Approximate inference on planar graphs using Loop Calculus and Belief Propagation
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Abstract

e Exact inference on a binary graphical e We develop an algorithm for the approach
model defined on a planar graph Is easy presented in [2] which represents an effi-
for graphs without external fields [6, 3], cient truncation scheme on planar graphs
otherwise is intractable [1]. and a new representation of the series in

terms of Pfaffians of matrices.

e \We Introduce novel results for approx-
imate inference on general planar
graphical models using the loop calculus
framework [2].

e \\Ne show that the first term of the Pfaffian
series can provide very accurate approxima-

tions.
e [he loop calculus allows to express the

exact partition function Z of a graphical e The algorithm outperforms previous
model as a finite sum of terms that can truncation schemes of the loop series and
be evaluated once the belief propagation Is competitive with other state-of-the-
(BP) solution is known. art methods for approximate inference.

Belief Propagation and loop Series

We use a Forney graph G := (V, &) representation of a probabilistic model
defined on binary variables:

e )V Is a set of nodes, where each node a € V represents an interaction.

e Fach edge (a, b) € £ represents a binary variable o,, := {£1}.

The joint probability distribution of such a model factorizes as:

pla)=2"]] fa(oa). z=> 1] f(oa)
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where Z Is the partition function.

e A generalized loop or "loop” in a graph G I1s any subgraph C such that
each node in C has degree 2 or larger.

Given the partition function Z2" obtained at a fixed point of the BP algorithm,
the exact Z is related with Z2" via the loop series expansion:

Z = 1—|—ZI’C , rC:Hua;a—C, (1)
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where C Is the set of all the generalized loops within the graph. Each loop term
rc Is a product of terms ., 5. associated with every node a of the loop:

Z b, (Ua) H (Uab — mab)

hes
— : Map — Z Tabbab (Uab)-

H \/1—m§b Oab

beac
ba(+) and b, () denote the BP "beliefs”. ar- denotes the set of neighbors of a within C.
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We consider planar graphs with all nodes of degree not larger than 3 and we
denote by triplet a node with degree 3 In G.

e A 2-regular loop is a loop in which all nodes have degree exactly 2.

e The 2-regular partition function Zj is the truncated form of (1) which
sums all 2-regular loops only:
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Example:

Loops included in Zj
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Loop series as Pfaffian series

z=)Y Zv, Zv=2zy ] bas |zu] =1 weighted perf. matchings Gexs,|
U} acV

Example: 1 2

1. V={c, h}
2. V={e, [}
3. W ={h 3 4 2
4. v ={c, e}
5. W={c,e, h I}

First term: The 2-regular partition function 2.
Efficient computation using perfect matchings

e The original graph G is extended G.: applying Fisher's rules [3]:
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Perfect matchings in G.,; correspond to 2-reqular loops in G.

Therefore zy = Zweighted perfect matchings in Gyt
If G is planar — zj can be computed in time O(Ng_) using Kasteleyn al-
gorithm [6] (requires the evaluation of a Determinant /Pfaffian of a matrix).

Exact inference for the zero exernal field case: Zy = Z.

Higer order terms

For each possible set W including an even number of triplets, there exists
a unique correspondence between loops in G including the triplets in W
and perfect matchings in another extended graph G+, constructed after
removal of the triplets WV in G.

Full loop series Is represented as Pfaffian series and each term Zy Is tractable
(requires the evaluation of a Pfaffian of a matrix):

Results (Ising model with mixed interactions)

Small example:

e | oop terms can be positive or negative.

e Nonzero external field — The model Is planar-
iIntractable

e Pairwise interactions ~ N (0, 3/2).
e Local fields ~ N (0, BO).
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e Without explicit search of loops, the z; correction can give a significant

iImprovement on the BP solution, even in hard problems.

Scalability on Ising grids with mixed interactions

We compare the Zy approximation with BP and the following algorithms:

e Tree-Structured Expectation Propagation (TreeEP) [7].
e Cluster Variation Method (CVM-Loopk) [5].
e anyTLSBP : Another truncation algorithm for the loop series [4].

Results as a function of the grid size for strong couplings G = 1 and very
weak local fields © = 0.01.
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e /;Is the best approximate method at the cost of more cpu-time.

e Results are independent of the network size.
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