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In the optic flow illusion, the focus of an expanding optic flow field appears shifted when uniform flow is transparently
superimposed. The shift is in the direction of the uniform flow, or “inducer.” Current explanations relate the transformation of
the expanding optic flow field to perceptual subtraction of the inducer signal. Alternatively, the shift might result from motion
capture acting on the perceived focus position. To test this alternative, we replaced expanding target flow with contracting or
rotating flow. Current explanations predict focus shifts in expanding and contracting flows that are opposite but of equal
magnitude and parallel to the inducer. In rotary flow, the current explanations predict shifts that are perpendicular to the
inducer. In contrast, we report larger shift for expansion than for contraction and a component of shift parallel to the inducer for
rotary flow. The magnitude of this novel component of shift depended on the target flow speed, the inducer flow speed, and
the presentation duration. These results support the idea that motion capture contributes substantially to the optic flow
illusion.
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Introduction

In the optic flow illusion (OFI), the focus of a radially
expanding pattern of moving dots appears shifted when
another pattern of dots that move in one direction is
transparently superimposed (Duffy & Wurtz, 1993). This
illusory shift is in the direction of the superimposed
uniform flow. Studies of the OFI have focused on two
alternative explanations for this effect.
One explanation relates the OFI to self-motion and eye

movements. Patterns like the expanding radial flow field
are thought to be used by the visual system to help guide
locomotion since the focus of expansion (FOE) of such
fields coincides with the direction of heading (Gibson,
1950). However, smooth pursuit eyemovements distort flow
fields by adding a component of motion and may hamper the
extraction of heading parameters. Specifically, smooth
pursuit shifts the retinal location of the FOE in the direction
of pursuit (Koenderink & van Doorn, 1987; Longuet-
Higgins & Prazdny, 1980). However, evidence exists that
the visual system actively compensates for the effects of
smooth pursuit from psychophysics (e.g., Royden, Banks,

& Crowell, 1992; van den Berg, 1996; Warren & Hannon,
1990) and electrophysiology (Bradley, Maxwell, Andersen,
Banks, & Shenoy, 1996; Lee, Pesaran, & Andersen, 2007;
Shenoy, Bradley, & Andersen, 1999; Shenoy, Crowell, &
Andersen, 2002; Zhang, Heuer, & Britten, 2004). This
smooth pursuit compensation mechanism shifts the per-
ceived FOE location back toward the direction of heading
and is thought to operate on the basis of efference copies of
pursuit commands and reafferent, purely optical signals (for
a review, see Lappe, Bremmer, & van den Berg, 1999).
Duffy and Wurtz (1993) hypothesized that the uniform flow
field in the OFI is interpreted by the visual system as a
reafferent signal indicating smooth pursuit in the opposite
direction, thus triggering the compensatory FOE shift. This
compensation would perceptually shift the FOE in the
direction of the uniform flow: the OFI.
Alternatively, the OFI has been explained by motion

induction (MI), the illusory motion of a visual stimulus in
the direction opposite to that of the motion of other stimuli
(Duncker, 1929; Reinhardt-Rutland, 1988). The uniform
flow in the OFI may act as a motion inducer (Meese,
Smith, & Harris, 1995). Indeed, subtracting the uniform
flow from the radial flow pattern qualitatively explains the
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FOE shift. Several studies have investigated the role of MI
in the OFI, focusing on the distinction between local and
global MI. Local MI occurs in nearby stimuli and is thought
(e.g., Anstis & Reinhardt-Rutland, 1976) to be mediated by
antagonistic center-surround interactions in the receptive
fields of motion sensitive neurons (Born, 2000; Bridgeman,
1972; Hammond & MacKay, 1981). The OFI has been
reproduced in a numerical model of an array of this kind
of motion detectors (Royden & Conti, 2003). Global MI,
on the other hand, acts on the entire visual field and has
been related to cancellation of eye-movements (Lott &
Post, 1993; Post, 1986; Post & Heckmann, 1986), shifts in
the subjective straight ahead (Brosgole, 1968; Post &
Heckmann, 1986), visual–vestibular interactions (Post,
1986; Post, Shupert, & Leibowitz, 1984), and illusory
self-motion or vection (Heckmann & Howard, 1991). This
class of effects may be more akin to the smooth pursuit
compensation hypothesis of the OFI, and it has been
argued that global MI might be the mechanism by which
the OFI comes about (Pack & Mingolla, 1998). The role
of global effects in the OFI has been demonstrated in
experiments manipulating the relative sizes (Pack &
Mingolla, 1998) and positions (Duijnhouwer, Beintema,
van den Berg, & van Wezel, 2006) of the two flow fields.

The OFI is reminiscent of a class of visual illusions in
which motion of one stimulus component influences the
perceived position of another component. For example, a
red square on an equiluminous green background appeared
displaced in the direction of drift of overlapping black dots.
This “inappropriate binding of motion from one stimulus
component to another” occurs in many stimulus config-
urations and is termed “motion capture” (Ramachandran,
1987). Similar observations have been made by other
authors. Spillmann and Redies (1981), for example, noticed
that the illusory contours that appear between the ends of
dark line segments in a modification of the Ehrenstein
(1941) brightness illusion could be captured and dislodged
by drifting dots. Possibly related to these effects are the
observations that the stationary edges of random dot kine-
matograms (e.g., Chung, Patel, Bedell, & Yilmaz, 2007;
Ramachandran & Anstis, 1990) and moving Gabors (e.g.,
Arnold, Thompson, & Johnston, 2007; De Valois & De
Valois, 1991) perceptually shifted in the direction of the
stimuli’s internal motion. As a final example (most similar to
the OFI), in a stimulus consisting of two random dot patterns,
one drifting, and one under a Gaussian luminance envelope,
the luminance-defined peak was perceptually displaced in
the direction of the moving pattern (Mussap & Prins, 2002).

Figure 1. Cartoons of the stimulus conditions (left column) and predictions of the perceived focus position (red dots) based on the pursuit
compensation and motion induction accounts (induced shift, middle column) and the alternative explanation based on motion capture of
the focus (captured shift, right column). Black arrows indicate target flow. Blue arrows indicate the inducer. Induced shifts should be in the
direction of the inducer in expanding flow (a), in the opposite direction in contracting flow (b), and in a perpendicular direction in rotary flow
(c). In contrast, captured shifts should be in the direction of the uniform flow in all conditions.
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The similarities, in construction and phenomenology,
between the OFI and the motion capture illusions suggest
that they might be related. Potentially, inappropriate
binding of the uniform flow field’s motion to the sta-
tionary FOE might explain or contribute to the OFI. The
purpose of this study is to investigate this third explan-
ation of the OFI. To disentangle the potential contribu-
tions to the OFI of, on the one hand, pursuit compensation
and motion induction and, on the other hand, motion
capture, we here extend the experiment of Duffy and
Wurtz (1993) by replacing the expanding flow field with
contracting, clockwise, and counterclockwise flow. The
expected shift directions of the foci of these flow fields are
different in the pursuit compensation and motion induc-
tion explanations compared to the explanation based on
the capture of the focus by the superimposed uniform flow
(Figure 1). For brevity, we will refer to the shifts expected
on the basis of pursuit compensation and motion induction
as induced shifts in the remainder of this text, whereas
shifts in the direction expected on the basis of motion
capture will henceforth be called captured shifts. If the
OFI is the result of induced shift, the focus of contraction
(FOC) should shift in the opposite direction of the uniform
flow, instead of shifting in the direction of uniform flow

like the FOE does. Furthermore, a focus of rotary flow
should shift perpendicular to the uniform flow (Pack &
Mingolla, 1998). In contrast, a captured shift should
always be in the direction of the inducing flow field,
regardless of the flow condition.

Methods

Subjects

In total, eleven subjects participated in the experiments
described in this paper. One of them was an author (JD),
the others were unaware of the question under research.
All subjects had normal vision. Most were experienced
psychophysical observers, except for subjects GT and JF,
who had no prior experience in psychophysics.

Visual stimuli

Visual stimuli (Figure 2), subtending 700 � 700 pixels,
or 74- � 74- at a viewing distance of 104 cm, were

Figure 2. Stimuli consisted of a flow field of horizontally moving dots, or inducer (a), that transparently overlapped either a rotary (b) or a
radial target flow field (c). Flow fields were created by simulating rotary and translational observer movements within a scene of dots: a
constant yaw of 5-/s in panel a, a pure roll at 0.056 Hz in panel b, and a straight ahead translation at 1.9 m/s in panel c. Note that from the
vantage point of the observer, the curved trajectories in panel a resulted in a uniform retinal flow field. In panel d, the retinal velocities of
the dots in these three flow fields are shown as a function of eccentricity. The inducer speed is constant across the visual field (solid black
line). The retinal speeds in the rotary (dashed black line) and radial (blue lines) flow fields increased with eccentricity. In the radial flow
fields, the retinal velocity of a dot decreased with increasing simulated distance from the observer. These distances ranged from 0.7
(thickest blue line) to 10 meters (thinnest blue line).
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generated using OpenGL on an Apple PowerMac G4 and
back projected onto a translucent screen with a JVC DLA-
S10 projector at 75 frames/s. No lighting other than the
projector was present in the room. The stimuli consisted
of two independent sets of moving dots that were
transparently superimposed. Each set provided an optic
flow field that simulated a particular observer movement.
Of both sets, about 150 dots were visible. The dots had a
diameter of 4 pixels (corresponding to 0.5-) and were
rendered using OpenGL’s anti-aliasing to get smooth
animation. A fixation dot, a white square (0.87-) with a
black center (0.37-), was visible at the center of the
screen. Luminance of the dots, fixation square, and pointer
(see Experimental procedure) was 19.6 cd mj2 on a
0.08 cd mj2 background). Viewing was binocular.
The inducing uniform flow field (henceforth: the

inducer) consisted of dots that were randomly positioned
on the surface of a sphere (radius 5 m), concentric with
the vantage point of the observer. This sphere rotated at
5-/s about a vertical axis through the vantage point or was
static.
For the focus carrying flow field, or target flow, the

dots were randomly positioned in a volume 15.1 m wide,
15.1 m high, and 9.3 m deep. This volume was centered
on a point 5.35 m straight ahead of the observer. Here, the
dot motion simulated observer translation along, or
rotation about, one of 25 motion axes that were laid out
in a 20- � 20- raster, with 5- intervals, centered on the
fixation direction. In the rotary OFI experiments, the spin
rate varied between 0.02 and 0.28 Hz. In the radial OFI,
the magnitude of the simulated translation speeds ranged
from 1.13 to 11.3 m/s. The retinal dot speeds caused by
these ego-speeds are exemplified in Figure 2d. For the
rotary flow (dashed line), the speed of a dot is determined
by the product of the spin rate and the sine of the dot’s
eccentricity. In the radial flow fields, the dot speed
additionally depends on the simulated depth of the dot in
the scene. The dot speed as a function of eccentricity at
five different depths is shown in Figure 2d, with solid blue
lines of varying width. The mean dot speed at a given
eccentricity is approximately equal to the speed of a dot at
three-quarters of the furthest simulated distance in the
scene (7.5 m line in Figure 2d). Dots that, due to forward
or backward observer translation, passed through the near
or far side of the volume were wrapped to the other side of
the volume and were assigned new random horizontal and
vertical coordinates. Because of this, the dot density was
constant during the trial, irrespective of whether the
simulated observer motion was forward or backward.

Experimental procedure

Subjects were seated 104 cm in front of the center of the
screen. Their head position was stabilized by means of a
biteboard. At the start of each experiment, the participants
were familiarized with the stimulus and the task by

performing a number of practice trials. Rotary and radial
target flow fields were shown in separate sessions.
Each trial consisted of an animation and a pointing

phase, the onsets of which were accompanied by auditory
cues. A trial started with the animation phase in which the
two transparent optic flow displays were simultaneously
shown. Subjects were instructed to maintain fixation on
the central fixation square and to locate the focus of the
target flow. After 1.33 seconds, the flow fields were
removed and a pointer (a 0.5- square) appeared centrally
on the screen. The subjects were asked to align this
pointer with the remembered position by means of a
mouse, while maintaining fixation. A mouse click con-
firmed the position and, after a delay of 107 ms, started
the next trial.

Results

Two-dimensional illusory focus shifts in radial
and rotary flow

We measured horizontal and vertical localization errors
of the focus of radial and rotary target flow under
influence of transparently superimposed inducer flow. In
these optic flow illusion (OFI) experiments, one speed of
focus carrying target flow was used. Target flow speed in
the radial OFI corresponded to a simulated ego-translation
of 3.75 m/s. In the rotary OFI, the target flow simulated a
0.08-Hz roll. Figure 3 is an example of the data of one
subject in the rotary flow condition (top row: clockwise
flow, bottom row: counterclockwise flow). In these plots,
markers represent the mean positional judgments made per
veridical focus location. Marker colors indicate the inducer
condition: white for leftwards, blue for static, and black for
rightwards flow. Error bars represent standard deviations.
The horizontal and vertical coordinates of the real and
indicated focus positions were analyzed separately (left
column: vertical; right column: horizontal). As can be read
from the vertical offsets between the data points of the
three inducer conditions, the motion of the inducer
influenced focus position judgments. The horizontal uni-
form flow evoked about 3- of vertical shift of the perceived
location of the focus for clockwise (Figure 3a) and
counterclockwise (Figure 3c) flow. These shifts were up
or down, depending on the direction of the inducer and on
the direction of rotation of the target flow. These results
are in accordance with the pursuit compensation and
motion induction accounts of the OFI (Figure 1c, induced
shift). However, as can be seen in Figures 3b and 3d,
perceptual shifts also occurred in the horizontal direction.
These shifts, of about 1.5- in magnitude, were always in
the direction of the uniform inducer, irrespective of the
sign of the rotation, as predicted by the motion capture
account (Figure 1c, captured shift).
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A more formal quantification of the illusory focus shifts
in this experiment was achieved by least squares fitting
the following planar regression model to the real and
indicated focus locations (separately for the horizontal and
vertical coordinates):

Li ¼ !þ "Lr þ +V: ð1Þ

Here, Li is the location that the observer indicated, Lr is
the real focus location, and V is the speed of the inducer.
This plane was fit separately to the subsets of (unaver-
aged) data corresponding to each panel in Figure 3. The fit
lines in each panel in Figure 3 correspond to cross
sections of this plane at 5, 0, and j5-/s inducer speeds
V used in this experiment.
All illusory shift values and error ranges that are pre-

sented throughout this paper are the estimates and 95%
confidence bounds of + , obtained by fitting Equation 1,
multiplied with the magnitude of the inducer speed V used
in the experiment in question. The direction of the shift is
indicated by the sign. In the horizontal direction, a
positive value signifies that the shift was in the direction
of the inducer, and a negative value signifies that the shift

was opposite to the inducer direction. In the vertical
direction, positive values signify shifts in a direction 90-
away from the inducer direction in the counterclockwise
direction. Negative vertical shifts are directed 90- away
from the inducer direction in the clockwise direction.
The results of five naive subjects (black markers) and an

author (blue markers) that participated in the rotary OFI
experiment are shown in the left column of Figure 4.
Illusory focus shifts could be observed in all of them, both
in the horizontal (Figure 4a) as in the vertical (Figure 4c)
direction. Of these six subjects, the mean horizontal shift
was 1.60- for the focus of clockwise (FOCW) flow and
1.54- for the focus of counterclockwise (FOCCW) flow.
These shifts were statistically significant per subject
because zero shift falls outside all 95% confidence
intervals. Significant vertical shifts (Figure 4c) were also
observed: the mean FOCW shift was 4.00-; the mean
FOCCW shift was j3.48-. A negative vertical shift
means that the focus shifted downward when the inducer
moved to the right and up when the inducer moved to the
left. Shifts did not differ significantly between the FOCW
and the FOCCW conditions (two-sided sign test: horizon-
tal p = 1, n = 6; vertical p = .39, n = 6). Mean per subject

Figure 3. Data of one subject (JD) in the optic flow illusion experiment with rotary target flow. The mean vertical (left column) and
horizontal (right column) coordinates of the perceived focus position are plotted against the real coordinates of the focus. Error bars
indicate standard deviations. Three inducer conditions were used: rightwards (black), static (blue), and leftwards (white). Circular arrows
indicate target flow rotation direction. Vertical shifts could be observed (left column). The focus of clockwise flow appeared higher when
the inducer moved rightwards and lower when the inducer moved leftward (a). The vertical shift directions were reversed when the target
flow rotated counterclockwise (c). Horizontal shifts were also observed (right column). The horizontal shifts were in the direction of the
inducer, irrespective of the rotation direction of the target flow field.
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ratio between horizontal and vertical shifts in this experi-
ment was 42% T 8% standard deviation.
Ten naive subjects (black markers) and an author (blue

marker) participated in the radial OFI experiment. The
horizontal focus shifts are shown in Figure 4b. The FOE
shifted in the direction of the inducer, and the FOC shifted
in the opposite direction. Interestingly, the magnitudes of
the FOE shifts were significantly larger than those of the
FOC shift (two-sided sign test: p G 0.001, n = 11). The
mean FOE shift was 3.67-; the mean FOC shift was
j1.37-. Vertical focus shifts were negligible in the radial
OFI (Figure 4d). Note that in this radial OFI experiment,
more data are available on the horizontal than on the
vertical shifts. Seven subjects took part in an experiment
that only required horizontal localization of the FOCs and
FOEs (by means of a mouse pointer that was a vertical line
spanning the height of the screen) instead of the two-
dimensional localization employed in the rest of this study.
Summarizing the results thus far, we found both

induced shifts and captured shifts. This was most clearly

demonstrated by the rotary OFI. Here, the focus shifted
both vertically, as predicted by the pursuit compensation
and motion induction accounts, and in the direction of the
horizontal inducer flow, as expected on the basis of
motion capture. In the radial OFI, we also found induced
shifts and captured shifts. As predicted by the pursuit
compensation and motion induction accounts, the FOE
shifted in, and the FOC shifted opposite the inducer
direction. However, the finding that the magnitudes of the
FOE shifts were larger than the magnitudes of the FOC
shifts suggests that this induced shift was offset by an
additional component of shift in the direction predicted by
motion capture. For a comparison of induced shifts and
captured shifts in rotary and radial flow, see Appendix A.

Effect of target flow speed

Having identified captured shift as a novel component
of the OFI, we wondered how this component would be

Figure 4. Horizontal and vertical shifts of the foci of contracting and expanding flow fields (right column) and clockwise and
counterclockwise flow (left column) per subject with 95% confidence intervals. Positive shift values in the horizontal shift plots a and b
indicate shifts in the inducer direction. In the vertical shift plots c and d, positive values indicate shifts at an angle of 90- in the
counterclockwise direction with respect to the inducer direction. Note that the abscissas in panels b and c are negative. (a) In the rotary
OFI, significant horizontal shifts could be observed in the direction of the inducer in all six observers. Mean shifts (indicated with dashed
lines) were 1.60- and 1.54- for the clockwise and counterclockwise flow, respectively. (c) Significant vertical shifts were also observed in
all observers, means were 4.00- and j3.48- for the clockwise and counterclockwise flow, respectively. (b) The focus of expanding and
contracting flow shifted horizontally in all eleven participants. The shift of the FOE (mean 3.67-) was significantly larger than the shift
magnitude of the FOC (mean j1.37-) in all subjects. (d) Vertical shifts were negligible. Data highlighted in blue are from one observer
(JD). This subject’s data in panels a and c correspond to the data shown in Figure 3.
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influenced by the speed of the target flow. Hence, two-
dimensional shifts of radial and rotary target flow foci
were measured with two naive subjects (AH and JF) and
an author (JD) using a range of target flow speeds.
In the rotary OFI experiment, the spin rates ranged from

0.02 to 0.28 Hz. In the radial OFI experiment, the simulated
heading speeds ranged from 1.13 to 11.3 m/s. The inducer
speed was 5, 0, or j5-/s. As shown in Figure 5, the
horizontal and the vertical shifts in degrees (obtained by
fitting Equation 1 to the pointing data and multiplication
of + and absolute V) varied with the speed of the target
flow.
In the rotary OFI (Figure 5a), vertical shifts (diamonds)

were observed over the range of spin rates used. The
vertical shifts were largest when the target flow speed was

low, reaching almost T15- in subjects AH and JF. At high
absolute spin rates (90.2 Hz), the shifts were negligibly
small. The sign of the shift depended on the rotation
direction. The focus of clockwise flow shifted up with the
rightward inducer and down with the leftward inducer
present. The shift directions were reversed in the counter-
clockwise flow condition. These “vertical shift as a
function of target speed” data were fit with the hyperbolic
function

Y ¼ ay þ byR
j1; ð2Þ

where Y is the vertical shift and R is the spin rate. This
function reflects the idea of vector subtraction of the
uniform flow from the rotary flow because at increasing R,

Figure 5. Target flow speed dependence of the horizontal ()) and vertical (N) focus shifts in the rotary OFI (a) and the radial OFI (b) in three
participants (rows). The horizontal axes represent the speed of the target flow, expressed in spin rate (Hz) for the rotary flow, and
simulated translation speed (m/s) in the radial flow conditions. Positive horizontal shift values indicate shifts in the direction of the inducer.
Positive vertical shift values indicate shifts at an angle of 90- in the counterclockwise direction with respect to the inducer direction. Each
shift is collected with inducer speeds of 5, 0, and j5-/s. In the rotary OFI (a), horizontal inducer motion caused vertical shifts (N) in all
subjects. These shifts were positive in clockwise flow and negative in counterclockwise flow. Significant horizontal shifts ()) were also
observed in all participants. Both the vertical and the horizontal shifts were greatest at low target flow speeds. This comes to expression
also in bar graph (c), which shows the parameters obtained by fitting Equation 2 to the vertical shifts and Equation 3 to the horizontal
shifts. The parameters by and bx from the spin rate R term are significantly non-zero in all three subjects, whereas the offsets ay and ax are
significantly non-zero in only one case. This indicates that both horizontal and vertical shifts in the rotary OFI depend on target flow speed.
In the radial OFI (b), the indicated focus positions of expanding and contracting flow were not biased in the vertical direction (N). Horizontal
shifts, however, did occur ()). Here too, shifts were largest at low target flow speeds. Offset cx is significantly non-zero in all participants
(d), meaning that the horizontal shift of the FOE was larger than the shift of the FOC. The dashed line in panel b fitted to the horizontal
radial focus shifts is the sum of Equations 2 and 3 that were fitted to rotary flow shifts in panel a, see Appendix A for details. Bars per
parameter in panels c and d correspond from left to right to participants in panels a and b from top to bottom. All error bars are 95%
confidence intervals. The filled black markers correspond to the data in Figure 3.
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the rotary flow vectors are decreasingly influenced by the
relatively small uniform flow field vectors, resulting in
small vertical shifts Y. At near zero spin rates R, Y goes
asymptotically to plus and minus infinity. This is no
problem because the flow field has no focus when the spin
rate is zero.
The horizontal shifts (circles in Figure 5a) were positive

across the range of spin rates used in all subjects, meaning
that they were in the direction of the inducer in both the
clockwise and the counterclockwise rotary flow condi-
tions. Here too, the shifts were largest (typically about 3-)
at low target flow speeds. We fitted these data with the
function

X ¼ ax þ bxkR
j1k: ð3Þ

The dependence on absolute R reflects the horizontal
shift’s independence of the direction of rotation. This
function also captures the observed diminishing of the
horizontal shifts at high spin rates and the increase at
lower rates.
Parameter values, with 95% confidence intervals, for

the fits to the vertical and horizontal shifts in the rotary
flow condition are shown in Figure 5c. The vertical offset
ay was negligible in all observers. And although the
horizontal offset ax ranged from about one half to one
degree, it was significant in one subject (JD) only. On the
other hand, the spin rate term parameters by and bx were
significantly non-zero in all observers, emphasizing the
influence of target flow speed on both the vertical and the
horizontal illusory focus shifts in the rotary OFI.
Next, we measured the illusory focus shifts in the radial

OFI (Figure 5b). We found that shifts were only observed
in the horizontal direction, and that the focus of
contraction (FOC) shifted less than the focus of expansion
(FOE). Vertical offsets were analyzed by fitting the
function

Y ¼ cy þ dyT
j1; ð4Þ

where T denotes translation speed in m/s. The values
obtained for cy and dy are negligibly small in all three
subjects (Figure 5d), which indicates that no mislocaliza-
tion occurred in the vertical direction.
In the horizontal direction, on the other hand, focus

shifts did occur. These were fitted with the function

X ¼ cx þ dxT
j1: ð5Þ

Large values of dx indicate that observers experienced
large illusory shifts, especially in slowly contracting
and expanding flow fields. (Note that the magnitudes of
the gain parameters d and b cannot be directly compared,
see Appendix A.) Interestingly, the values of cx are
significantly greater than zero in all three observers (mean

1.06- T 0.12- SEM). This shows that the illusory FOE
shifts were, on average, 1.06- larger than the illusory FOC
shifts over the range of speeds used in our experiment.
In summary, the results in Figure 5 show that both the

induced shift and the captured shift depend on target flow
speed. The lower the target flow speed, the larger the
shifts. Concerning the shift direction, the induced shift and
captured shift show a different dependence on the sign of
the target flow. The induced shift direction depends on the
sign of the target flow. In contrast, the direction of the
captured shift is identical in clockwise and counterclock-
wise flow and in expanding and contracting flow.

Effect of target fuzziness

In the literature, it has been shown that the magnitude of
the motion capture effect increases with increasing target
fuzziness (Murakami, 1999; Murakami & Shimojo, 1993;
Ramachandran, 1987). We hypothesized that the increase
of the captured shift found at low target flow speeds in the
previous experiment might correlate with the fuzziness of
the target. To test this hypothesis, we reanalyzed the data
of the target flow speeds experiment (Figure 5). Target
fuzziness was defined as the standard deviation A of the
residuals of a linear fit to the real and indicated position
data obtained in the trials in which the inducer was static.
Large A means imprecise localization of the focus of flow:
fuzzy targets. The results are shown in Figure 6.
First, we established that with increasing absolute target

flow speed, target fuzziness decreased, as expressed by an
elevated target localization precision in our subjects. This
is shown for the radial OFI in Figure 6a and for the rotary
OFI in Figure 6b.
Second, we analyzed the relation between the captured

shifts and the target fuzziness (Figure 6c). The captured
shift in the rotary OFI is defined simply as the horizontal
components of the observed mislocalization. In the radial
OFI, the captured shift is the difference between the
magnitudes of the FOE shift and the FOC shift divided by
two. As is shown, the magnitudes of the captured shifts
correlated positively with target fuzziness A. Linear
regression showed that per degree fuzziness, the captured
shift was about two-thirds of a degree in the rotary OFI,
and about one-third of a degree in the radial OFI.
These results show that the shift in the direction of the

inducer is motion capture-like in the sense that its
magnitude increases with increasing target fuzziness.

Effects of presentation duration and inducer
speed

To investigate the temporal properties of the induced
shift and the captured shift, a naive subject (WP) and an
author (JD) participated in an additional rotary OFI
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experiment with variable presentation durations in the
range of 0.33 to 5.33 s (Figure 7a). The inducer speed was
5, 0, or j5-/s. The spin rate of the target flow in this
experiment was 0.08 Hz. Only rotary, not radial, target
flow was used because the induced shift and captured shift
are most clearly discernable in this condition as vertical
and horizontal shifts, respectively.
The horizontal shift increased logarithmically over the

range of presentation durations used, reaching 1.6- in
subject JD and 4.2- in subject WP. On the other hand,
presentation duration did not have an effect on the vertical

shift of the focus. The vertical shifts remained more or
less constant at on average 2.7- in subject JD and 6.5- in
subject WP.
It has been shown that the magnitude of the OFI

increases with increasing inducer speed (Duffy & Wurtz,
1993) before leveling off at even higher inducer speeds
(Pack & Mingolla, 1998). We wondered whether this
holds for both the induced shift component and the
captured shift component. With the same subjects as in
the presentation duration experiment, we investigated the
effect of inducer speed on the horizontal and vertical focus

Figure 7. The effect of stimulus duration (a) and inducer speed (b) on the magnitudes of the vertical (N) and horizontal ()) components of
focus shift in the rotary OFI. (a) In both subjects, stimulus duration had no effect on the vertical shifts over the range of durations used. The
horizontal shift, however, increased logarithmically with stimulus duration. (b) Both the horizontal and the vertical shifts increased with
increasing inducer speed in both subjects, leveling off at higher speeds.

Figure 6. Relation between target fuzziness and captured shift. The fuzziness of the foci of radial (a) and rotary (b) flow is defined as the
standard deviation A of localization residuals in the static inducer condition. In all three subjects, A decreased with increasing absolute
target flow speed. This means that the focus of faster target flow was more precisely localized. (c) The captured shifts in the rotary and
radial OFI increased with target fuzziness. In the rotary flow condition (black markers), the captured shift is defined as the horizontal
mislocalization. In the radial flow condition (blue markers), the captured shift is defined as the difference between FOE and FOC shift
magnitudes divided by two. Fits are linear regressions of the model Captured shift = a + bA.
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shifts using a constant presentation duration of 1.33 s
(Figure 7b). Spin rate was 0.08 Hz, and the inducer speed
ranged from 1-/s to 20-/s. Both shift components show a
clear increase over this range, and both level off at higher
inducer speeds.

Effect of eye movements

Although we instructed our subjects to fixate the
stationary square at the center of the screen and to avoid
tracking of the moving dots, involuntary eye movements
might have occurred in our experiments. To confirm
whether or not eye movements could contribute or explain
our results, we repeated the rotary OFI experiment with
three participants while recording their eye movements.
Offline analysis showed that, although eye traces did differ
slightly amongst leftward, static, and rightward inducer
conditions, the eye movements did not correlate with the
captured shift in any of the participants. Details on these
data and analyses can be found in Appendix B.

Discussion

We reproduced the optic flow illusion (OFI) in which
the focus of an expanding flow field appears shifted in the
direction of a transparently superimposed uniform flow
field (Duffy & Wurtz, 1993). We then extended the OFI
by replacing the expansion pattern with contracting and
rotary flow fields. This revealed that there are at least two
sources of flow field transformation. On the one hand, the
foci of these flow fields shifted in the direction expected
on basis of the existing smooth pursuit compensation and
motion induction explanation of the OFI (Figure 1, middle
column). On the other hand, a component of shift was
observed that was always in the direction of the horizontal
inducer flow. In the rotary OFI, this newly identified
captured shift was separated from the known induced shift
effect because the captured shift was horizontal and the
induced shift was vertical. In the radial OFI, the effect
could be observed as an asymmetry between the magni-
tudes of the shifts of the foci of expansion and contraction.
However, although this asymmetry could be explained on
the basis of the isolated captured and induced shifts from
the rotary flow conditions (Appendix A), we cannot
exclude other possible contributions to the asymmetry.
For example, the reduced shift of the focus of contraction
might have been caused by a reduced compensation for
pursuit in contracting flow, possibly because contracting
flow is under natural locomotor behavior much rarer than
expanding flow. In addition, evidence exists for differ-
ential processing of expanding and contracting flow in
humans (e.g., Holliday & Meese, 2005; Lappe &
Rauschecker, 1995b; Ptito, Kupers, Faubert, & Gjedde,

2001), which might also be related to the observed
asymmetry.
The captured shift could account for a substantial part

of the total OFI shift. For example, the captured shift
magnitude was 42% of the induced shift magnitude in the
0.08-Hz rotary OFI experiment on average per subject
(Figure 4). This component of the focus shift went
unnoticed in other psychophysical studies of the OFI that
only used expanding target flow (Duffy & Wurtz, 1993;
Duijnhouwer et al., 2006; Grigo & Lappe, 1998; Royden
& Conti, 2003). In one study (Pack & Mingolla, 1998), a
rotary target flow was used, and although not mentioned
by the authors, a capture like shift of comparable
magnitude can be discerned in the results. Yet, as the
authors used only clockwise flow, it is impossible to
establish from their data whether the direction of this shift
was independent of the direction of the target flow
rotation. Thus, our study for the first time provides a
clear distinction between capture and induction compo-
nents of the optic flow illusion.
We further investigated the isolated induced shift and

captured shift components by manipulating the target flow
speed, the inducer speed, and the presentation duration.
Manipulating the target flow speed had a clear effect on
the induced shift (Figure 5). The slower the target flow,
the larger the shift. This makes sense in terms of the
smooth pursuit compensation account. Smooth pursuit,
adding global motion to the retinal flow field, has the
greatest effect when the target flow field vectors are short.
Therefore, with slow target flow, the compensation needs
to be stronger, hence more illusory shift occurs in the slow
target OFI. It has been shown in flow sensitive neurons in
the medial superior temporal (MST) cortex area of the
macaque that compensation effects for real pursuit are
indeed scaled to the speed of the radial flow (Lee et al.,
2007).
Manipulating the target flow speed had a similar effect

on the captured shift as on the induced shift (Figure 5).
The slower the target flow, the larger the shift. This
increase at lower target speeds could be explained by
taking into account that the focus of the target flow
becomes fuzzier at low flow speeds. We found clear
relations between target flow speeds and localization
uncertainty on the one hand, and between localization
uncertainty and the captured shift on the other (Figure 6).
Other studies have also found positive correlations
between target fuzziness and the strength of the motion
capture effect. Optimum motion capture has been found in
target stimuli with low luminance or color contrast,
smaller size, and greater eccentricity (Murakami, 1999;
Murakami & Shimojo, 1993; Ramachandran, 1987).
Targets that by manipulation of these parameters ranged
from fuzzy to distinct allowed a gradual change from
motion capture to motion induction (Murakami, 1999;
Murakami & Shimojo, 1993). Likewise, the illusion that
the stationary edges of random dot kinematograms
(Ramachandran & Anstis, 1990) and moving Gabors
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(De Valois & De Valois, 1991) shift in the direction of the
stimuli’s internal motion was optimal when those edges
were least conspicuous, e.g., when they were hidden in a
surround of static dots or under a luminance envelope
(Chung et al., 2007). Our results show that the OFI
stimulus provides an additional method of manipulating
target fuzziness by means of the target flow speed.
Increasing the inducer speed had similar effects on the

induced shift and the captured shift (Figure 7b). Both
shifts showed a saturating increase with increasing inducer
speed, similar to the inducer speed dependence of the
expansion OFI found in a previous study (Pack &
Mingolla, 1998). Manipulating the stimulus duration,
however, revealed different temporal properties of the
induced shift and the captured shift (Figure 7a). Manip-
ulating the stimulus duration (0.33–5.33 s) did not have an
effect on the magnitude of the induced shift (Figure 7a).
One might have expected such an effect when the buildup
of pursuit compensation or motion induction is ongoing.
The absence of an effect of stimulus duration implies short
buildup times of motion induction and pursuit compensa-
tion relative to the shortest presentation duration used in
our experiment. However, the literature on the buildup
times of local motion induction and smooth pursuit
compensation is mixed.
Local motion induction might indeed be very fast, as it

has been shown psychophysically (Tadin, Lappin, &
Blake, 2006) and electrophysiologically (Perge, Borghuis,
Bours, Lankheet, & van Wezel, 2005) that the surround
modulates the response of center-surround motion detec-
tors after a delay of only about 16 ms. However, a related
illusion known as motion repulsion, the illusory over-
estimation of acute angles between the directions of two
transparently superimposed uniform flow fields (e.g.,
Marshak & Sekuler, 1979), has been shown to increase
over a range of presentations durations similar to the ones
used in Figure 7a (Rauber & Treue, 1999). Since motion
repulsion is thought to be related to center-surround
motion interactions (e.g., Hiris & Blake, 1996; Marshak
& Sekuler, 1979) and since applying motion repulsion to
any location within the OFI stimuli qualitatively explains
the induced shift, these findings seem incongruous with
the lack of effect of stimulus duration on induced shift
reported here. However, the buildup of motion repulsion
in the study of Rauber and Treue (1999) might have been
due to local motion adaptation, which may have had a less
prominent role in our experiments because of the
relatively low dot density used.
In terms of pursuit compensation, the finding that the

Filehne (1922) illusion (the illusory motion of a dot in
total darkness because of incomplete compensation for the
eye movements of the observer) disappears after about
200–300 ms (de Graaf & Wertheim, 1988; Mack &
Herman, 1978) seems to match the constant induced shift
over the range of stimulus durations used in our experi-
ment (0.33–5.33 s). However, others have shown that the
pursuit compensation can continue to build for at least a

second (Souman, Hooge, & Wertheim, 2005). Moreover,
it is important to note that these durations were found for
extraretinal compensation during real pursuit. To our
knowledge, no study has quantified the latency of pursuit
compensation based on purely retinal signals.
As opposed to the induced shift, manipulating the

stimulus duration did have an effect on the captured shift.
The captured shift increased with increasing stimulus
duration and saturated at longer presentation times. The
increase with longer durations matches the idea of target
drift caused by motion capture instead of a fixed
magnitude, quasi-instantaneous shift. The captured shift
might saturate over time because an equilibrium sets in
between the offsetting motion signal and the veridical
position signal.

Comparison of stimuli with previous studies

Apart from the additional contracting and rotary flow
conditions, the OFI stimuli used in this study differed in a
number of ways from those used by Duffy and Wurtz
(1993) and other studies of the OFI.
First, in all experiments in this study, a fixation dot was

permanently visible at the center of the screen. This is
different from most previous studies, which lacked a
fixation dot during the stimulus presentation intervals
(Grigo & Lappe, 1998; Pack & Mingolla, 1998; Royden &
Conti, 2003). The stationary fixation marker might have
had a detrimental effect on the illusory shift. Since a
fixation marker provides visual evidence against ongoing
pursuit, it may counteract a pursuit-compensation mech-
anism. However, the induced shifts reported here are of
the same order of magnitude as in previous studies,
supporting an earlier claim (Duffy & Wurtz, 1993) that
fixation does not influence the illusory shift much.
Second, our inducer flow stimulus was constructed by

simulating an eye-rotation within a sphere of dots. This
resulted in curved dot trajectories on the display and a
uniform flow field on the retina of the observer. In
contrast, the inducers in previous studies of the OFI
(Duffy & Wurtz, 1993; Grigo & Lappe, 1998; Pack &
Mingolla, 1998; Royden & Conti, 2003) consisted of dots
moving with uniform velocity on the display, in effect
simulating sideways observer translation along a fronto-
parallel plane. Physical differences between stimuli con-
structed in these alternative ways are most clearly visible
in the periphery of large field stimuli, such as used in our
experiment (Figure 2). Since it has been suggested that
these differences can be used by human observers as cues
to decompose combined translational and rotational flow
(Grigo & Lappe, 1999), we chose to use the rotational flow
inducer as to maximize a potential contribution of an eye-
rotation compensation mechanism to the OFI (Duijnhouwer
et al., 2006).
Finally, in previous studies the target flow was a

frontoparallel plane of dots moving at a speed that scaled
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linearly with eccentricity. In contrast, our radial stimuli
were created by simulating observer translation through a
cloud of dots. Dots were wrapped to the far side of the
cloud when they came nearer than 0.7 m to the observer
in the expansion condition. In the contraction condition,
the dots were wrapped to the near side of the cloud
when they exceeded a distance of 10 m away from the
observer. Thus, the dot density was kept constant around
both the focus of expansion and the focus of contraction,
an issue that needs special consideration in studies
comparing expanding and contracting flow (cf. Clifford,
Beardsley, & Vaina, 1999). An additional result of adding
depth to the scene is that, in the radial flow conditions,
dots at identical eccentricities could have different speeds
(motion parallax). Given the importance of motion
parallax in heading tasks that require decomposition of
rotational and translational flow (Rieger & Toet, 1985;
Warren & Hannon, 1988, 1990), it is interesting to note
that the OFI does also occur in radial target flow with
simulated depth in the scene. However, because motion
parallax was absent in the rotary flow conditions (flow due
to rotation around the vantage point is invariant for depth
in the scene), the comparison between the illusory shifts
observed in radial and rotary flow was more complicated
than it would have been when no depth was simulated
(Appendix A).

The mechanism of the captured shift

The effects on the magnitude on the captured shift of
target fuzziness and the saturation of captured shift with
increasing speed and stimulus duration suggest that the
target is dislodged by the inducer and drifts along with it
up to the limits set by the distinctness (as a reciprocal of
fuzziness) of the target.
More mechanistically speaking, the captured shift might

be related to the dynamic spatial remapping of receptive
fields that are tuned to our target flow fields. Neurons tuned
to radial and rotary flow have been found in many cortical
areas, most notably in the medial superior temporal (MST)
area of the macaque (e.g., Duffy & Wurtz, 1991, 1995,
1997; Saito et al., 1986; Tanaka et al., 1986) and humans
(Dukelow et al., 2001; Goossens, Dukelow, Menon, Vilis,
& van den Berg, 2006; Greenlee, 2000; Morrone et al.,
2000; Peuskens, Sunaert, Dupont, Van Hecke, &
Orban, 2001; Rutschmann, Schrauf, & Greenlee, 2000).
Efference copies of oculomotor signals that might be used
to shift the receptive fields have been observed in MST
(Newsome, Wurtz, & Komatsu, 1988; Goossens et al.,
2006). Presumably, the inducer in the OFI stimulates
pursuit eye movement neurons, found for example in the
frontal eye field (FEF; Gottlieb, Bruce, & MacAvoy,
1993; Gottlieb, MacAvoy, & Bruce, 1994; MacAvoy,
Gottlieb, & Bruce, 1991; Tian & Lynch, 1996a, 1996b), a
cortical area that has been shown to project onto MST
(Stanton, Bruce, & Goldberg, 1995). Although the

stimuli in our experiment were viewed with static eyes
(Appendix B), the activity of neurons in the FEF might
have been enough to trigger the dynamic receptive field
shifts. A similar dynamic field shift due to subthreshold
oculomotor signals has been found in macaque V4 and has
been related to covert spatial attention shifts (Moore &
Armstrong, 2003; Moore & Fallah, 2004; Schall, 2004;
Thompson, Biscoe, & Sato, 2005). Motion capture has
also been related to attentive tracking (Culham &
Cavanagh, 1994), and shifting receptive fields might
functionally underpin this idea. Regarding the saturating
increase of the captured shift as a function of target
fuzziness, we speculate that the shift may be related to
neural units with dynamic tuning properties. Models of
such dynamic tuning rely on gain-fields, i.e., multi-
plicative interactions between extraretinal or reafferent
pursuit signals and visual receptive fields (e.g., Beintema
& van den Berg, 1998; Zipser & Andersen, 1988). The
inducer motion presented to a stationary eye causes a
mismatch between visual motion and eye movement
related dynamic shifts. This mismatch may be percep-
tually valid within the bounds set by the precision of the
representation of the focus. Our measure of target
fuzziness (A) suggests that the focus of optic flow is
represented at a coarser scale as A increases (cf. the
relation between diffusion and spatial scale in Koenderink,
1988). When the scale of a model gain-field increases, its
limit for dynamic shifting also increases (Beintema & van
den Berg, 1998). Thus, a captured shift caused by
dynamic tuning may increase as A increases until it is
limited at the largest receptive field scale.

Conclusion

We conclude that the OFI is an addition of at least two
separate effects, namely, an induced shift, presumably
caused by pursuit compensation and/or motion induction,
and a captured shift, which may be caused by an
interaction of the motion signal of the inducer and the
position signal of the focus. The captured shift magnitude
was typically 42% of the induced shift magnitude
observed in our experiments. Computational models of
the OFI (Hanada, 2005; Lappe & Duffy, 1999; Lappe &
Grigo, 1999; Lappe & Rauschecker, 1995a; Royden &
Conti, 2003) have been developed without the captured
shift component in mind and have been tested with
expanding patterns of motion only. The experimental
results presented in this study provide new constraints on
these models. Therefore, it might prove interesting to see
how these models respond to the rotary and contracting
flow stimuli used in our experiments. Possibly, the
captured shift will appear as an emergent property in
one or more of them. Or perhaps the models and the data
can be reconciled by modifications to the models that are
potentially informative of how the visual system integra-
tes motion and position information.
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Appendix A

Comparison of radial and rotary focus shifts

In the rotary OFI experiment, the induced shift was
perpendicular to the inducer, and the captured shift was
parallel to the inducer. In the radial OFI experiment,
however, the induced shift and captured shift were parallel
and were only discernable as a difference in the magnitude
of the FOE and FOC shifts. We can qualitatively explain
this shift magnitude difference because the captured shift,
being always in the direction of the inducer, strengthens
the induced shift of the FOE (that is also in the direction
of the inducer) and counterbalances the induced shift of
the FOC (that is opposite the inducer).
This idea can be tested more quantitatively by

reanalyzing the data of the target flow speed experiment
(Figure 5). If the differences between FOE and FOC shift
magnitudes in the radial target flow speed experiment are
indeed the result of the same captured shifts that are
manifest as horizontal shifts in the rotary target flow
speed experiment, we would expect that the horizontal
shifts of the radial foci can be predicted by the sum of
the individual fits to the horizontal and vertical rotary
focus shifts. However, this comparison is complicated by
the fact that the spin rate and translation speed axes in
Figure 5 are not directly comparable. Because of the depth
in the virtual environment of dots, the simulated ego-
speed (in m/s) translates into a mixture of dot speeds at
any given visual direction with dots at greater distances
from the observer having lower dot speeds than closer
dots (motion parallax). The simulated spin rate (in Hz), on
the other hand, translates into a dot speed profile that has a
single, linear relation with eccentricity. This difference is
illustrated in Figure 2d. In matching the illusory shifts in
the radial and rotary conditions, the problem is that the
relative contributions of far and close dots to the radial
OFI are unknown.
The data does, however, allow for a qualitative consis-

tency check of this prediction. We summed Equations 2
and 3, the two fits to the horizontal and vertical shifts of
the rotary flow, yielding

X ¼ ay þ byR
j1 þ ax þ bxkR

j1k: ðA1Þ

To deal with the problem of moving from the domain of
spin rates to translation speeds, as explained in the
previous paragraph, we substituted the spin rate R by
the translation speed T multiplied by a scaling factor k
(in mj1) resulting in

X ¼ ay þ byðkTÞj1 þ ax þ bxkðkTÞj1k: ðA2Þ

We then fitted this summation model to the horizontal
shifts in the radial target flow experiments, keeping
parameters ay, by, ax, and bx fixed at the values obtained
in fitting the focus shift data with Equations 2 and 3, and
k as the only free parameter. These fits are shown in
Figure 5b as dashed lines. The model fits the observed
horizontal shifts well (mean r2 for all subjects is 0.97).
The fitted values of k were 0.030, 0.034, and 0.025 for
subjects AH, JD, and JF (mean 0.029). This means that the
horizontal shifts in a radial OFI at, for example, 1.9 m/s
ego-translation were equal to the sum of the horizontal
and vertical shifts in the rotary OFI when the spin rate was
1.9 m/s � 0.029 mj1 = 0.056 Hz. The spin rate and the
translation speed of this example were used in making the
flow fields pictograms in Figures 2b and 2c. As shown in
the corresponding speed profile plot in Figure 2d, the
retinal dot speeds in the 0.056-Hz rotation stimulus are
equal to the retinal dot speeds in the 1.9-m/s translation
condition of dots at an intermediate distance of about
5 meters from the observer. Note that the mean distance of
the visible subset of dots in the volume of dots was about
7.5 meters. That our subjects appear to have judged the
focus position on these nearer than average dots seems
plausible: these dots moved faster and thus conveyed
clearer information on the location of the focus. We think
this comparison suggests that the observed difference
between FOC and FOE shifts likely result from the same
effect that caused the horizontal shifts in the rotary OFI.

Appendix B

Eye movements control experiment

Large field moving stimuli, such as the inducer stimuli
used in this study, are known to evoke involuntary
optokinetic nystagmus (OKN), reflexive eye movements
alternating between short pursuit phases and saccades in
the opposite direction. Recently, OKN has been shown to
cause systematic localization errors (Kaminiarz, Krekelberg,
& Bremmer, 2007; Tozzi, Morrone, & Burr, 2007).
Although the targets in those studies were brief flashes, a
similar phenomenon might occur when localizing persis-
tent targets such as the flow field foci used in this study.
Could the focus shifts be explained by involuntary eye
movements that our subjects might have made, despite
instructions to avoid tracking of the moving dots and
maintain fixation? To test this possibility, we repeated the
rotary OFI experiment with two naive subjects (WP and
GT) and an author (JD) while recording the movements of
their left eyes at a sample rate of 500 Hz with a video eye-
tracker (Eyelink II; SR Research, Ltd.). Experimental
conditions were identical to the first experiment in this
paper (Figures 3 and 4a, c).
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The control experiment comprised a 9-point Eyelink
calibration sequence, followed by 300 trials of clockwise
and counterclockwise flow at 0.08 Hz. The inducer moved
at T5-/s or was static. Every tenth trial the subjects fixated
a calibration dot, which was used offline to recalibrate the
Eyelink signal. These thirty calibration trials were not
used for further analysis. Gaze traces were analyzed over
the stimulus interval (1.33 s), the first sample of the trace
was defined as being at zero degrees eccentricity. Trials in
which the gaze trace exceeded 2.5- in the horizontal or
vertical direction from the fixation dot were discarded.
This occurred, averaged over our three subjects, in 5% of
the trials and was mostly due to eye blinks.
Of the localization data of the remaining trials, the

horizontal and vertical focus shifts were analyzed by

means of fitting the planar regression model Equation 1.
To obtain single values for the horizontal and vertical
shifts, the counterclockwise flow condition was analyzed
as if the target spun clockwise. This was achieved by
taking the additive inverse of the veridical and indicated
vertical coordinates during counterclockwise flow. The
horizontal shift (X) and vertical shift (Y) values thus
obtained are shown in Figure 8a. Significant horizontal
(captured) and vertical (induced) shifts could be observed
in all three observers and are comparable to the shifts
presented in Figures 3 and 4a, c.
In Figure 8b, the horizontal and vertical gaze traces

during leftward (red), static (green), and rightward (blue)
inducer flow are superimposed for all non-discarded trials.
To give an impression of the difference between the

Figure 8. Relation between eye movements and the horizontal and vertical focus shifts observed in three subjects for the rotary target flow
experiment. The experimental settings were identical to the experiments of Figure 3 and Figure 4a, c. (a) The horizontal (X) and vertical
(Y) focus shifts of the observed in this control experiment obtained by fitting Equation 1 and multiplying and the magnitude of the inducer
speed V. These shifts are comparable to shift values in Figures 3 and 4a, c. (b) The horizontal and vertical gaze positions of three subjects
(rows) from the onset to the end of each trial. Red, green, and blue traces correspond to trials with leftward, static, and rightward inducing
motion, respectively. Thick lines are the mean traces of these three conditions. For statistical analysis, each trace was summarized with
the mean gaze position over the course of a trial. The populations of trace means were significantly different between leftward and
rightward inducer conditions in all but one of our subjects (Wilcoxon rank sum test, see panel b for p-values). However, the correlograms
(c) show that the trace means and focus localization errors per trial were uncorrelated, except for one subject (WP) showing a significant
correlation between vertical eye movements and vertical biases (induced shift). We conclude that the horizontal (captured) shifts reported
in this study are not related to eye movements.
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inducer conditions, the mean of all traces recorded in each
inducer condition is plotted as a thick line in the
corresponding color. Visual inspection of the individual
(per trial) gaze traces did not reveal any OKN, which
would have resulted in a marked pattern of smooth pursuit
phases in the direction of the inducer alternated by rapid
saccades back to the fixation dot. However, further
statistical analysis in which we reduced each individual
gaze trace to a single trace mean value (mean gaze
position over the course of the trial) revealed that the
population of horizontal trace means recorded during
leftward and rightward inducer flow were significantly
different in two out of three subjects (Wilcoxon rank sum
test, see Figure 8b for p-values). However, the absolute
differences between mean gaze traces (indicated with
thick lines in Figure 8b) are of a much smaller magnitude
than the captured shifts observed (Figure 8a). Moreover,
as is shown in Figure 8c, correlating the per trial trace
means with the per trial mislocalization of the focus
revealed no significant correlation between the horizontal
eye position and the horizontal focus shifts in any of our
subjects. For this correlation, only the trials with a moving
inducer were used (hence the lower n-values in Figure 8c
compared to Figures 8a and 8b), and clockwise and
counterclockwise flow trial data were made congruent (as
described in the previous paragraph). For completeness,
the correlations between the vertical eye positions and the
vertical focus shifts are shown in Figure 8c, right column.
We conclude from this control experiment that the
horizontal captured shifts reported in this study were not
related to eye movements.
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