binary graphical
model defined on a planar graph is easy
for graphs without external fields [6, 3],
otherwise is intractable [1].

• We introduce novel results for approx-
imate inference on general planar
graphical models using the loop calculus
framework [2].

• The loop calculus allows to express the
exact partition function Z of a graphical
model as a finite sum of terms that can
be evaluated once the belief propagation
(BP) solution is known.

• We develop an algorithm for the approach
presented in [2] which represents an effi-
cient truncation scheme on planar graphs
and a new representation of the series in
terms of Pfaffians of matrices.

• We show that the first term of the Pfaffian
series can provide very accurate approxima-
tions.

• The algorithm outperforms previous
truncation schemes of the loop series and
is competitive with other state-of-the-
art methods for approximate inference.

Belief Propagation and loop Series

We use a Forney graph G := (V, E) representation of a probabilistic model
defined on binary variables:

• V is a set of nodes, where each node a ∈ V represents an interaction.

• Each edge (a, b) ∈ E represents a binary variable σab := {±1}.

The joint probability distribution of such a model factorizes as:

p (σ) = Z−1
∏

a∈V

fa (σa), Z =
∑

σ

∏

a∈V

fa (σa),

where Z is the partition function.

• A generalized loop or ”loop” in a graph G is any subgraph C such that
each node in C has degree 2 or larger.

Given the partition function ZBP obtained at a fixed point of the BP algorithm,

the exact Z is related with ZBP via the loop series expansion:

Z = ZBP · z, z =



1 +
∑

C∈C

rC



 , rC =
∏

a∈C

µa;āC, (1)

where C is the set of all the generalized loops within the graph. Each loop term
rC is a product of terms µa,āC associated with every node a of the loop:

µa;āC =

∑

σa

ba (σa)
∏

b∈āC

(σab −mab)

∏

b∈āC

√

1−m2ab

, mab =
∑

σab

σabbab (σab).

ba(·) and bab (·) denote the BP ”beliefs”. āC denotes the set of neighbors of a within C.

We consider planar graphs with all nodes of degree not larger than 3 and we

denote by triplet a node with degree 3 in G.

• A 2-regular loop is a loop in which all nodes have degree exactly 2.

• The 2-regular partition function Z∅ is the truncated form of (1) which
sums all 2-regular loops only:

Z∅ = Z
BP · z∅, z∅ = 1 +

∑

C∈Cs.t.|āC|=2,∀a∈C

rC.
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Loop series as Pfaffian series

First term: The 2-regular partition function Z∅.
Efficient computation using perfect matchings

• The original graph G is extended Gext applying Fisher’s rules [3]:
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• Perfect matchings in Gext correspond to 2-regular loops in G.

• Therefore z∅ =
∑

weighted perfect matchings in Gext.
If G is planar → z∅ can be computed in time O(N

3
Gext
) using Kasteleyn al-

gorithm [6] (requires the evaluation of a Determinant/Pfaffian of a matrix).

• Exact inference for the zero exernal field case: Z∅ = Z.

Higer order terms

• For each possible set Ψ including an even number of triplets, there exists
a unique correspondence between loops in G including the triplets in Ψ
and perfect matchings in another extended graph GextΨ constructed after
removal of the triplets Ψ in G.

• Full loop series is represented as Pfaffian series and each term ZΨ is tractable
(requires the evaluation of a Pfaffian of a matrix):

z =
∑

Ψ

ZΨ, ZΨ = zΨ
∏

a∈Ψ

µa;ā, |zΨ| = |
∑

weighted perf. matchings GextΨ|

Example:

1. Ψ = {c, h}

2. Ψ = {e, l}

3. Ψ = {h, l}

4. Ψ = {c, e}

5. Ψ = {c, e, h, l}
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Results (Ising model with mixed interactions)

• Loop terms can be positive or negative.

• Nonzero external field→ The model is planar-
intractable

• Pairwise interactions ∼ N (0, β/2).

• Local fields ∼ N (0, βΘ).
Θ = 0.1

β = {0.1, 0.5, 1.5}
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• Without explicit search of loops, the z∅ correction can give a significant
improvement on the BP solution, even in hard problems.

Scalability on Ising grids with mixed interactions

We compare the Z∅ approximation with BP and the following algorithms:

• Tree-Structured Expectation Propagation (TreeEP) [7].

• Cluster Variation Method (CVM-Loopk) [5].

• anyTLSBP : Another truncation algorithm for the loop series [4].

Results as a function of the grid size for strong couplings β = 1 and very

weak local fields Θ = 0.01.

0 100 200 300
10

−8

10
−6

10
−4

10
−2

N

error Z(a)

0 100 200 300

10
−2

10
0

10
2

N

cpu−time

 

 

(b)

BP

TreeEP

CVMLoop4

CVMLoop6

Z∅

anyTLSBP

JuncTree

• Z∅ is the best approximate method at the cost of more cpu-time.

• Results are independent of the network size.
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