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Abstract At the onset of visually ambiguous or
conflicting stimuli, our visual system quickly ‘chooses’
one of the possible percepts. Interrupted presentation
of the same stimuli has revealed that each percept-
choice depends strongly on the history of previous
choices and the duration of the interruptions. Re-
cent psychophysics and modeling has discovered in-
creasingly rich dynamical structure in such percept-
choice sequences, and explained or predicted these pat-
terns in terms of simple neural mechanisms: fast cross-
inhibition and slow shunting adaptation that also causes
a near-threshold facilitatory effect. However, we still
lack a clear understanding of the dynamical interactions
between two distinct, temporally interleaved, percept-
choice sequences—a type of experiment that probes
which feature-level neural network connectivity and
dynamics allow the visual system to resolve the vast
ambiguity of everyday vision. Here, we fill this gap.
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We first show that a simple column-structured neural
network captures the known phenomenology, and then
identify and analyze the crucial underlying mechanism
via two stages of model-reduction: A 6-population
reduction shows how temporally well-separated se-
quences become coupled via adaptation in neurons that
are shared between the populations driven by either
of the two sequences. The essential dynamics can then
be reduced further, to a set of iterated adaptation-
maps. This enables detailed analysis, resulting in the
prediction of phase-diagrams of possible sequence-pair
patterns and their response to perturbations. These
predictions invite a variety of future experiments.
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1 Introduction

When a pair of stereo-incompatible images is suddenly
presented to our eyes, the initial superposition percept
evolves rapidly (≈ 0.1–0.2 s) into seeing just one eye’s
image, even when the stimuli are equally strong. A
similar ‘percept-choice’ process also occurs at the onset
of ambiguous monocular stimuli such as a Necker cube,
or a transparent object that rotates in depth. In all
such cases, neural competition within our visual sys-
tem rapidly and spontaneously breaks the perceptual
ambiguity which arises at the onset of stimuli that
provide strong support for two (or more) incompat-
ible percepts. Recent theory and experiments (Noest
et al. 2007; Klink et al. 2008; Wilson 2007; Pearson and
Brascamp 2008) have revealed how the (onset-driven)
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neural dynamics of percept-choice differs crucially from
the classic ‘rivalry’ process (a slow, irregular cycle of
percept-switches) that arises under sustained viewing of
such stimuli (Alais and Blake 2004; Blake and Logothetis
2002). Summarized very briefly (see Noest et al. 2007 for
details): Either of these processes can occur generically
(under transient or sustained stimulation respectively)
in a wide variety of ambiguity-encoding neural models
with sufficiently strong, recurrent competition between
populations and slow local adaptation (Matsuoka 1984;
Lehky 1988; Laing and Chow 2002; Noest et al. 2007;
Wilson 2007; Shpiro et al. 2009): The strong competition
creates two attractor-states in which one population sup-
presses the other, but each attractor exists only when
its dominant population is not too deeply adapted. At
onset, percept-choice trajectories start from low activity
in both populations, run closely along the separatrix
between the two attractors, linger briefly near a saddle-
point, and then quickly settle into one of the attrac-
tors, depending on the combined bias in activation
and adaptation-states of both populations in the brief
time between onset and leaving the saddle-point (Noest
et al. 2007). Percept-switching is very different: Under
sustained stimulation (longer than used in any experi-
ments modelled in our present paper), the slow, noisy
accumulation of adaptation in the dominant (stochas-
tically firing) population gradually shifts the currently
occupied attractor, and reduces its stability and domain
of attraction as it approaches the saddle-node bifurca-
tion that ends its existence, until any small perturbation
can trigger a fast switch into the opposite attractor.
Even longer stimulation then leads to a series of such
percept-switches, separated by gamma-distributed in-
tervals.1

How each percept-choice depends on the history of
previous percepts and stimuli has been investigated
extensively by regularly removing the stimulus, usually
before percept-switching starts, and presenting it again
after a variable blank interval. The most basic finding
is that percept-choices show strongly positive serial
correlation, unless the blank interval T0 is too short
(roughly, T0 < 0.4 s). When first discovered (Orbach
et al. 1963, 1966), it was realized that this pattern
presents a serious problem for models inferred from

1Recent psychophysical experiments (Alais et al. 2010) have
strongly tested and confirmed the crucial role of such grad-
ual, noisy accumulation of adaptation throughout each of the
(gamma-distributed) intervals between percept-switches. More-
over, simulation and psychophysics (van Ee 2009) had already
demonstrated that noisy adaptation dynamics not only generates
the well-known gamma-distribution of intervals, but also the
hitherto underestimated strength of serial correlation between
intervals.

classic rivalry data, since the adaptation mechanism in
these models causes the opposite of the previous per-
cept to be chosen at each onset (as in standard ‘after-
effects’). This conundrum persisted until the effect was
rediscovered, and tentatively attributed to cognitive-
level memory or ‘priming’ processes (Leopold et al.
2002). However, dynamical analysis (Noest et al. 2007)
then identified that interaction between shunting adap-
tation and a small fixed neural baseline offers a simple
and neurally viable mechanism that generates choice-
repetition, without requiring any top-down interven-
tion. It also predicts that choice-repetition should give
way to choice-alternation at short blank times, as was
confirmed by psychophysics (Noest et al. 2007; Klink
et al. 2008). Since then, a series of psychophysics and
modeling studies (mostly reviewed in Pearson and
Brascamp 2008) have greatly extended the range of
percept-choice phenomena covered by simple, neurally
viable extensions of the basic model. For example,
adaptation in stages preceding the stage where percept-
choice (or switching) is generated explains (Noest et al.
2007) how non-ambiguous stimuli induce the clas-
sic (opposite percept) after-effect, whereas ambiguous
stimuli induce choice-repetition (Pearson and Clifford
2004, 2005). Likewise, top-down ‘attention’ (i.e. gain-
control) at early stages then explains biased percept-
choice (Klink et al. 2008). Furthermore, incorporation
of the fact that adaptation is a multi-timescale process
allows the model to explain how percept-choice de-
pends on a weighted sum of many previous percepts,
including those generated by classic ‘rivalry’-oscillation
(Brascamp et al. 2008); these phenomena also con-
tradict an alternative model (Wilson 2007) that incor-
porates an explicit binary perceptual memory stage
into a classic rivalry model. Adding nonlinearity to the
‘priming’ term enables modelling a variety of choice-
sequences with ‘nested’ temporal structure that spans
all timescales from about 0.5 to over 1,000 s (Brascamp
et al. 2008). Finally, adding depth-structure and lateral
interactions yields a relatively simple mechanistic ex-
planation of hitherto perplexing data on how the spa-
tial interaction between pairs of structure-from-motion
elements depends on local disambiguation (Klink et al.
2009; Freeman and Driver 2006).

However, these models do not cover a class of exper-
iments that directly probe which feature-level neural
network connectivity and dynamics allows our visual
system to rapidly resolve everyday visual ambiguities:
These experiments use temporally interleaved presenta-
tions of two (or more) ambiguous stimulus sequences,
where the stimuli of different sequences either have
shifted visual feature values but equal locations (Maier
et al. 2003), or have shifted positions but equal feature
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values (Chen and He 2004; Knapen et al. 2009). For
two sequences, the temporal structure of this class of
experiments consists of repeating a 4-step cycle:

Step Stimulus type Duration
1 Sequence-1 ambiguity T1

2 Blank T0

3 Sequence-2 ambiguity T1

4 Blank T0

Importantly, the ON-duration T1 is longer than the
percept-choice timescale (≈ 0.1–0.2 s) but shorter than
the typical time at which a spontaneous percept-switch
occurs (usually several seconds), and the Off-duration
T0 is much larger than the neural membrane timescale
τ (which is < 0.1 s).

The experiments reported sofar are clearly just
the beginning: Extension to many other feature-
dimensions and spatial configurations promises to pro-
vide important information about how the known
feature-selective receptive field and lateral connectiv-
ity of visual cortex networks combines with neuron-
specific adaptation to produce a form of perceptual
‘priming’ that goes beyond the pure featural and spatial
selectivity of neural tuning curves, and thus enables our
visual system to rapidly resolve visual ambiguities in a
way that respects the natural, continuous structure of
featural as well as spatial dimensions.

Modelling should provide mechanistic insight into
which of the many known neural and network prop-
erties are essential, how they shape the dynamics of
percept-choice in such settings, and which predictions
this implies. We approach these goals through three
stages of modelling: We first show (Section 2) that
the interleaved choice-sequence (ICS) phenomena re-
ported sofar can be captured by expanding our pre-
viously studied (Noest et al. 2007) basic model (2-
population reduction) to a quasi-continuous ‘neural
field’ version with visual-cortex type structure in either
featural or spatial dimensions. This sets the stage for
identifying and analyzing the crucial mechanism and
its dynamics. We do this by means of two stages of
model-reduction: In Section 3, we reduce the neural-
field model with 2-ICS stimulation to a 6-population
model. This allows us to show how the temporally
non-overlapping sequences become coupled via the
adaptation of ‘shared’ subsets of neurons that (i) re-
ceive feature-level input from both sequences, and (ii)
are linked by cross-inhibitory coupling with the ‘main’
neural subsets, each of which is activated by just one
of the sequences. Once we have extracted the essential
dynamical processes (both at the fast activity timescale
and the slow adaptation timescale) in this 6-population

model, we are able to reduce the model even fur-
ther (Section 4): Firstly, the fast (≈ 0.1 s) dynamics
of each choice-event can be reduced to evaluating an
‘instantaneous’ binary choice-indicator function, para-
metrized by the four main adaptation states at each
stimulus onset. Moreover, the slow dynamics of these
adaptation states can then be reduced to a pair of
iterated nonlinear maps, coupled only via the choice-
function. This final reduction enables deeper analyt-
ical and computational analysis, resulting in the pre-
diction of phase-diagrams that delimit the existence
and stability conditions for in-phase and/or anti-phase
repetitive sequence-pair patterns, as well as their re-
sponse to perturbations that cause occasional ‘glitches’
in individual percept-choice events. These predictions
invite a variety of future experiments that should not
only test our model, but also stimulate the use of
analogous experiments and models to probe the role
of other coupled perceptual ambiguity-resolution and
rapid choice processes, such as may occur in saccadic
eye-movements.

2 Models with continuous feature-
and space-selectivity

The common network characteristic of the visual cor-
tex, at each of the relatively early stages that are of in-
terest to our present aims, is that each neuron responds
selectively (with finite ‘tuning-width’) to a specific com-
bination of a spatial location and several feature-values
(e.g., orientation, color, stereo-depth, etc), and that
the whole collection of neurons in each stage covers
the whole visual field and some subset of the many
dimensions of feature-space (e.g., stage MT encodes
motion and stereo-depth, not color). Thus, the standard
notion of a receptive field (RF) in visual field space R

2

actually extends to a multi-dimensional product-space
R

2 × F, where the feature-space F depends on the stage
in question. Anatomically, the cortex is organized in
columns, with each column containing RFs that overlap
in visual space, but cover all of the relevant feature-
space F.

Besides the mostly feedforward connections that
define each neurons receptive field, there are cross-
inhibitory connections. These mostly connect within
each column, thus causing competition between co-
localized measurements of incompatible feature values.
These connections play a major role in much of our
modelling, since the process of percept-choice is predi-
cated on the presence of strong, mutually incompatible
visual features in the same location. In contradistinc-
tion, the (excitatory) lateral connections, which imple-



180 J Comput Neurosci (2012) 32:177–195

ment proper ‘parallel transport’ of local features φ ∈ F

across space, are not probed by the stimuli relevant to
our present aims.

Any stimulus with well-defined visual-geometric
structure thus activates a particular sub-network out of
the full product-space structure R

2 × F, within several
(but not generally all) of the many processing stages.
Hence, the structure of the currently active network
can be chosen (within limits), simply by presenting
an appropriately designed visual pattern. In particular,
the stimuli used in various percept-choice experiments
are designed to be perceptually ambiguous but strong
and featurally well-defined, so as to selectively activate
particular sets of networks with fast, semi-local cross-
inhibition and slow neural adaptation. This allows one
to probe how these structural and dynamical properties
interact within several variants on a common network-
motif whose function is to resolve the many semi-
local ambiguities that occur in everyday vision. Percept-
choice dynamics is an extreme example of this process;
it may be rare in nature but it is particularly suitable
as a probe into the neural mechanisms of ambiguity-
resolution because each choice between two incom-
patible percepts with equally strong stimulus support
makes small internal signals that break this symmetry
highly visible.

2.1 Featurally shifted, spatially coincident sequence
pairs

The first reported ICS-psychophysics experiments (Maier
et al. 2003) indicated that the effective interaction
between two choice-sequences depended on similarity
between the stimuli of the two sequences presented
at the same location. The examples which showed this
effect most clearly used stimuli with ambiguous rota-
tion in depth—parallel-projected images of transparent
but surface-textured objects rotating around an axis
lying in the frontoparallel plane. By varying the an-
gle between the rotation axes used in two temporally
interleaved sequences, it was found that smaller inter-
axes angles yielded stronger inter-sequence correlation
between the percepts (a particular sense of rotation in
depth) chosen within the interleaved sequences.

To elucidate the underlying neural dynamics of such
phenomena, our first model type explicitly represents
the motion-direction subspace of F, but lumps the
spatial ‘fine-structure’ of the within-stimulus relation
between local speed and position along each stimu-
lus surface. This simplification focusses on the crucial
effects and it is reasonable given that the used stimulus-
size does not exceed the typical RF-size in the relevant
neural stage (MT). It also fits the observation that each

Fig. 1 Direction-column model: Shape of the (model-
discretized) crossinhibition kernel �(φ), as well as the input
X(φ) and steady state firing-rate S[H(φ)] when driven by an
unambiguous motion stimulus

percept-choice in such settings affects whole surfaces
(Klink et al. 2009) rather than their fine-structure.

Thus, we collapse the R
2-structure to a point, and the

remaining feature space F to a circle S
1 parametrized

by the preferred motion directions φ ∈ (−π, +π) of
neurons driven by oppositely moving pairs of surfaces,2

and write down the neural field dynamical equations
that generalize our original 2-population model (Noest
et al. 2007) to this continuous S

1 setting; deriving such
coupled order-parameter field dynamics from noisy
neuron-level dynamics and sparse restricted-range con-
nectivity can be done by applying standard techniques
first developed in Noest (1989). This leads us to

τ∂t H(φ, t) = X(φ, t) − {1 + A(φ, t)}H(φ, t)

− �(φ) � S[H(φ, t)] + β A(φ, t)
(1)

∂t A(φ, t) = −A(φ, t) + αS[H(φ, t)], (2)

with neural generator potentials H(φ, t), inputs X(φ, t)
from motion-tuned prestage neurons, adaptation lev-
els A(φ, t), and firing rate function S[h > 0] = h2/(1 +
h2); S[h ≤ 0] = 0. During the ON-time of an ambiguous
rotation-in-depth stimulus with rotation-axis angle φ1,
the input-distribution X(φ, t) is the sum of two ‘humps’
with shapes equal to the neural tuning-curve plotted
in Fig. 1, and centered at the motion-directions φ =
φ1 ± π/2 (see top panels of Fig. 2 for two examples).
Otherwise, X(φ, t) = 0. Cross-inhibition occurs with a
strength depending on the distance between the pre-
ferred motion-directions of cells. This is modelled by
the convolution kernel �(φ), which must be 2π pe-
riodic and φ-symmetric, and have a broad maximum

2This model also covers the use of static gratings (competing
orientations): One merely reinterprets the circular structure as
π-periodic.
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Fig. 2 Direction-column model ICS dynamics (Light/Dark =
High/Low signal values): The distance between the rotation-axis
angles φi of the ambiguous-motion stimuli of the two sequences i
determines whether the percept-choice sequences can coexist in
either phase (shown for 67◦ inter-axis angle distance), or force
each other into an in-phase pair (shown for 45◦ distance). In
each case, the input activity-distribution X(φ, t) across the 2π-
periodic motion-direction space φ consists of pairs of ‘humps’
around φ = φi ± π/2, during the respective ON-intervals of each
sequence-i stimulus. ON/OFF timing: T1 = 0.5, T0 = 0.5. On the
left, we show the neural outputs S[H(φ, t)] which encode the
chosen motion percepts, for both in- and anti-phase pairs. On
the right, where an initial anti-phase pair decays to an in-phase
pair, we show the outputs S[H(φ, t)] (middle) as well as the
corresponding adaptation dynamics A(φ, t) (bottom)

around the opposite direction: �(±π) = γ . Its mini-
mum is taken as �(0) = 0, representing lack of self-
inhibition. We actually use �(φ) = γ

√| sin(φ/2)| (plot-
ted in Fig. 1), but the precise shape is non-critical; rea-
sonable variants merely require recalibration of other
model parameters. In any case, γ must be large enough
to allow only 1-hump S[H(φ, t)]-responses at the end
of each choice-event (and before switching sets in).
Roughly similar neural-field models have been used
to model classical rivalry, e.g. Laing and Chow (2002)
and Kilpatrick and Bressloff (2010), but these lack the
combination of shunting adaptation and β A(φ, t)-term
(or equivalent) that is crucial (Noest et al. 2007) for
generating observed percept-choice repetition.

This model allows us to make the first steps to-
wards understanding the neural dynamics behind ICS-
interaction phenomena in circular feature spaces, as
first explored by Maier et al. (2003). To focus on the
generic aspects, it is helpful to first consider the two
extreme cases.

The case with equal rotation-axes (φ1 = φ2) cor-
responds to a single sequence of percept-choices (at
doubled rate), nearly identical to the subject of our
previous experiments and 2-population model (Noest
et al. 2007; Klink et al. 2008). Based on these results,
and given the used T0 = 1 s, we predict relatively
long runs of percept-choice repetition, with occasional
sequence-flips due to neural noise (and/or the long-
term cycling mechanism identified and modelled by
Brascamp et al. 2009). Noise affects our present models,
e.g. the column-based model (Eqs. (1) and (2)), via the
same generic mechanism (see Appendix for analysis).
Thus, the (formal) pair of interleaved sequences is
maximally correlated, limited only by the fraction of
noise-induced sequence-flips, in agreement with the
Maier et al. (2003) results.3

For orthogonal rotation axes (φ1 = φ2 + π/2, say),
the model-structure becomes mirror-symmetric about
each of the four motion-directions φ1 ± π/2, φ2 ±
π/2. This implies that even the dynamical symmetry-
breaking that constitutes percept-choices in sequence-
1 (say) can not bias the choice-dynamics in sequence-
2 towards either of its competing percepts, and vice
versa: The components of β A(φ, t) that couple distinct
sequences are not only weak (because the generated
S[H(φ, t)]-bumps are narrow, a parameter-contingent
result) but their action is strictly choice-symmetric.
Conversely, the symmetry constrains all choice-biasing
components to act only within each sequence. This
makes each of the two sequences nearly equal to single
sequences studied in our previous experiments and 2-
population model (Noest et al. 2007; Klink et al. 2008),
especially since we showed there that only much larger
choice-symmetric contributions have any effect, i.e.
transition to a choice-alternation sequence (Fig. 2(b)
in Noest et al. 2007). Again, those same mechanisms
apply to our present models (see later sections and
Appendix), so we predict that both sequences show
long runs of percept-repetitions, separated by occa-
sional sequence-flips when neuronal noise overrides
the accumulated β A(φ, t) bias that favours repetitions.
Moreover, the structural and dynamical model sym-
metry for orthogonal axes predicts that the percept-
choices in one sequence are independent of those in the
other. Indeed, the Maier et al. (2003) measure of inter-
sequence coupling is at its minimum for the orthogonal-
axes case, and the remaining 20–30% apparent coupling
may again be attributed to the fraction of sequence-
flips, roughly consistently with the same effects in the
equal-axes case.

3Maier et al. (2003) excluded data from trials without such flips.
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For inter-axes angles 0 < |φ2 − φ1| < π/2, the results
of Maier et al. (2003) interpolate very smoothly be-
tween the two extremes, but their data is averaged
not only over noise-fluctuations but also over several
observers, and later experiments (Carter and Cavanagh
2007) have shown that highly idiosyncratic and local
random biases exist in percept-choice processes such
as these. This makes it premature to try to reproduce
data containing such hidden complexities before the
basics of ICS-dynamics are clearly understood. Hence
we focus on identifying and analyzing the relatively
simple and generic dynamical structure behind basic
ICS-interactions.

The first step is to identify how the existence of
attractors for various ICS-patterns is affected by the
inter-axes angle |φ2 − φ1|. For this, our simple circular
model (Eqs. (1) and (2)) without noise is most suitable.
Topological reasoning rather than simulation then re-
veals the structure we seek, and guarantees that it is
robust to finite structural disorder, e.g. as indicated by
the Carter and Cavanagh (2007) results. The attractor-
structure in the extreme cases must extend at least
a finite distance into the intermediate range of |φ2 −
φ1|, since moving along this continuum corresponds
to a continuous deformation of the dynamical system
(Eqs. (1) and (2)), and attractors are structurally sta-
ble objects. From our symmetry-based analysis for the
extreme cases, we already know that the orthogonal-
axes case has four equivalent ICS-repetition attractors
(each sequence independently repeats one of its pair
of competing percepts), whereas only two of these at-
tractors survive in the equal-axes case because the then
dominant interaction between the two formal inter-
leaved choice-sequences destroys the possibility of an
“anti-phase” pattern of interleaved choice-repetitions.4

The remaining double-rate repetition sequences (two
attractors) are equivalent to “in-phase” pairs of inter-
leaved repetition sequences.

Because the attractors of both extremes extend
smoothly at least a finite distance into the intermediate
range, we extend the meaning of the terms “in-/anti-
phase” to pairs of sequences containing percepts that
are closer/further apart in φ-space (along the short-
est path). Note that two of the four attractors in the

4Note that such an anti-phase pattern would be perceptually
indistinguishable from a double-rate choice-alternation sequence
(Noest et al. 2007; Klink et al. 2008). In this paper we do not
consider the regime of very small T0 where a choice-alternation
attractor (of fundamentally different dynamical origin) can exist,
either in addition to or in place of the choice-repetition attractors
(Noest et al. 2007).

orthogonal case extend to anti-phase attractors (re-
lated by inverting all percept-choices); the remaining
two extend to in-phase attractors (similarly related).
Crucially, the anti-phase attractors must disappear at
some internal point of the |φ2 − φ1| range, since their
sequences cannot transform continuously into the only
two stable sequences at the equal-axes extreme, i.e.
the double-rate repetition sequences that extend to
in-phase sequence-pairs. Conversely, the two in-phase
attractors do persist along the whole range of |φ2 −
φ1|, since their sequence patterns are smoothly trans-
formed into each other by moving between the two
extremes.

In Fig. 2, we illustrate these very general and robust
conclusions by explicit simulation of Eqs. (1) and (2):
Both anti- and in-phase sequence pairs remain stable
at moderately large |φ2 − φ1|, but at smaller |φ2 − φ1|, a
system initialized into anti-phase quickly falls into a sta-
ble in-phase pattern. The actual (φ1, φ2)-values where
anti-phase attractors disappear depend on all model
parameters, including the structural disorder indicated
by random local percept-biases (Carter and Cavanagh
2007). Modelling such idiosyncratic complications in a
systematic way can only begin to be considered after
elucidating the generic structure of ICS-dynamics. This
is what our analysis provides.

Indeed, we note that our topological analysis of
angle-dependent attractor structure extends well be-
yond models that can be deformed to Eqs. (1) and
(2): For binocular rivalry between gratings of different
orientation (or motion-direction), we get a doubled
model structure (one per eye), with the cross-inhibition
now running between eyes.

τ∂t Hi(φ, t) = Xi(φ, t) − [1 + Ai(φ, t)]Hi(φ, t)

− �(φ) � S[H j(φ, t)] + β Ai(φ, t)
(3)

∂t Ai(φ, t) = −Ai(φ, t) + αS[Hi(φ, t)]; i �= j∈{1, 2}. (4)

Topologically the same attractor structure is predicted,
and confirmed by simulation (with recalibrated para-
meters), even when adding moderate intra-ocular cross-
inhibition (bounded by creating counterfactual intra-
ocular orientation-choice).

2.2 Spatially shifted, featurally equal sequence pairs

In several more recent ICS experiments, the two se-
quences are driven by stimuli with the same ambiguous
featural content, but presented at (variably) shifted
locations (Chen and He 2004; Knapen et al. 2009). Such
stimuli select a different functional sub-network out of
the full cortical product-space framework, as follows:
The ambiguity common to both sequences is driven by
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a pair of competing feature-values that are so far apart
in feature-space that we may safely neglect any feature-
space overlap between the activated neurons, and thus
label these populations by discrete indices i �= j ∈ {1, 2}.
On the other hand, the spatial extent of each activated
population can no longer be reduced to a point now,
since the typical scale across which cross-inhibition
operates (2–3 times the stimulus wavelength (Liu and
Schor 1994)) now tends to be less than the stimulus size
and of the same order as the range of spatial overlaps
probed in the most informative of these experiments.
The neural-field dynamics model that should capture
such situations becomes

τ∂t Hi(r) = Xi(r) − [1 + Ai(r)]Hi(r)

− �(r) � S[H j(r)] + β Ai(r)
(5)

∂t Ai(r) = −Ai(r) + αS[Hi(r)]; i �= j ; i, j ∈ {1, 2} . (6)

In this setting, the cross-inhibition received by a
feature-i neuron at a location r comes from feature-
j neurons within the neighborhood of r. Hence, the
kernel �(r) has a symmetric peak at spatial offset r = 0.
Its effective range is crudely known (Liu and Schor
1994; Alais et al. 2006) to be a few times the wavelength
of the stimulus spatial frequency. We simply take this
width-scale as our unit of spatial distance. Likewise,
the pattern of inputs X(r, t) to the choice-stage will be
a slightly blurred version of the stimulus; its effective
blur-kernel will be roughly the convolution of the RF-
kernels of the cells in the pre-processing stages that
feed into the stage we model. Thus, we expect the

Fig. 3 Spatially structured model examples: The inter-sequence
interaction, which tends to enforce in-phase patterns, now de-
pends on the existence of a gap or overlap between the stimuli
belonging to each sequence. This again manifests itself as (top
left) immediate decay to in-phase pattern for overlapping stimuli,
or (bottom left) stability of any mutual phase when the gap is
larger than the typical RF-size excited by the stimuli, or (right
top and bottom) a slow transition to in-phase pattern for abutting
stimuli. In this case, we show both the neural outputs S[H(r, t)]
and their adaptation dynamics A(r, t). In all panels, blue and red
denote the competing percepts

spatial blur-scale of X(r, t) to be roughly similar to the
�(r) blur-scale.

As shown in Fig. 3, this model generates the type
of behavior reported in recent experiments (Chen and
He 2004; Knapen et al. 2009): For strongly overlap-
ping stimuli, choice-repetition sequences only exist as
an in-phase pair. Conversely, the two sequences may
also exist as a long-lived anti-phase pair when there
is a sufficiently large spatial gap between the stimuli.
The measured spatial shift between stimulus centers at
which the phase-locking effect reaches half-maximum
(Knapen et al. 2009) is of the order of one degree,
which is also roughly equal to the stimulus-diameter.
This fits at least qualitatively with the model, where
the typical spatial scale is set by the diameter of the
RF and that of the �(r) kernel; these are of the same
order of magnitude for the stimuli used in the existing
experiments.

3 Reduction to six-population ODE model reveals
the crucial mechanism of choice-sequence interaction

The fact that our neural-field models capture the gen-
eral patterns of known 2-ICS behavior does not suffice
to provide a thorough understanding of the crucial
dynamical processes involved, but it does provide a
useful first step: In these models, the huge complexity
of visual-cortex connectivity and neural dynamics is al-
ready reduced to a concise set of simplified ingredients,
which are thus shown to be at least sufficient. More-
over, the simulation results strongly suggest that the
phenomenological interaction between the interleaved
choice-sequences depends on the degree of overlap
(in either featural or spatial dimensions) between the
neural populations activated by the respective stimuli
of each of the two sequences. To quantify and under-
stand how such overlap may provide the core dynamical
mechanism we seek, we need to reduce our (quasi-
continuous) neural field models to the smallest set of
ordinary differential equations (ODEs) that captures
the structure and dynamics of the various neural subsets
(overlapping or non-overlapping populations) that are
activated by 2-ICS stimuli. The following considera-
tions come into play:

The blank time T0 between the stimuli of the inter-
leaved sequences is much longer than the timescale τ of
the fast (H) neural activity dynamics, so there can be no
direct H-based dynamical coupling between sequences,
even when there is strong overlap between the neural
populations driven by each sequence. Only the slow de-
cay of adaptation levels A can bridge the T0-gap. Note
that this is entirely in line with how the A-dynamics
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bridges the intra-sequence stimulus interruptions (here
of length 2T0 + T1) as one crucial factor in the mecha-
nism that allows long runs of percept-choice repetitions
within each sequence, according to our widely sup-
ported (Pearson and Brascamp 2008) single-sequence
model (Noest et al. 2007). However adaptation is a very
local process, probably acting within each neuron sepa-
rately, so it can only carry any influence between choice-
sequences in as far as it occurs in ‘shared’ neurons, i.e.,
neurons whose activity S[H] covaries strongly with the
percept-choice dynamics of both sequences. As in the
known (Noest et al. 2007) percept-choice process within
a single sequence, the term β A in those ‘shared’ neu-
rons will bias them towards repeating the most recent
percept, i.e. the one which last occurred in the ‘oppo-
site’ sequence. However, note that one more element
is required to guarantee that a single, spatially or feat-
urally homogenous percept emerges at each onset: The
‘shared’ neuron population activity during stimulus-ON
time must evolve largely in unison with that of the ‘non-
shared’ populations activated during that time. Such H-
based coupling is actually implemented by the cross-
inhibition between competing features that underlies
the very existence of a percept-choice process: This
cross-inhibition is known to act across a finite range
in real space and in feature-space (Alais et al. 2006)
that is at least of the right order of magnitude to fit the
observed inter-sequence interaction effects.

Incorporating these mechanistic demands and con-
siderations into the simplest neurally viable model,

Fig. 4 Reduction to a 6-population ODE-model: The fast/slow
dynamical variables of the four main (‘non-shared’) neural pop-
ulations are denoted with capital-letter symbols (Hi,k, Ai,k) as
before, whereas those of the (smaller) ‘shared-neuron’ popula-
tions are indicated by lower-case letters (hi, ai). Note that the
shared populations satisfy two crucial demands (see text for
explanation): They receive inputs (weighted by ξ < 1) from the
stimuli of both sequences k, and their fast-dynamics is sufficiently
coupled (via shared cross-inhibition: red links) to that of the main
populations of both k

we arrive at the following 6-population ODE-model,5

whose general structure is sketched in Fig. 4.

τ∂t Hi,k = Xi,k − (1 + Ai,k)Hi,k + β Ai,k

− γ
(
S[H j,k] + S[h j]

) (7)

τ∂thi = ξ(Xi,1 + Xi,2) − (1 + ai)hi + βai

− γ S[h j] − (γ /2)
(
S[H j,1] + S[H j,2]

) (8)

∂t Ai,k = −Ai,k + αS[Hi,k] (9)

∂tai = −ai + αS[hi]; i �= j ; i, j, k ∈ {1, 2} . (10)

Note that the fast/slow dynamical variables of the
four main (non-shared) neural populations are de-
noted with capital-letter symbols (Hi,k, Ai,k) as before,
whereas those of the (smaller) ‘shared-neuron’ popu-
lations are indicated by lower-case letters (hi, ai). As
explained above, the shared populations receive inputs
(weighted by ξ < 1 representing RF-tail strength) from
the stimuli of both sequences k, and their fast-dynamics
is sufficiently coupled via shared cross-inhibition (of
overall strength γ ) to that of the main populations of
both k. Adaptation dynamics remains local, at least
relative to the spreading of inputs (RF-size) and cross-
inhibition kernels.

This model allows us to precisely dissect and under-
stand how the course of each percept-choice process
(fast dynamics) is jointly controlled by the adapta-
tion states at onset of the sequence-specific main pop-
ulations as well as the shared populations. Indeed,
Fig. 5 shows in detail the sequence of crucial dynamical
effects during each choice event, which we can summa-
rize as follows:

Without loss of generality, we consider a choice
process within sequence-1, and assume that the pre-
ceding percept chosen in this sequence was percept-
1, leading to a moderate imbalance A1,1 > A2,1 of the
main-population adaptation at the current onset. As
explained previously (Noest et al. 2007), this sets H∗

1,1 >

H∗
2,1 at onset, giving percept-1 a ‘head-start’ (see foot-

5The use of just two ‘shared’ populations (with hi, ai-dynamics)
directly fits the discretized topology of neural populations driven
by all ‘spatially shifted’ type of 2-ICS-stimuli used sofar. How-
ever, one might also use circular (or more complicated) geome-
tries. Moreover, in many ‘featurally shifted’ cases, the feature-
space has a circular global structure. Formally, discretization
then leads to an additional pair of shared populations, between
the main populations with indices i, k and j, �. However, the
net effect of interest, inter-sequence coupling, only depends on
the asymmetry between the effects of the two pairs of shared
populations, as occurs when the spatial or featural distances
between the main populations differ. Thus, the smallest relevant
reduction still needs only six populations, with the weights ξ

related monotonically to the asymmetric net effect of all actually
existing shared populations.
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Fig. 5 Detailed views of the fast dynamics of a percept-choice
(in sequence k = 1), showing how bias derived from the main-
population adaptation state Ai,1 can be overridden by the initial
response of the shared-populations, which is biased by the ai
state. Main panel (left) Trajectories of the crucial ‘membrane
potential’ pairs Hi,1 (red) and 5hi (green) during the crucial first
few τ -units after onset (filled/open-dots mark time in units of τ re-
spectively τ/3). To show how the shared-population delivers the
effective coupling between sequences, we overlay the trajectories
of two cases: In both, we assume a preceding percept-1 choice
in sequence-1, leading to a main-population A1,1 > A2,1-state;
as explained previously (Noest et al. 2007), the small facilitatory
terms β Ai,k terms then give percept-1 a subthreshold ‘head-start’
H∗

1,1 > H∗
2,1 at the present onset (foot-point of red trajectories).

The shared-population ai-states, and hence the h∗
i head-starts

(foot-point of green trajectories), contain a similarly biased con-
tribution, but they also contain a ‘crosstalk’ contribution from the
sequence-2 choice-history. To generate the ‘without crosstalk’
baseline trajectories, we blocked these sequence-2 contributions
to ai, as if sequence-2 did not exist. The remaining imbalance a1 >

a2 then biases the h∗
1 > h∗

2 head-start (green foot-point) in the
same way as the main-population bias. As expected, the choice-
dynamics then converges on percept-1 (trajectories curving to
lower right-hand side). In the ‘with crosstalk’ case, we assume
that sequence-2 has repeatedly chosen percept-2, such that it
leads to an imbalance a1 < a2. Now we have a conflicting set of

head-start biases H∗
1,1 > H∗

2,1 and h∗
1 < h2∗ (see starting points of

green and red trajectories). We chose (realistic) conditions such
that the bias from ai actually overrides the bias from Ai,1. Note
that during the first phase (up to t ≈ 1.5τ ), the hi (green) activa-
tions indeed grow while maintaining their bias towards percept-2.
Via shared cross-inhibition, this gradually curves the (red) Hi,1-
trajectories away from their initial percept-1 biased course and
towards the percept-2 side of the diagonal, before they reach the
vicinity of the saddle point where the red trajectories diverge
sharply, signalling that the system is essentially ‘committed’ to
a particular percept-choice. While near the saddle, the main Hi,1
suppress the smaller hi-signals by competition. For the final phase
of the process, see the two side-panels. Side panels (right) Time-
course of the same choice-process, now in terms of the neural
firing rates S[Hi,1], S[hi]; these do not encode the important
subthreshold ‘head-start’ biases mentioned above, but they drive
the cross-inhibition which couples the shared and main popula-
tion fast dynamics so as to a generate a unified, jointly biased
percept-choice. Lower/Upper panels show the choice-process
with/without the ai-‘crosstalk’ which overrides the Ai,1-derived
bias. Note the initial < 2τ phase where the shared-population
signals couple their bias with that of the main population, and the
‘hesitation’-stage until t ≈ 4τ , during which all shared population
signals are suppressed. Afterwards, all four populations jointly
accelerate towards the attractor that encodes the chosen percept,
and essentially converge on it at t ≈ 7τ

point of red trajectories). The shared-population ai-
state contains a similarly biased contribution, but its net
state also contains contributions from the sequence-2
choice-history, and we assume this to be a long series
of percept-2 choices. In our ‘without crosstalk’ case, we
removed these sequence-2 contributions—as expected,
the overall choice process then converges on percept-1.
However, in the ‘with crosstalk’ case, the long history
of percept-2 choices leads to an imbalance a1 < a2,
yielding a head-start bias h∗

1 < h∗
2 that conflicts with the

H∗
1,1 > H∗

2,1 bias (see starting points of green and red
trajectories). With conditions such that the ai-derived
bias overrides the bias from Ai,1, the hi (green) acti-
vations initially grow while maintaining their bias to-

wards percept-2. Via shared cross-inhibition, this grad-
ually curves the (red) Hi,1-trajectories away from their
percept-1 biased course towards the percept-2 side of
the diagonal, before they reach the vicinity of the saddle
point where both red lines diverge sharply, and thus
make the percept-choice irreversible. While near the
saddle, the main Hi,1 suppress the smaller hi-signals
by competition, but soon after (t ≈ 5τ , see right-hand
panels of Fig. 5), all four populations jointly accelerate
towards the attractor that encodes the chosen percept
(well outside the area plotted in the left panel), and
essentially converge on it at t ≈ 7τ .

Having analyzed the detailed fast-timescale dynam-
ics of the percept-choice process, we can summarize
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Fig. 6 Dependence of a sequence-1 percept-choice on the
main-population state Ai,1 (axes), as biased by the shared-
population adaptation state ai (curve parameters). Left panel
shows overview; Right panel shows detail in the usually relevant
range (long T0 yield low Ai,k). All cases have input-sharing ξ =
0.25, implying a baseline condition with ai ≈ 0.3Ai,k. To show
the effect of crosstalk from a percept-2 choice in sequence-2,
we add offsets δa2 to a2, as indicated. Region-coding: percept-
1/2 is chosen in the yellow/blue regimes; in between these, the
actual choice-boundary position depends on δa2, as indicated.
For inverted ai-imbalance, the choice-map pattern is obtained
by interchanging the plot-axes. Note the roughly linear effect
of the (realistically small) ai-imbalance on displacing the choice-
boundaries in the low-Ai,1 regime

its net behavior in terms of a mapping from the four-
dimensional space of adaptation-states Ai,k, ai at each
sequence-k stimulus onset to the label i of the the
chosen percept—we can neglect the extremely small
range where the Ai,k, ai are so close to i-symmetry
that the fast dynamics lingers near the saddle point
for a large fraction of the stimulus-ON time T1 	 τ .
The full map is obviously symmetric under i, j and k, �

interchange, and we know from earlier studies (Noest
et al. 2007) that it favors percept-i when Ai,k > A j,k

unless both adaptation levels become large. (Actually
reaching this large-A regime requires such short within-
sequence blank intervals 2T0 + T1 that it is probably
unreachable in our setting). The relevant structure of
this ‘choice-map’ can be viewed in Fig. 6. It shows
the Ai,1-dependence at a few realistic values of ai

imbalance, to illustrate the effect of ‘crosstalk’ from
sequence-2 choices on the active sequence-1 choice
process. One may note the nearly linear effect of (re-
alistically) small crosstalk bias on displacing the choice-
boundaries. The general i, k-symmetry and smoothness
properties seen here are retained in defining the choice-
indicator function Ci,k (Eq. (13)) for our next level of
model-reduction.

4 Reduction to iterated Ai,k-map:
analysis and predictions

To enable detailed dynamical analysis that yields pre-
dictions of generic 2-ICS behavior well beyond existing

experiments, it is very useful to perform another model-
reduction step. Indeed, the results we obtained from the
6-population model allow us to condense all the crucial
elements of 2-ICS dynamical behavior under a wide
range of conditions into a much more tractable form:
A discrete-time map that relates the adaptation-states
Ai,k at one stimulus-onset to the next, and thereby also
determines the sequence of percept-choices.

The main reason why such a reduction can cap-
ture all the essentials of 2-ICS dynamics is that we
have a sufficiently large separation of the relevant
timescales: As shown in Fig. 5, each percept-choice
effectively finishes within a few times the fast timescale
τ after onset of the corresponding stimulus. This is
not only fast with respect to the adaptation timescale
but also with respect to the stimulus-ON duration T1,
for all presently relevant experiments. This allows us,
firstly, to collapse the actual dynamics of an individual
choice-event into a formally ‘instantaneous’ evaluation
of a binary-valued function Ci,k(m) ∈ {0, 1} that indi-
cates whether percept i in sequence k is chosen(1) or
not(0) at a particular onset indexed by m = 2n + k,
where n ∈ N counts the full (2-ICS) stimulus cycles.
Secondly, it allows us to describe the adaptation dy-
namics between one onset and the next as the sum of
a passive exponential decay and an ‘adaptation-boost’
term Ci,k(m)Q[Ai,k(m)] which describes the amount
of adaptation added to the chosen-percept population
during the m-th stimulus-ON time. Explicit forms of
the functions Ci,k and Q[A] are constructed below
(Sections 4.1.1 and 4.1.2).

4.1 Iterated Ai,k-map for 2-ICS dynamics: general form

With T0, T1 denoting the stimulus OFF and ON du-
rations, and n ∈ N counting the full stimulus periods
(length 2(T0 + T1)), the stimulus onsets in each se-
quence k ∈ {1, 2} are counted by m = 2n + k, and the
sequence dynamics is reduced to the iterated set of
maps

Ai,k(m) = e−T0−T1 Ai,k(m − 1); m = 2n + k , � �= k
(11)

Ai,�(m) = e−T0−T1 Ai,�(m − 1)

+ Ci,�(m − 1)e−T0 Q[Ai,�(m − 1)] (12)

where Ci,k ∈ {0, 1} and Q[Ai,�] are the choice-function
and adaptation-boost function introduced above, and
specified below.

Note that Eq. (11) applies when the sequence-
index k and onset-counter m have the same odd/even
parity—only passive decay of adaptation happens in
this time-interval. Equation (12) applies to the cases
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with unequal-parity (� and m), and its last term reflects
the fact that a choice-event occurred within its own
sequence one onset earlier. Indeed, the Ci,k(m)-term
occurs only with equal parity of its sequence-index k
and onset-counter m. Note also that the coupling be-
tween sequences now occurs via the choice-functions.

4.1.1 Choice indicator function Ci,k, and elimination
of shared-population signals

Our 6-population model (Section 3) revealed how the
outcome of the rapid percept-choice process after stim-
ulus onset (Fig. 5) is effectively determined by the
adaptation states (at onset) in all neurons driven by the
corresponding stimulus (Fig. 6). Thus, in this model, a
percept-choice in a particular sequence k is determined
by the four adaptation levels Ai,k and ai at stimulus
onset. The main-population states Ai,k deliver the main
bias toward one of the percepts, whereas the shared-
population states ai convey a small extra bias that
couples the two sequences. At first sight, it seems we
must track all six adaptation values to model the full
2-sequence dynamics. However, we also saw (Fig. 5,
right-hand panels) that the shared-population signals
hi, and hence also their ai, directly follow the main-
population dynamics after the percept-choice (we can
neglect the short (≈ τ ) post-onset phase in which the
shared population actively biases the incipient choice).
Also note that the percept-choices in both sequences
will thus contribute to the shared-population ai. Hence,
we can simplify the system again by deleting the ai as
independent degrees of freedom, and use the (appro-
priately weighted) adaptation states Ai,k of the main
populations as the formal source of coupling-bias in
the choice-function Ci,� for the other sequence, � �= k.
With these considerations about the coupling terms,
we choose the simplest mathematical form of choice-
function that satisfies the general i, j and k, � symme-
tries, and captures the basic fact that the usual (uncou-
pled) choice of percept i for Ai > A j inverts at large
adaptation-levels. We define Ci,k ∈ {0, 1} to indicate
that percept i in sequence k is chosen (1) or not (0), and
formalize its dependence on the four main-population
adaptation states at onset as

Ci,k = �
[(

Ai,k − A j,k
)

× {
B − Ai,k − A j,k + η2(Ai,l + A j,l)

}
(13)

+ η1
(

Ai,l − A j,l
)]

,

where �[z ≤ 0] = 0; �[z > 0] = 1.
Note that the main effective coupling parameter

η1 delivers a sequence-� driven bias to sequence-k
choices. These are mainly determined by the sequence-

k adaptation imbalance, whose effect inverts at a mean
adaptation level set primarily by B, with a sequence-
� dependent shift weighted by the secondary coupling
parameter η2. Both η1, η2 are increasing (roughly lin-
ear) functions of the effective size and competitive
strength of the ‘shared’ population, as captured in the
6-population model by the shared-input parameter ξ .
In this model, the effective values of η1 and η2 then are
of roughly equal magnitude, but this need not be so in
reality.

4.1.2 Adaptation-boost function Q[A]

As soon as the fast-dynamics variables Hi,k have essen-
tially converged to a new percept-choice after stimulus
onset (and until the end of the ON-interval T1), we can
approximate them by their formal fixed-point values

H∗
i,k = Xi,k + β Ai,k

1 + Ai,k
, (14)

thus reducing the full dynamical system to a (decou-
pled) set of nonlinear ODEs for the Ai,k

∂t Ai,k = −Ai,k + αS[H∗
i,k]. (15)

During the stimulus-OFF intervals T0, the same ap-
proximation holds, with Xi,k = 0.

Integrating the Ai,k-ODEs (Eq. (15)) from one stim-
ulus onset to the next then yields the maps (Eqs. (11)
and (12)), as follows: The trivial cases, yielding mere
exponential decay, are for combinations of i, k and
m such that Ci,k(m) = 0, i.e., for populations that do
not represent the percept chosen at onset m. For the
(only) remaining population, which encodes the cho-
sen percept, we have S[H∗

i,k] > 0 over essentially the
full stimulus-ON time T1 (up to an O[τ ]-error from
the choice-process). This contributes an Ai,k-‘boost’
term denoted as Q[Ai,k], on top of the basic exponen-
tial decay term. Thus, the chosen-percept adaptation
map is

Ai,k(m + 1) = e−T0−T1 Ai,k(m) + eT0 Q[Ai,k(m)] (16)

Q[Ai,k(m)] = α

∫ m(T0+T1)+T1

m(T0+T1)

S[H∗
i,k(t)]et−m(T0+T1)−T1 dt ,

(17)

where the (slow) time-evolution of H∗
i,k is fully deter-

mined via the Ai,k-ODE (Eq. (15)) with initial condi-
tion Ai,k(m) at onset m, in combination with the fixed-
point relation (Eq. (14)). Note that the function Q[A]
therefore also depends on all other parameters in the
original problem. For the purposes of this paper, as
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Fig. 7 Typical dependence of the adaptation-‘boost’ Q on the
adaptation-value A at onset, and the stimulus-ON time T1. The
smooth decrease with A and sublinear growth with T1 are qual-
itatively common to all model-variants introduced in this paper,
while depending smoothly on all model parameters

well as most experiments, the dependence on T1 is
most important, besides the explicit A-dependence. All
other parameters do not qualitatively alter the A- and
T1-dependence shown in Fig. 7: Q decreases smoothly
with A, and increases sublinearly with T1, approaching
gradual saturation on a timescale of order 1. These
properties robustly determine the whole range of 2-ICS
behaviors discussed in this paper.

4.2 Existence and stability of choice-repetition
sequences

Repetitive choice of a percept i by sequence k
corresponds to choice-function values Ci,k(2n + k) =
1, C j,k(2n + k) = 0 for all n. Assume that both se-
quences settle into such a repetition pattern, with ar-
bitrary mutual relation. To check the existence and
stability of such a solution, we can restrict analysis to
the behavior of the Ai,k(m) at times m = 2n + k when a
percept-choice actually occurs in sequence k. Note also
that the dynamical rules that govern both sequences
will have the same general form.

To describe the underlying adaptation dynamics
of such double-repeat sequences, it proves useful to
apply the general iterated map dynamics (Eqs. (11)
and (12)) twice (with appropriate label-permutations),
corresponding to the full 2-sequence stimulus period
2(T0 + T1). Indeed, this yields the simple 2-timestep
dynamics

Ai,k(m) = e−2(T0+T1) Ai,k(m − 2)

+ e−2T0−T1 Q[Ai,k(m − 2)]
(18)

A j,k(m) = e−2(T0+T1) A j,k(m − 2) . (19)

Note that the dynamics of each sequence has now be-
come formally uncoupled from that of the other, so we
do not (yet) have to separate the two (perceptually very
different) cases of ‘in-phase’ sequences (same percepts
i) or ‘anti-phase’ sequences (different i). This dynam-
ical independence is due to the fact that the original
interaction occurs through the choice-maps Ci,k, which
are not only piecewise constant but now actually fixed,
representing the assumption that the system produces
repeating-choice sequences. Hence, we merely have to
check whether this assumption is self-consistent, and
whether the corresponding A-dynamics is stable.

4.2.1 Existence

First, we need to find the fixed points of

A∗
i,k(m) = e−2T0−T1

1 − e−2(T0+T1)
Q[A∗

i,k(m)] ≡ A ∗ (20)

A∗
j,k(m) = 0 . (21)

The only nontrivial value A ∗ can be computed numer-
ically by iterating the map, or by efficient root-finding
routines.

Existence of the ‘repeat’-solutions then requires
consistency with Ci,k = 1, C j,k = 0. Note that the C-
functions depend formally on all four Ai,k, but now two
of these are zero and the other two are equal to A ∗,
and A ∗eT0+T1 respectively. To check consistency, we
do have to distinguish between “in-phase” and “anti–
phase” pairs of sequences:

Existence of the in-phase solution requires

B + A ∗{−1 + η2eT0+T1} + η1eT0+T1 > 0 (22)

This condition is satisfied throughout, because η1, η2 >

0 and A ∗ < B since both sequences are producing
percept-repetitions.

Existence of the anti-phase solution requires

B + A ∗{−1 + η2eT0+T1} > η1eT0+T1 (23)

This bound can indeed be violated; it defines a bound-
ary in the space of all model-parameters beyond which
anti-phase repetition patterns cannot exist. An example
is shown as the black-dashed line in Fig. 8: Stable
anti-phase repetition only exists below this line in the
selected (T1, η1, η2)-subspace of model parameters.

We note that the large-T1 behavior of this critical
line is an exponential decay of η1 with T1, reflecting
the adaptation timeconstant (which we took as our
unit of time): For T1 	 1, we can approximate A∗ ≈
e−2T0−T1 Q[0] � B, so the anti-phase existence condi-
tion simplifies to

η1 < e−T0−T1
(
B + η2 Q[0]e−T0

)
. (24)
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Fig. 8 Existence of stable choice-repetition patterns and their
response to a choice-glitch, as dependent on the blank-time T0
and crosstalk parameters η: In-phase sequence pairs are linearly
stable throughout this diagram, but anti-phase pairs exist (and
are linearly stable) only below the black dashed line (regimes
III,IV). Effect of a choice-glitch in one of a pair of in-phase
sequences: (Regime I) Both sequences flip to opposite-percept.
(Regimes II,III) Eventual return to previous in-phase sequences.
(Regime IV) Only glitched sequence flips, yielding an anti-phase
pair. When starting from anti-phase choice-sequences: (i.e., in
III,IV): Glitched sequence flips, thus producing an in-phase pair.
Two smaller panels (right) show that (lower panel) reducing
the stimulus-on time T1 roughly shifts the regime boundaries to
higher T0, whereas (upper panel) increasing the secondary cou-
pling parameter η2 mostly just removes the low-T0 downturn in
the (black-dashed) boundary for existence of anti-phase sequence
pairs. See text for explanation of the underlying dynamics and
mechanisms

In fact, since η2 is of the same order as η1, the asymp-
totic bound simplifies further, to η1 < e−T0−T1 B. This
may provide experimental access to a simple relation
between some of the effective model parameters.

4.2.2 Stability

Since the dynamics (Eqs. (11) and (12)) is independent
of the mutual phase of the two interleaved choice-
sequences, we assume without loss of generality that
both consist of percept-1 choices. Thus, we may drop
the k index. For example, the fixed points are A∗

1,k =
A∗

1 > 0 and A∗
2,k = A∗

2 = 0. To study the dynamical
stability, we study the dynamics of small perturba-
tions di, i.e., we write Ai(t) = A∗

i + di, and expand the
adaptation-boost function as Q[Ai] = Q[A∗

i ] + qidi +
O(d2

i ), introducing the ‘slope’ qi.
Substitution into the dynamics (Eqs. (11) and (12))

yields

d1(m) = e−2T0−T1(q1 + e−T1)d1(m − 2) (25)

d2(m) = e−2(T0+T1)d2(m − 2) (26)

Writing each of these as di(m) = λidi(m − 2), the sta-
bility conditions are |λi| < 1. As expected, the d2-
dynamics is unconditionally stable, since both T0, T1 >

0. For d1, we note that Q is a decreasing function of
A, so q1 < 0, and we have at least λ1 < 1. Satisfaction
of the lower bound λ1 > −1 is less self-evident, but
numerical exploration shows that q1 > −0.2 for para-
meters that produce hitherto observed behavior, and
that the q1 < −1 regime remains far below the q1-range
for any viable parameter set.

4.3 Effects of noise or perturbations:
“Glitch”-responses

Neural noise, or a visual bias pulse designed to probe
the system in a more controlled manner, only starts to
affect a stable percept-choice sequence when it causes
a “glitch” (a percept that breaks the predicted pattern).
The binary nature of each choice-event effectively
‘collapses’ all types of perturbations of the underly-
ing neural dynamics (affecting either the H or A-
variables or both) onto a unified and easily mea-
surable response—see the Appendix for mechanistic
analysis of these stochastic processes. This property of
choice-dynamics provides a very welcome opportunity:
We can already classify and analyze at the level of
choice-sequences the generic types of dynamical con-
sequences common to all such perturbations, without
being blocked by the vastly more complicated task of
computing how the probabilities of glitches and their
consequences depend on the stimulus, network and
noise parameters. Moreover, the problem is as yet ex-
perimentally vastly underconstrained, both in sequence
statistics and in all essential parameters. Indeed, our
present analysis of response-types and regimes is a pre-
requisite for future attempts to compute these statistics.
Most importantly for the short term, our analysis yields
a range of new predictions that provide direct exper-
imental access to the crucial mechanisms of coupling
between and within interleaved choice-sequences, e.g.
by using specifically designed stimulus-bias pulses to
induce a glitch.

With only neural noise, ICS-systems studied sofar
appear to produce choice-repetition runs of at least sev-
eral cycles, so we can capture the important behavior
by analyzing the dynamical consequences of isolated
glitches.

4.3.1 Starting from in-phase choice-sequences

Assume that both sequences were repeating percept-1,
say, but that a ‘glitch’ (percept-2 choice) occurs at onset
m = 0. Thus, we set C1,2(0) = 0, C2,2(0) = 1, despite
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the fact that the adaptation state A1,2(0) = A∗ > 0,
A2,2(0) = A2,1(0) = 0 and A1,1(0) = e(T0+T1) A∗, would
normally have yielded a percept-1 choice. We trace all
possible consequences of this.

At onset m = 1 The k = 1 adaptation values are not
yet affected by the glitch, but the k = 2 values are.
Thus, we have

A1,1(1) = A∗, A2,1(1) = 0 ,

A1,2(1) = e−T0−T1 A∗, A2,2(1) = e−T0 Q[0] .

Without the glitch, evaluating Ci,1(1) would have
yielded a percept-1 choice, but the ‘crosstalk’ from
the changed k = 2 adaptation state may cause the k =
1 choice sequence to flip at this point. Whether this
happens or not clearly depends directly on the time-
parameters T0, T1, but also on all underlying model
parameters via the effective crosstalk parameters η1, η2

and function Q(A). The blue line in Fig. 8 delineates
the regime (I) in T0, η1 space (for realistic other pa-
rameters) where the glitch at m = 0 indeed causes a
flipped choice in the other sequence at m = 1. Note that
the blue line lies within the exclusive in-phase regime
(I+II).

At onsets m ≥ 2 The k = 2 adaptation states are still
affected by the glitch, independently of whether the k =
1 sequence flipped at m = 1 or not. Thus we have

A1,2(2) = e−2(T0+T1) A∗ , A2,2(2) = e−T1−2T0 Q[0] . (27)

This shift in adaptation balance from percept 1 to-
wards percept 2 reduces the previously existing bias
towards choosing percept 1, given that the system was
in its repetition-stabilized regime. However, the ac-
tual choice, as defined by Ci,2(2), also depends on the
‘crosstalk’ effect captured by the Ai,1(2)-balance.

Now we need to distinguish several nested types of
history, based firstly on the percept-choice outcomes at
m = 1, and within these, on the choice occurring at m =
2. Further case-distinctions based on the m > 2 choices
will prove unnecessary.

Case 1 If a choice-flip did occur at m = 1, i.e., if the
(k = 1)-sequence chose percept-2, the Ai,1 states are
affected (for the first time), and we find

A1,1(2) = e−T0−T1 A∗ , A2,1(2) = e−T0 Q[0] . (28)

Note that the ratio between these ‘crosstalk’ terms is
the same as the ratio between the two main adaptation
terms Ai,2 because they both arise form the same stim-
ulus sequence, which however arrives with a smaller
input-weight ξ onto the shared population. Evalua-

tion of Ci,k(2) yields percept-2 choices throughout this
regime.

For all subsequent onsets, the same logic applies,
with even stronger imbalances towards percept-2: Each
choice at m > 2 is at least as biased towards percept-2
as the already computed choices at m − 2 > 0. Hence,
the perceptual result in regime-I is that a single choice-
glitch flips both choice-sequences. This is as expected
from the fact that regime-I lies inside the regime where
only in-phase choice-sequences exist (above the black-
dashed line).

Case 2 If no choice-flip occurred at m = 1, i.e., if
sequence-1 chose percept-1 as usual, the Ai,1 states are
not affected, so we have

A1,1(2) = e(T0+T1) A∗ , A2,1(2) = 0 . (29)

Now we have a conflict between this ‘crosstalk’ imbal-
ance towards percept-1 and the main (k = 2) adapta-
tion imbalance towards percept-2. Evaluating Ci,k(2)

yields the green line in Fig. 8, separating the conditions
for choosing percept-i at m = 2, as follows.

Above the green line, percept-1 is chosen. The net
effect is that the glitch at m = 0 is effectively ignored;
this ‘resilience’ is essentially due to the coupling with
sequence-1, which in this regime did not flip at m =
1 (and a fortiori simply continues repeating percept-
1). As before, subsequent choice events further sta-
bilize the now restored initial situation: Both choice-
sequences continue repeating percept-1. Note that the
region (between the green and blue lines in Fig. 8)
where this occurs includes regime-III where anti-phase
repetition also exists as a stable solution. Evidently, a
single glitch is insufficient to reach the basin of attrac-
tion of this solution. For this to occur, one needs to go
to the only remaining regime, analyzed below.

Below the green line, percept-2 is chosen. Again,
subsequent choices simply stabilize the new situation:
Sequence-1 repeats percept-1, and sequence-2 contin-
ues to repeat percept-2. Thus, the single glitch now initi-
ates an anti-phase choice repetition pattern, by flipping
the sequence in which it occurs, but not the other.

4.3.2 Starting from anti-phase choice-sequences

Without loss of generality, we may assume that
sequence-k was repeating percept-i with i = k, and
that the glitch still occurs at m = 0. Thus, we set
C1,2(0) = 1, C2,2(0) = 0, despite the adaptation states
A1,2(0) = A2,1(0) = 0, A2,2(0) = A∗ > 0, A2,1(0) =
e(T0+T1) A∗, which specify a percept-2 choice.
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At onset m = 1, the sequence-1 adaptation states
are unaffected (favoring percept-1), but the sequence-2
values have become

A1,2(1) = e−T0 Q[0] , A2,2(1) = e−T0−T1 A∗ . (30)

Clearly, crosstalk from these terms favors percept-2 less
than before the glitch, so sequence-1 is now biased even
more than normal towards choosing percept-1.

At onset m = 2, we therefore only need to examine
the consequences of the glitch in sequence-2, while
sequence-1 continues in percept-1. The k = 1 adapta-
tion states are still unaffected at this point, but the k = 2
states are given by

A1,2(2) = e−T1−2T0 Q[0] , A2,2(2) = e−2(T0+T1) A∗ (31)

As expected given this shift in balance towards percept-
1, numerical evaluation of Ci,2(2) shows that percept-1
is chosen for all realistic parameters. Thus, sequence-
2 now has two consecutive percept-1 choices, and sub-
sequent evolution only stabilizes this repetition more
deeply (compare our earlier linear stability results).
Hence the overall perceptual outcome is that a single
choice-glitch in a linearly stable anti-phase sequence
pair will change it into an in-phase pair.

4.4 Verification of A-map prediction robustness

The various types of glitch-responses we have discov-
ered by exploiting the analytical simplicity of the it-
erated A-maps offer attractive opportunities for new
experimental tests that probe the underlying neural

Fig. 9 Glitch response types in 6-population model fit all types
predicted by reduction to iterated A-map. Hi,k and Ai,k in
red/blue for k = 1/2, and hi and ai in green, with i = 2-signals
shown as negative. In both columns, both sequences were in
percept-1 repetition sequence until the glitch forces sequence-1
to percept-2 at t = 0. Left column Sequence-2 also flips, starting
an in-phase percept-2 sequence pair. Right column Sequence-2
does not flip, and then restores sequence-1 to its previous phase

Fig. 10 Glitch response types in same model and with same
plot-coloration as Fig. 9, under different conditions. Left column
Starting from an anti-phase pattern, only sequence-1 flips, thus
creating an in-phase pattern. Right column Starting from an in-
phase pattern, flipping only sequence-1 creates an anti-phase
pattern, which is stable in this regime (and beyond)

mechanisms. Given that these predictions are made
on the basis of our substantial and formally inexact
reduction of many-parameter continuous-time models
to highly simplified iterated A-maps, we finish our
modelling by verifying the novel A-map predictions
about glitch-responses within our much less reduced 6-
population ODE-model. We find that these simulation
results (see Figs. 9 and 10) reproduce each of the
analytical predictions of the A-map dynamics, modulo
some parameter rescaling expected under such model
reduction. The main effects have also been confirmed
in the quasi-continuous neural-field models we started
with (Eqs. (1), (2), (5) and (6)). Without going through
our two steps of brutal model-reduction, it would have
been very hard to discover these predictions, and even
harder to understand the crucial mechanisms behind
them.

5 Discussion

Our nested set of models has yielded increasingly de-
tailed insight into the neural network structure and
dynamics that is probed by pairs of temporally inter-
leaved percept-choice sequences. Each stage of model-
reduction preserves the essential aspects of the phe-
nomena while condensing the dynamical mechanisms
into an increasingly simplified form that allows more
detailed analytical and numerical investigation. This
strategy has yielded both a unified and precise picture
of the mechanism behind the existing data, and a firm
basis for predictions that invite a wide variety of future
experiments.
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In summary, we showed how the various phenom-
enological interactions between interleaved choice-
sequences depend crucially on the subset of neurons
that are ‘shared’ between the neural populations driven
by the stimuli of the two sequences, and that take
part in resolving the perceptual ambiguity at each
stimulus-onset by among-population competition. First
of all, we noted that interactions between temporally
well-separated choice-sequences can rely on the same
adaptation-based ‘priming’ mechanisms that under-
lie the strong within-sequence choice-correlations—a
mechanism that we already modelled (Noest et al.
2007) and that has been tested and refined in a wide
array of tests (Pearson and Brascamp 2008). However,
additional network properties are crucially required for
inter-sequence interactions: The ‘shared’ set of neurons
whose adaptation-based priming implements the inter-
sequence interaction is defined by requiring (i) that
they are driven by stimuli from both sequences, and (ii)
that during each (sequence-specific) ON- interval, they
are synaptically coupled (by sufficiently strong cross-
inhibition) with the presently activated main popula-
tion, such that the percept-choice dynamics occurs in
unison between the main and the shared population.
The size of this shared neural subset obviously depends
on the inter-sequence stimulus similarity (featural or
spatial), and thus modulates the strength of inter-
sequence interaction.

The crucial difference between our adaptation-based
interactions and other coupling mechanisms that are
carried only by ‘fast’-timescale activity is nicely illus-
trated by an experiment reported recently: Klink et al.
(2009) studied interactions between two spatially sepa-
rated percept-choice sequences (ambiguous structure-
from-motion cylinders). In most cases, the two se-
quences were synchronously presented, and this re-
vealed coupling across gap sizes up to roughly the stim-
ulus diameter. However, this coupling vanished when
the two sequences were presented in an temporally
interleaved fashion. We attribute this to the absence
of the ‘shared’ neuron set that is crucial to our type
of inter-sequence interactions: At spatial gap sizes of
the order of the stimulus-diameter (which limits the
largest RF-size of activated neurons), there will be very
few neurons with shared input and/or cross-inhibitory
coupling that spans across the gap.

In an earlier experiment using choice-sequence pairs
with stimuli that were both spatially well-separated
and temporally interleaved (Chen and He 2004), a
systematically anti-phase relation was found between
the sequences. This can now be understood as reflecting

weak inter-sequence coupling due to the near-absence
of ‘shared’ neurons: We found that both anti-phase
and in-phase sequences can then persist, so the phase
relation that actually occurs will be determined by a
combination of local bias and noise. In fact, local and
idiosyncratic choice-biases have been found (Carter
and Cavanagh 2007) and a recent experiment (Knapen
et al. 2009) has shown that inter-sequence interactions
only over-ride these local biases when the stimuli are
partly overlapping, and become negligible for inter-
stimulus gaps of roughly the stimulus diameter.

Our modelling also applies to a class of choice-
sequence experiments which formally define their stim-
uli as forming a single sequence of percept-choices
between binocularly rivalrous stimuli, but in which the
eye-specific stimuli are swapped between the eyes on
alternate presentations, e.g. some cases in Chen and
He (2004), Pearson and Clifford (2004) and Grossmann
and Dobbins (2006), and more extensive experiments
in Sandberg et al. (2011), published during revision of
our paper). We note that such stimulus sequences can
be considered as two temporally interleaved sequences
whose respective competing stimuli just ‘happen to
be’ each others eye-swapped copies. To monocular
neurons, such stimuli are no different from any other
spatially coincident 2-ICS stimuli which drive neural
populations with little or no feature-overlap (or else
they would not be binocularly rivalrous). The special
(eye-swapped) relation between the two sequence stim-
uli can only have an effect on perception via binoc-
ularly driven neurons and/or ‘shared’ monocular neu-
rons (a subset expected to be small in these conditions).
Given our model predictions, this opens up a new
approach to probing how rivalrous stimuli drive monoc-
ular and/or binocular neurons, and whether and how
these neural populations are mutually coupled by inhi-
bition and/or other fast interactions: The simplest case
would be that the two stimuli drive non-overlapping
and purely monocular neuron populations—this would
predict equally stable in-phase and anti-phase inter-
leaved sequences. Note that the anti-phase sequence
pair would only appear to be ‘pattern-stabilized’, but
would in fact consist of two interleaved, purely eye-
based repetition sequences which just happen to be in
mutual anti-phase with respect to eye-dominance at
each choice event. Short stimulus perturbations that
cause a single choice-glitch should then only flip that
single choice-sequence and not the other. More gen-
erally, if the stimuli also drive some monocular or
binocular neurons that satisfy our criteria for forming
a ‘shared’ neuron population exist, they will manifest
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themselves via a reduced parameter-range in which the
anti-phase solution is stable (see Fig. 8),6 and via the
predicted responses to an isolated choice-glitch (see
Figs. 8, 9 and 10). As a caveat, we note that all our
predictions assume that the inter-sequence blank dura-
tions T0 are sufficiently long to avoid fast-timescale (H-
based) interactions across each eye-swap event. This
excludes applying our models to ‘flicker-and-switch’
binocular rivalry experiments (Lee and Blake 1999),
which use such extremely short T0 < 100 ms that it
allows fundamentally different temporal interactions
carried by the slower H-timescale of parvocellular neu-
rons which contribute to binocular processing.

More generally, the generic predictions we de-
rived from our proposed neural mechanism for ICS-
dynamics should provide a well-characterized tool for
probing potential overlaps and interactions between
several other types of neural processing streams which
operate partly in parallel. Whenever a perceptual
choice sequence can be set up within each stream, our
model predictions about glitch-responses and stability-
domains for the in-phase and anti-phase solutions can
be used as tools for quantifying the existence and con-
nectivity of ‘shared’ neuron populations that bridge the
(formal or real) gaps between populations with known
feature- and space-selective responses. One class of ex-
amples concerns the neural encoding of various feature
dimensions: Besides quantifying the sofar only qualita-
tively known interactions within the populations that
encode orientation- or motion-direction and spatial po-
sitions, one could probe the connectivity within and be-
tween populations coding for color, stereo-depth, cur-
vature, etc. An early study of this type (Grossmann and
Dobbins 2006) used eye-swapping of colored ambigu-
ous structure from motion (SFM) stimuli to show that
choices between the competing SFM percepts can be
decoupled from the choices between the binocularly ri-
valrous colors of the same dots that specify the ambigu-
ous SFM. Our predictions about timing dependence
and glitch-response types might be used to probe the
underlying neural connectivity and dynamics in more
detail. Other examples involve the question whether
and how 1st-order and 2nd-order visual processing,
which is known to exist in both the orientation and
motion-direction domain, occurs in essentially separate
stages or streams (with only their outputs converging

6This prediction appears to be confirmed by several experiments
of Sandberg et al. (2011), published during the revision of this
paper.

at some late stage), or whether they interact, per-
haps competitively, at specific earlier stages. Similar
questions exist with respect to the parvo-cellular and
magno-cellular processing streams, and with respect to
the stages at which signals from various sensory modal-
ities (vision, audition, touch, etc) interact. Any neural
subsets shared between such formally different process-
ing streams may thus be probed in new, probably in-
formative ways by driving pairs of interleaved choice-
sequences with stimuli that are considered to excite
only one or the other of the two processing streams, and
testing for inter-stream interactions manifested in the
various glitch-response types predicted by our models.
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Appendix: Glitch-generation by a wide variety
of perturbations

A glitch can arise via two types of mechanism (possibly
acting in parallel), distinguished by the dominant roles
of either slow (A-dynamics) or fast (H-dynamics) noise
and/or other perturbations. Their origin and qualitative
behavior can be understood using our present analysis
and previous results (Noest et al. 2007; Klink et al.
2008):

A-noise enters the sequence dynamics (Eqs. (12)
and (18)) via Q[A] as it stems from the stochastic
firing S[H] of the dominant population. The result-
ing A-variations d1 around the fixed point value A ∗
have leading-order dynamics (Eq. (25)), so the A-
distribution approaches a near-Gaussian shape with
mean A ∗ and width σ that scales with 1/

√
λ1. A glitch

occurs when the current A-sample violates the relevant
existence-condition (Eq. (22) or (23)) for an in-phase
or anti-phase pattern respectively, while rescaling σ 2

by 1 + η2
2e2(T0+T1) to account for the independence of

noise coming from the ‘shared’ neural subset. Thus,
the very complicated joint dependence of the glitch
probability on all stimulus and model parameters (plus
an unknown scaling of the noise with the mean S[H])
is now reduced to a simple mechanism controlled by
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A ∗, λ1 and η2. This makes it much easier to gain
mechanistic insight into the generic behaviour of the
system, rather then having to sample it by numerical
simulation of the raw model. For example, the glitch-
rate within an anti-phase pattern (relative to that within
its in-phase counterpart) is generically predicted to in-
crease strongly but smoothly as one approaches the crit-
ical parameter manifold where the anti-phase solution
ceases to exist (e.g. the dashed line in Fig. 8), because
A ∗ then smoothly approaches the value at which the
existence-condition (23) is marginally violated. On the
critical manifold, the glitch-probability reaches 0.5 (up
to second-order corrections).

H-noise, or designed input-bias pulses, can produce
a glitch by perturbing the competing Hi and hi sig-
nals during the highly sensitive initial ≈ 2τ phase of
the choice-process (see Fig. 5). A sufficiently strong
fluctuation can override the β A-based bias (starting-
point positions), so the net effect when using noise
is to change the choice indicator functions Ci,k (Eq.
(13)) into locally smoothed choice-probability functions
(see Fig. A3 in Noest et al. 2007 for a finite stochastic
sampling of such a function). This would directly give us
the glitch probability once A ∗ is known, but computing
the stochastic Ci,k-function itself is a challenging task
for future analysis; Ci,k’s complicated dependence on
all model parameters makes simulation powerless to
reveal its full structure, let alone to understand it.

Finally, we note that one cannot extrapolate the
fact that A-noise is the dominant factor in classic ri-
valry (Alais et al. 2010) to rule out a major role of
H-based noise in generating percept-choice glitches:
Percept-choice and percept-switching are such funda-
mentally different dynamical processes (Noest et al.
2007) that their sensitivities to the various likely sources
of noise in the same network are predicted to be es-
sentially unrelated—as confirmed by experiments on
highly idiosyncratic and local choice-biases (Carter and
Cavanagh 2007). Even within the broad setting of
percept-choice sequence dynamics, our finding (Klink
et al. 2008) that purely A-based noise explained the ob-
served statistics of percept-repetition versus alternation
should not be expected to carry over to other regimes
of stimulus timing (long T0) and feature-types. Indeed,
such stimulus variations strongly change the adaptation
state (or even exchange the whole structure) of the
many neural stages preceding the one where ambiguity
is resolved, and thus change the relative strength of the
A-noise (generated within the choice-stage neurons)
versus the H-noise (which receives larger contributions
via the Xi coming from the many sequential prestages
when these are operating at full gain).
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