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1. Introduction

The challenge of large data sets. In recent decades our ability to collect and store vast
amounts of quantitative data has increased dramatically. This includes socio-economic data,
such as social links between individuals or professional collaboration networks, consumer
preferences and commercial interactions, trade dependencies among corporations, credit
or insurance obligations between financial institutions. We have access to traffic data on
computer and telecommunication systems, satellite networks, the internet, electricity grids,
rail, road or air travel connections and distribution networks. We collect and process large
amounts of geological and meteorological data, data on sea levels, air and water pollution,
volcanic and seismic records, and sizes of polar and glacier ice sheets. Finally, we have seen
an explosion in recent years of biomedical data, such as experimental data on biochemical
processes and structures at cellular, subcellular and even molecular levels, the topologies
of complex composite signalling and information processing systems such as the brain or
the immune system, genomic and epigenetic data (gene expression levels, DNA sequences),
epidemiological data, and vast numbers of patient records with clinical information.

However, one tends to collect data for a reason. This reason is usually the desire to
understand the dynamical behaviour of the complex system that generated the data, to
predict with reasonable accuracy its future evolution and its response to perturbations or
interventions, or to understand how it was formed. We may want this for commercial gain,
to improve and optimise a system’s efficiency, to design effective regulatory controls, or
(in the case of medicine) to understand and cure diseases. For small and simple systems
the translation of observation into qualitative and quantitative understanding of design
and function is usually not difficult. In contrast, if we collect data on complex systems
with millions of nonlinearly interacting variables, just having a list of the parts and their
connections and observations of their collective patterns of behaviour is no longer enough to
understand how these systems work.

Networks as data reduction and visualisation tools. A first and useful step in modelling
structural data on complex many-variable systems is to visualise these systems as networks
or graphs. The idea is to represent each observed system component as a node in the
network, and each observed interaction between two components as a link between the
two corresponding nodes. Dependent upon one’s research domain, the nodes of such
networks may represent anything ranging from genes, molecules, or proteins (in biology), via
processors or servers (in computer science), to people, airports, power plants or corporations
(in social science or economics). The links could refer to biochemical reactions, wired
or wireless communication channels, friendships, financial contracts, etc. The price paid
for the complexity reduction is the loss of information. Limiting ourselves to a network
representation means that we only record which parts interact, and disregard how and when
they interact. However, the rationale is that the topology of the interactions between a



Figure 1. Neural networks, areas of the brain mapped using Golgi’s staining technique
by Ramon y Cajal around 1900. The nodes are brain cells (neurons), and the links are
coated fibres via which the neurone communicate electrical signals. The staining shows only
a tiny fraction of the links, in reality a neuron is connected on average to around 10* other
neurone. The topologies of these networks vary according to the brain area that is being
imaged, ranging from rather regular (in areas related to preprocessing of sensory signals) to
nearly amorphous (in higher cognitive areas).

system’s components should somehow be a fingerprint of its function, and that much can be
learned from the topologies of such networks alone.

For example, DNA contains the assembly instructions for large and complicated macro-
molecules called proteins. These proteins serve as building material for all the parts of the
cell, as molecular processing factories, information readers, translators, sensors, transporters
and messengers. They interact with each other by forming (temporary) complexes, which
are (meta)stable super-molecules formed of multiple proteins that attach to each other
selectively. Many experimental groups produce tables of molecular binding partners such
as that shown in Fig. 2. Network representations of these data have been very useful to
generate intuition on the possible relevance of individual nodes (i.e. proteins), and to suggest
functional modules. There are thousands of other examples of complex systems that tend to
be modelled as networks, of which a selection is shown in the various figures in this section.
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Figure 2. Left: the data on human protein interactions (from HPRD data base), being
lists of pairs of protein species that have been observed to interact, together with codes of
each species and information on the experiments where interaction was observed. Each line
reports on one pair-interaction. This database contains some 70,000 reported interactions
(about half of the interactions believed to exist among human proteins). Right: the network
representation of the data on the left. Each protein is represented by a node, and each pair-
interaction (each line on the left) is represented by a link connecting the two nodes concerned.
Since interaction of two proteins is a symmetric property, this graph has nondirected links.

Figure 3. Gene regulation networks: here the nodes represent different genes in humans,
and the links (which now are directional) indicate the ability of individual genes (when
‘switched on’) to affect the extent to which other genes are activated. Here the links are
moreover ‘weighted’ (i.e. they carry a numerical value), indicated by solid arrows (positive
value, excitatory effect) or dashed arrows (negative value, inhibitory effect). The figure here
shows only a small subset of the genes — the true number of nodes is in the order of 20,000.



Figure 4. Graphical representation of the internet. Nodes represent the webpages and

links represent html jump instructions. In July 2014 it contained some 3.32 billion pages.
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Figure 5. Social network of collaboration partners within an organisation
(here: a subset of IBM).

Figure 6. Network representations of interactions observed between share prices. Nodes
represent individual companies (with a colour code representing a classification of sectors),
and links imply significant observed correlation in the share prices of these companies.
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Figure 7. Main arteries of the oil and gas distribution network, and of the national
electricity power grid of the USA. Here one would be interested in questions related to
the network’s vulnerability against targeted attacks, and how to design networks to reduce
the damage done by such attacks.
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Figure 8. Phylogenetic trees, constructed from genome similarity. Here the nodes
represent species of organisms, and links represent the most plausible evolutionary ancestor
relationships. Top: general phylogenetic tree showing the main organism families and their
genome lengths. Bottom: focus on different strains of human influenza.
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Figure 9. Ecological networks, mapping species and their mutual dependencies in a
given area (predator/prey or parasitic relationships, supply of food or other resources,
reproduction, etc). The nodes represent the different species of organisms, and links indicate
a mutual dependency.
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Figure 10. Networks representing economic and financial relationships between the main

players in financial markets.

It is now increasingly (and painfully) being realised by

regulators that the complex interconnected nature of the international financial system
means that new mathematical approaches are needed to understand, predict, and prevent
future financial crises. Top: the type of players required in models. Bottom: example of big
players and their dependencies and relations in the international banking network.
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Figure 11. Immune networks. Nodes represent different ‘T-clones’ (families of immune cells
that coordinate the adaptive immune response to specific invaders). Links indicate that the
T-clones interact with a common B-clone (the B-clones actually trigger the destruction of
the invaders). In humans there are typically around 108 T-clones (i.e. nodes).

Figure 12. Simplified models of magnetic systems in statistical physics. Here the nodes
(of which there are of the order of 10*4) represent sites on regular (2-dim or 3-dim) lattices,
occupied by atoms with intrinsic magnetic fields. The links indicate which pairs of magnetic
atoms are believed to be able to interact and exchange energy.



14

Figure 13. Mobility networks. These are very important in the modelling and prevention of
the spread of epidemics. Nodes are the main global population centres, and links represent
pairs of population centres with the most intensive traffic of people between them.

Note that network images in themselves are subjective. Different software tools will
use different protocols for deciding on the most appealing placements of nodes, and hence
generally will produce different visual representations of the same network (see e.g. Fig. 14).
It is perfectly fine to use graphical representations as intuitive aids, but we will need precise
mathematical descriptions when it comes to extracting information and testing hypotheses.
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Figure 14. The two graphs shown here may look different, but are in fact topologically
identical. They differ only in the choices made for the placements of the nodes in the image
plane, i.e. in cosmetics.

This course will describe some of the mathematical and computational tools that have
been developed over the years to characterise and quantify network and graph topologies,
quantify the complexity of large networks, identify modules in networks, and to understand
the resilience of processes on networks against node or link removal. We also study how to
define and generate synthetic networks with controlled topological features.
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2. Definitions and notation

2.1. Networks or graphs

Some authors use ‘networks’ to denote the physical objects in the real world, and ‘graphs’
for their mathematical description. Here we will not make this distinction.

e Definition: an N-node graph G(V,FE) is defined by a set of vertices (or nodes)
V ={1,...,N}, and a set of edges (or links) E C {(i,5)| i,7 € V}

e Definition: a simple graph is a graph without self-links, i.e. ¥(i,j) € E: i # j

e Definition: a nondirected graph is a graph with symmetric links only, i.e. if (i,j) € E
then also (j,i) € F

e Definition: a directed graph is one that contains non-symmetric links, i.e. 3(i,j) € E
such that (j,1) ¢ F

V:{1,2,3,4,5,6,7,8} V:{1,2,3,4,5,6,7,8}
E= {<27 1)7 (372)7 (472)a (572>7 (373)7 E= {(27 1)7 (172)7 (372)7 (273)7 (47 2)7 (274)7
(5,4),(7,4),(8,4),(6,5)} (5,2),(2,5),(5,4),(4,5),(7,4),
(4,7),(8,4),(4,8),(6,5),(5,6)}

Figure 15. Left: example of a directed graph. It is not simple, since it has a self-link (3, 3)
(note that in principle we could leave out arrows when drawing self-links, since there are
reciprocal by definition). Right: example of a simple non-directed graph.

e Conventions: in drawing graphs we use the following conventions, see e.g. Fig 15

(i) anode i is represented by a small filled circle

(ii) in directed graphs a link (7, j) is drawn as an arrow from node j to node ¢

(iii) in simple non-directed graphs a link (7, 7), which in such graphs is always
accompanied by a link (7,7), is drawn as a line segment between nodes i and j

(iv) a self-interaction (7,17) is drawn by a small circle that starts at ¢ and ends at 4
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In situations where in the context of the problem at hand it is clear that we have only non-
directed graphs, we leave out the explicit mentioning of both (i, j) and (j,¢) and simply give

V={1,2.3,4,5,6,7}

£ =1{(1.2),(1,6), (1,5),(2,7). (2. 3).
(3,5), (4,6), (4,5), (4,7), (5,7)}

@

In these lectures we will limit ourselves to non-weighted graphs, i.e. we will not consider
graphs in which links carry a numerical value to represent their sign or strength. We consider
links to be binary objects: they are either present or absent.

2.2. The adjacency matriz of a network

Next we switch to a less cumbersome representation of graphs than sets of links, which will
also make subsequent calculations more easy. In an N-node graph there are N x N potential
links, the presence of each of which can be coded by a binary number, which we arrange as
the entries of a matrix:

e Definition: the adjacency matrix A € {0, 1}¥*N of an N-node graph G(V, E) is defined
by the following entries:
Aj;=1 if (i,j) € E, id.e. if thereisalink j —i

] 1,...,N}?:
V) € s N 0 i (1,7) € B, de. if there is no link j — i

(1)

e Consequence: a simple N-node graph has an N x N adjacency matrix with zero diagonal
elements, i.e. A; =0Vie {l,...,N}.

e Consequence: a nondirected N-node graph has a symmetric N x N adjacency matrix,
Le. A = A; V(i,j5) €{1,...,N}2

e Consequence: a directed N-node graph has a nonsymmetric N x N adjacency matrix,
ie. 3(4,7) € {1,..., N}? such that A;; # Aj;.
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There is a one-to-one correspondence between the N? binary entries of A and the
specification of which links are present in an N-node graph, so each N-node graph
corresponds to a unique adjacency matrix and vice versa. We could therefore equivalently
also have defined our graphs and their types (e.g. directed, non directed, simple) on the
basis of the adjacency matrices and their properties, instead of starting from the edge and
vertex sets.

We can verify that the two network examples of Fig 15 correspond to the following two
adjacency matrices:

S O O oo o o = O
O OO = = = OO
oNeNeNoNoel el
_ = O = O O O O
O O R O O O o O
O O OO OO o o
O O OO OO oo o o
O O OO oo o o o

corresponds to

_ = O = O O = O
O OO R O o0 oo

O O O OO o = O
O OO, Rk kO -
O O O O oo o = O
O O R O Rk O~ O
O OO O~ O o o
O OO O O o o

corresponds to

We observe indeed that the second adjacency matrix is symmetric (as it corresponds to a
non-directed graph), in contrast to the first.

2.8. Paths in networks

Consider products of a graph’s adjacency matrix entries of the following form, with 4,5 €
{1,...,N}, and with i, € {1,..., N} for all ¢:

b1 k—1 factors

H Ai£i£+1 = AiliQAiQiP,AiSM LA
/=1

Aikflik <2>

lg—20k—1
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Since each individual factor is either 0 or 1 we must conclude that
k—1

HAieie+1:1 ’lf Aili@rl:l er{l,,k—l} (3)
=1
k-1
IT Aiir, =0 otherwise (4)
=1

But this implies

k—1
IT Aisi,.. =1 if the graph contains the path of connected links (5)
=1 T S N S O =
k—1
11 Aii,., =0 if it does not (6)
=1
For instance, in the first (directed) graph of Fig 15 we have
A5 A =1 the graph contains the path 2 — 4 — 5
AysAs =0 the graph does not contain the path 2 — 5 — 4

AgsAssAgg Aoy =11 the graph contains the path 1 —2 —4 —5—6
AzAesAs4 Ay =0 the graph does not contain the path 2 —4 —5—6—7

and so on.

e Definition: a closed path (or cycle) is a path that starts and ends at the same node, so

k—1
H Aiyip, = 1 with iy =iy, if the graph contains (7)
(=1

the cycle 11 — ij_1 — ... —> iy — 1
k—1
H Aijipey = 0 with iy =iy, if it does not (8)
=1

e Definition: a simple cycle in a graph is one that contains no repeated vertices or edges,
ie 0=} Aiyipy = 1 with iy =i, and all node labels in {4y, ...,i,—1} are nonidentical.

We can also ask whether there is any path of a specified length from a given initial node
7 to a specified target node ©. Now we do not care what exactly are the intermediate nodes
visited in between 7 and j. We are obviously interested in the presence or absence of paths
of length 2 or more, since having a path of length 1 means simply that A;; = 1 (which can
be read off directly from the adjacency matrix):

N N k—1

Z . Z Aii, ( H Aiﬂz+1)Aikj >0 < there exists at least one path of (9)
a=L =l =1 length k41 from node j to node 1

N N k—1

Z . Z Ay, ( H AZ-WH)AZ-M- =0 <& there exists no path of (10)
a=l =l =1 lenght k+ 1 from node j to node 1
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But since the summations over the indices {1, ..., i} in the latter formulae are equivalent to
doing matrix multiplications, we can simplify these formulae. We remember the definitions
of matrix multiplication and powers of matrices, e.g.

N

N
(AB)i; =Y AuBy, (A% =05,  (A"); = (A", A,
r=1 r=1
(with the Kronecker é-symbol, defined as §;; = 1 for all ¢ and ¢;; = 0 for all index pairs
i # 7), and we conclude from these that the following is true

(A", >0 < there exists at least one path (11)
of lenght k+ 1 from node j to node 1
(A", =0 < there ewists no path (12)

of lenght k+ 1 from node j to node 1

This shows already the benefit of working with adjacency matrices as opposed to the sets
(V, E) of nodes and links; for large N it would become painful to trace lines in images or
match entries in sets of index pairs, but instead we can simply do matrix multiplication.

Finally, the last step will not come as a surprise. If we don’t care about path lengths
but only ask about connectivity, we may write

Z(Ak+1)ij >0 < there exists at least one path from j to 1 (13)
k>0

S(A"),; =0 <& there exists no path from j to i

k>0

Two final definitions in relation to paths in graphs with special properties:

e Definition: an Eulerian path in a graph is one in which each link (or edge) is traversed
exactly once.

e Definition: a Hamiltonian path in a graph is one in which each node (or vertex) is
visited exactly once.

2.4. Graphs within graphs

e Definition: a subgraph G'(V’, E’) of a graph G(V, E) is a graph such that V' C V and
E' CFE.

For instance, the red graph below has V' = {1,2,4,5,6} and F' = {(1,2),(2,1),(1,5), (5, 1),
(4,5),(5,4),(4,6),(6,4)}, and is clearly a subgraph of the one at the top of page 15.
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e Definition: the connected components of a graph G are the largest sub-graphs of GG such
that for each subgraph there exists a path between all vertices within the subgraph.

For instance, the graph in black on the left has the connected components shown in blue
and red on the right:

ot
(W3]

—
S
o

[

o

(V]

e Definition: a clique in a graph G is a maximal subset V/ C V of vertices in the graph
such that every member of the subset has an edge connecting to every other. Here
‘maximal’ means that it is impossible to add any further edge to V' such that the new
edge connects to all previous edges in V.

In this graph we all cliques of size 2, 3 and 4 shown respectively in purple, green and pink.
Note: the immune networks in Figure 11 consist strictly of connected cliques.
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e Definition: a bipartite graph G is one in which the vertices can be divided into two
nonempty disjoint subsets, i.e. V =17 UV, with |V4],|V2] > 0 and V3 N V2 = 0, such
that all edges (i,j) € E have either i € V; and j € Vo or j € V; and i € V5.

The nodes in bipartite graphs can be divided into two qualitatively different groups, and
there are no links between indices in the same group. Examples are networks that represent
sexual relations in heterosexual groups, or graphs that represent relations between diseases
(node group 1) and clinical features (node group 2), networks mapping researchers and the
journals in which they publish, networks of resource generators and resource consumers, etc:

),

5 Ny \\\‘."','///

>
7

A

Generalisations to tripartite graphs (three disjunct vertex subsets, with links only between
nodes from different subsets) and to higher order partitions are obvious.
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1 1 1
kn(A) =1 ki(A) =4 ki(A) =4
kt(A) = 3 Ci(A)=1/6 Ci(A)=2/6=1/3
T,(4) =1 T,(4) =2

Figure 16. Left: in- and out degrees k*(A) and k%"*(A), i.e. the number of arrows flowing
into and out of the given node, in directed graphs. Middle and right: degrees k;(A), triangle
counters T;(A), and clustering coefficients C;(A) in non-directed graphs. C;(A) gives the
fraction of distinct neighbour pairs of ¢ that are themselves connected. In the absence of link
directionality, there is no distinction in nondirected graphs between left- and right-degrees.

3. Microscopic structural characteristics of graphs

3.1. Node-specific quantities

Node degrees. To characterize graph topologies more intuitively, we first inspect simple
quantities that inform us about their structure in the vicinity of individual nodes. The first
of these are the so-called in- and out-degrees k" (A) € IN and k™ (A) € IN of each node i
in graph A. They count, respectively, the number of arrows flowing into and out of node :

e Definition: the in-degree of node 7 in an N-node graph with adjacency matrix A is
defined as ki*(A) = YN A
e Definition: the out-degree of node 7 in an N-node graph with adjacency matrix A is
defined as k{U'(A) = YN, A
We denote the pair of in- and out-degrees for a node i as k;(A) = (k™(A), k" (A)) € IN%.
In nondirected graphs we find that always k"(A) = k{"*(A) (see exercises). Here we can
drop the superscripts and simply refer to ‘the degree’ of a node:

e Definition: the degree of node 7 in a non-directed N-node graph with adjacency matrix
A is defined as k;(A) = 30, Ay;.

e Definition: the degree sequence of a non-directed N-node graph with adjacency matrix
A is defined as the vector (ki(A), ka(A),... ky(A)) € NV,

Clustering coefficients and closed path counters. There are many ways to characterise a
graph’s local structure beyond counting the neighbours of a node. For simple nondirected
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graphs, the clustering coefficient gives the fraction of node pairs linked to ¢ that are
themselves connected:

e Definition: the clustering coefficient C;(A) of node ¢ with degree > 2 in a non-directed
N-node graph with adjacency matrix A is defined as

Ci(A) = number of connected node pairs among neighbours of ¢

number of node pairs among neighbours of ¢
e (L= 05) Ay A Au
Mo (1=00) Ay Auy

(for nodes i with degree 0 or 1 we simply define C;(A) = 0).

€ [0,1] (14)

We have already seen that products of entries of the adjacency matrix of a graph can be used
to identify paths. We can use this to count the numbers of closed paths of a given length:

e Claim: the number Ly(A) of closed paths of length ¢ > 0 in an N-node graph with
adjacency matrix A (directed or non-directed) is given by
N

L) =3 3 (T1 Aiins ) A = 3(As (15)

¢
=1 ig=1 k= i=1
This follows directly from our earlier identities on paths. Note that the sum of the diagonal
entries of a matrix is called its trace, Tr(B) = Y_; By;, so we have Ly(A) = Tr(A").

e Definition: the number of triangles T;(A) involving node i in a non-directed simple
N-node graph with adjacency matrix A is defined as T;(A) = %Ej'\,[kﬂ AijAj Ak € IN.

T;(A), which can also be written as T;(A) = 1(A%);, counts the number of distinct
nondirected loops of length three, in which node i participates. The factor % in T;(A)
corrects for overcounting: any triangle starting and ending in node ¢ can be drawn with
two possible orientations. Note that in simple non-directed graphs one has C;(A) =
2T;(A)/k;(A)[ki(A) — 1] (see exercises). In Fig. 16 we illustrate the various node

characteristics with some simple examples.

3.2. Generalised degrees

The concept of degrees can be generalised in obvious ways. For instance, the generalised
degrees of order ¢ > 1 count the number of distinct paths of a given length ¢ that either flow
out of, or into a node i:

N N
£)in
kz( ) (A) - Z e Z Aij1Aj1j2 oo Aje—ljl (16)
A=l Ge=1

N
k‘z(ﬁ)out(A> = Z T Z Ajzje—l S Aj2j1Aj1i (17)
n=1
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kP (A) =20

Figure 17. Degrees and generalised degrees in non-directed graphs. At the minimal level
one specifies for each node i (black vertex) only the degree k;(A) = kgl)(A) =), Aij (the

kP (A)), in
which kz@(A) = >0 AijAje is the number of length-two paths ending in i. Since the graph
at hand here is non-directed, we can drop the superscripts ‘in’ and ‘out’.

number of its neighbours). Next one provides for each node the pair (kgl)(A)

For ¢ = 1 these formulae reduce to the previous expressions for ordinary in- and out-degrees.
We can similarly introduce quantities that generalise the triangle counters 7;(A) by counting
closed paths in the graph A of arbitrary lengths ¢ > 3, that pass through node .

3.3. Quantities related to pairs of nodes

The distance between two nodes. We define the distance d;;(A) between nodes i and j in a
non-directed graph with adjacency matrix A as the length of the shortest path from node ¢
to node j. It can be expressed in many ways, e.g. upon using our earlier formulae involving
paths:

e Definition: the distance d;;(A) between nodes ¢ and j is defined as follows
if there is no path from jtoi: d;;(A) = o0 (18)
if there is a path from jtoi: dy(A)= smallest £ >0 such that (AY);; >0 (19)
Note 1: this distance is not the same as the distance between nodes in an image of the graph,

it is only based on how many links need to be crossed when walking from 7 to j.

Note 2: a path along which the shortest distance between two nodes is realised (there could
be more than one) is also called a geodesic.

An alternative way to obtain the distances between nodes in the graphs, without
checking one by one all possible routes from ¢ to 7, is provided by the following identity.
Here the inverse C~' of an N x N matrix C (if it exists) is the unique matrix with the
property CC~! = C™'C = 1, in which I denotes the N x N identity matrix.
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e Claim: b iy gl = A)
= o log

(20)
Proof:

We first note that (I — vA)™! = Y507 A" (see exercises). This series is always
convergent for sufﬁciently small . It then follows that

(T—~7A) " = D2 (A = D (A" =% (A%);; + O(y"H)

>0 r>d;;

=% |(A%); +O(y)]

Hence
. log[(T—~vA)"");; lim log y% + log [(Ad”)ij + O(’Y)}
710 log~y 90 log
lo Adij ii T O
i (A%);;+0(7)]
=0 log v

= dy— Jim ~log [(A%); +0( )] =dy ]

The matrix inversion is usually impossible analytically, so is done numerically (see exercises).

Node centrality. To quantify how important an individual node ¢ may be to sustain traffic
or flow of information over a graph, two measures of ‘centrality’ have been defined: the
closeness centrality and the betweenness centrality.

e Definition: the average distance d;(A) to node i is d;(A) = N~ ZN 1dii(A).
e Definition: the closeness centrality x;(A) of node i is defined as z;(A) = 1/d;(A).1

e Definition: the betweenness centrality y;(A) of a node is defined as the number of node
pairs (k, £), with k # ¢ # i, such that i lies on a shortest path between k and £.§

Nodes with a high closeness centrality have small typical distances to the other nodes, and
are hence relatively close to any area of the graph. Nodes with a high betweenness centrality
are apparently important relay stations that reduce the shortest path lengths between node
pairs in the graph. They need not be on average close to the other nodes, but tend to be
the pivotal nodes that connect otherwise separate parts of the graph.

Similarity between node pairs. The functional role of any node ¢ in an N-node graph with
adjacency matrix A is defined strictly by the specification of the links that flow into or out

I This definition is helpful and makes sense (and is therefore used) only for connected graphs, since otherwise
d;(A) = oo (due to the appearance of node pairs that give d;;j(A) = 00).

§ Sometimes this quantity is normalised by the total number (N —1)(N —2) (in non directed graphs) of
node pairs not including i.
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of it, i.e. by giving the two sets
O ={k<N|Ayp=1}, " ={k<N|A,;=1} (21)

In non directed graphs these two sets are identical for all ¢, so there we would simply speak
of the neighbourhood 9; (without superscripts). Hence, any measure of similarity of nodes i
and j will somehow quantify the differences between (9;",99"") and (9", 09"*). Here we will
show two common definitions for non directed graphs (possible generalisations to directed

graphs are obvious), with |S| denoting the number of elements in the set S:

e Definition: the cosine similarity between nodes ¢ and j with nonzero degrees in a
nondirected N-node graph with adjacency matrix A is defined as

U-~(A) _ |aiﬂ8j| _ 2521 AikAjk
1) — ==
JIodlo;] /ki(A)k;(A)

e Definition: the Pearson correlation similarity between nodes ¢ and j with nonzero

(22)

degrees in a nondirected N-node graph with adjacency matrix A is defined as
- S A Ay — (% PO Aik) (% PO Ajk)
VA A3 - (0 A S A% - (E S A
Yoy Ap A — ki(A)k;(A)
V(AL = Sh(A ks (A1 = ki (A)]

TZ‘]‘(A

(23)

These measures obey —1 < 0;;(A), 7;;(A) < 1 for all (4, j) (see exercises).

The origin of the Pearson correlation (or Pearson coefficient) definition of distance
between node pairs is the following. In statistics the Pearson correlation of two variables
(u,v) with joint distribution P(u,v) measures the degree of linear relationship between u
and v, and is defined as follows (see also 8.2):

(uv) — (u)(v)
C= 24
V(2 — (w)?2)((v?) — (v)?) 2y

One obtains formula (23) above by choosing P(u,v) = % > 0u,,,00,4,,, S€ exercises for the

proof.
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4. Macroscopic structural characteristics of graphs

The previous characteristics describe the topology of the graph in the neighbourhood of a
specified node. A global characterisation could be giving the full sequence of these local
numbers, as in the degree sequence k(A) = (ki(A),...,kn(A)). However, as networks
get larger, it is increasingly inconvenient to draw conclusions and derive insight from large
sequences. To arrive at quantitative characteristics that are less sensitive to the number of
nodes, one has two simple options that continue to build on single-node features.

4.1. Average values of single-node features

The first is to consider the averages of the single-node quantities.

e Definition: the average in-degree of an N-node graph with adjacency matrix A is given
by K"(A) = NT' Y, K"(A)
e Definition: the average out-degree of an N-node graph with adjacency matrix A is given

by l%out(A) _ ZN kout( )

i=1"
The average in-degree and the average out-degree in any graph are always identical (see
exercises), which reflects the simple fact that all arrows flowing out of a node will inevitably
flow into another node. So we can use in both cases the simpler notation k(A).

e Definition: the density p(A) € [0,1] of an N-node graph with adjacency matrix A is
the number of edges of a graph divided by the maximum possible number of edges.

We note that in a directed graph the number of links is L = >7,; A;;, in a non directed graph
itis L =37,.; Aij + 22 Aii, and in a simple nondirected graph L = Yi<; Aij. Hence

A
directed graphs : p(A) = ZZJJWJ (25)
. Dici Aig + i Au | Y A+ 2 Au
directed graphs : A) =l =t e 26
nondirected graphs p(A) INN 1) + N NN+ 1) (26)
. . Yici Aij
simple nondirected graphs: p(A) = ——~L—_ (27)
IN(N —1)

Note: in these definitions we do not count the links (¢, j) and (7,4) in non-directed graphs
twice, and the number of non-diagonal entries in a symmetric matrix is %N (N —1). These
densities can be written in terms of the average degree of a graph as follows (see exercises):

directed graphs : p(A) =k(A)/N (28)
k(A)/(N+1) + Z Ay /N(N+1) (29)
simple nondirected graphs: p(A) =k(A)/(N-1) Z (30)

nondirected graphs : p(A)
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e Definition: the average shortest path length in a graph with adjacency matrix A

non—directed graphs :  d(A) = Zdw (31)
z<]

directed graphs : d(A) = NN=T) Zdw (32)
l#ﬂ

e Definition: the diameter of a graph with adjacency matrix A is defined as d(A) =
max;z; d;j(A) (i.e. the distance between the pair of nodes that are furthest from one
another in the graph).

e Definition: the average local clustering coefficient of an N-node graph with adjacency
matrix A is defined as C(A) = NN, Ci(A).

Note: a graph is considered ‘small-world’, if C(A) is significantly higher than for a random
graph constructed on the same vertex set, and if the graph has approximately the same
mean-shortest path length as its corresponding random graph.

e Definition: the number of links L in a directed graph is L = 37, .-y As;. In a non-
directed graph we do not count A;; = 1 and Aj; = 1 separately, so here the number of

4.2. Distributions of single node quantities

Degree statistics. For large graphs, or when comparing graphs of different sizes, we need
quantities that are intrinsically macroscopic in nature but more informative than just average
values of single-node features. The simplest of these are histograms of the observed values of
the N previously defined local features. If we divide, for each possible value, how often this
value is observed by the total number of observations (i.e. the number of nodes, we obtain
the empirical distribution of the given feature in the graph:

e Definition: the degree distribution of a non-directed N-node graph with adjacency
matrix A is defined as

VEeN: p(klA) = Z%HA (33)

It gives for each k the fraction of nodes ¢ in the graph that have degree k;(A) = k.

e Definition: the joint in- and out-degree distribution of a directed N-node graph with
adjacency matrix A is defined as

V(E™ K" € IN? . p(E™ kO™ A) = Zékm in(A kout,k@ut(A) (34)
It gives for each value of the pair (k™, k") the fraction of nodes i in the graph that have
ki*(A) = k™ and k{*(A) = k. Often we abbreviate 0y yin( A)0gou gour( A) 85 05 (A):
with & = (™, ko).
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Figure 18. Degree distributions as observed in several non-directed real-world graphs,
suggesting a tendency for these networks to have power-law distributions of the form
p(k) ~ k=7, with powers in the range 2 < v < 3. The evidence for this is somewhat
weak in the first two examples, but the last four do indeed resemble lines in a log-log plot.

In many large real-world networks one observes degree distributions of a power-law form,
see e.g. Figure 18. These are also called ‘scale-free’ networks, since there is apparently no
‘typical’ scale for the degrees in such systems. See exercises. Most nodes typically have small
degrees, but there is a small number of nodes (the so-called ‘hubs’) with very large degrees.
This reflects organisation principles to which we will come back later.

Other statistics. Similarly we can define the joint distribution p(k,T]A) of degrees and
triangle numbers in non-directed graphs:

1
Vk, T e N: p(k,T|A)= N Z(sk,ki(A)(ST,Ti(A) (35)

Now p(k,T|A) is the fraction of nodes that have degree k and that participate in 7" triangles.
It will be clear how to generalise these ideas and define similar distributions for in- and out-
degrees and triangles in directed graphs, or distributions of generalised degrees.
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Figure 19. Examples of small numerically generated non-directed graphs, all with N = 100
and k(A) = 4 (their precise definitions will be given in subsequent sections of these notes).
Clearly, size and average degree do not specify topologies sufficiently — there are still too
many ways to generate graphs with the same size and the same number of links. The degree
distribution provides additional information, but one would still like to go further.
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4.8. Distributions of multi-node quantities

A logical next step, after having focused on the statistics of features that characterise nodes,
is to turn to features of links. For instance, for simple nondirected graphs A we can define

e Definition: the joint distribution of degrees of connected node pairs in a non-directed
N-node graph with adjacency matrix A is
2it 5k,ki(A)Aij5k’,kj(A)
iz Aij

Vi K >0: Wk K|A) = (36)

ij =

ki(A) = k? ki(A) = k'?

W (k,k'| A) gives the fraction of non-self links in the network that connect a node of degree k
to a node of degree k. Clearly W (k,k'|A) = W(K', k|A) for all (k, k"), and W(k,k'|A) =0
if k=0 or k' =0 (or both). From (36) follows also

e Definition: the degree assortativity a(A) in a non-directed graph is the Pearson
correlation between the degrees of connected nonidentical node pairs,

a(A) = ZEF>0 W (k, K| A)kK — (Spo0 W (K| A)K)’
Skso W(K|A)K? — (Zpso W (K[ A)R)?
with the marginal distribution W (k|A) = > .~o W(k,k'|A).

e [-1,1] (37)

If a(A) > 0 there is a preference in the graph for linking high-degree nodes to high-degree
nodes and low-degree nodes to low-degree nodes; if a(A) < 0 the preference is for linking
high-degree nodes to low-degree ones. Upon summing the definition (36) over k&’ we see that
the marginal W (k|A) follows directly from the degree distribution, for simple graphs the
relation is

W(HA) = 5 W FI4) = 7> 6, ah) = ppnlkia) 69

(for graphs with self-links we would replace k(A) — k(A) — N~'3; A;;). The reason why
W(k|A) # p(k|A) is that in W (k|A) the degree likelihood of nodes is conditioned on these
nodes coming up when picking links at random; this favours nodes with more links over those
with less. In those graphs where there are no correlations between the degrees of connected
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nodes one would find that the joint distribution (36) is simply the product of the respective
marginals (38), W(k,k'|A) = W (k|A)W (K'|A) for all k, k" > 0. Hence, a useful quantity to
characterise correlations is

e Definition: the degree correlation ratio in a simple non-directed graph with adjacency
matrix A is
W(k,k'|A) E*(A) W(k, K'|A)
W(HA)W(K]A) ~ Kk p(k|A)p(K]A)
This quantity is by definition equal to 1 for graphs without degree correlations. Any

Ik, K|A) = (39)

deviation from II(k, k'| A) = 1 will signal the presence of degree correlations.

The degree correlations captured by II(k, k’|A) can provide valuable new information that
is not contained in the degree distribution p(k|A). For instance, in Fig. 20 we show
two networks with nearly identical degree distributions, that are nevertheless seen to be
profoundly different at the level of degree correlations. The result of calculating the
macroscopic characteristics p(k|A) and TI(k, k’| A) for the example protein interaction data
of Fig. 2 is shown in Fig. 21.

For directed networks the degree correlations are described by a function W (k, K| A),
where k = (k'™ k°") and k' = (K™ k/°"), since in directed graphs we must distinguish
between in-in degree correlations, out-out degree correlations, and in-out degree correlations:

e Definition: the joint distribution of in- and out-degrees of connected node pairs in a
simple directed N-node graph with adjacency matrix A is

, - o, 225 0 Ei(A)Aij Oz ki (A) 1
ij +1ij ij
(40)
ki(A) = k? ki(A) = k'7

with k;(A) = (K(A), kot (A)).

W(k K \A) gives the fraction of links in the network that connect a node with in- and out
degrees k to a node with in- and out-degrees k. Clearly W (k, k’|A) — 0if k = (0,%) or
k" = (%,0) (or both), but now we may find that Wk, K'|A) £ W (K, k|A).
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Figure 20. Illustration of the limitations of using only degree statistics to characterise
graphs. The two non-directed N = 5000 graphs shown here look similar and have nearly
indistinguishable degree distributions p(k) (shown as histograms). However, they differ
profoundly at the level of degree correlations, which is visible only after calculating the
functions TI(k, k') for the two graphs, shown as heat maps on the right. In the top graph,
high degree nodes tend to be connected more to other high degree nodes. In the bottom
graph there is a strong tendency for high degree nodes to connect to low degree nodes.

The left and right marginals of W (k, k| A) need not be identical (in contract to non-
directed graphs). For simple directed graphs we find (see exercises):
Wi(k|A) = p(k|A)E™/k(A),  Wa(K'|A) = p(K| A)k™"/k(A)
e Definition: the degree correlation ratio in a simple directed graph with adjacency matrix
A s

- W (k, K| A (A W(k KA
0Py - VEFA A WEFIA)

W (k| A)Wo (K| A) KRR p(k|A)p(k'|A)
This quantity is by definition equal to 1 for directed graphs without degree correlations.

(41)

Any deviation from IT(k, ¥'|A) = 1 will signal the presence of degree correlations.

-
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Figure 21. The degree distribution p(k) (33) (left), and the normalised degree correlation
kernel TI(k, k") (39) (right, shown as a heatmap) for the protein interaction network of Fig.
2. Here N ~ 9000 and k(A) =~ 7.5. Significant deviations from II(k, k') ~ 1, i.e. deviations
from green in the heat map, imply nontrivial structural properties beyond those captured
by the degree distribution.

4.4. Generalisation to node features other than degrees

In addition to inspecting the joint statistics of degrees of connected nodes, we can generalise
the idea to arbitrary discrete features z; € X of a node i (which could be the degree of i,
but could also indicate its colour, gender, physical location, etc).

e Definition: the joint distribution of discrete features x of connected node pairs in a
non-directed N-node graph with adjacency matrix A is

Zi#j 517,331- (A) AU 517’,mj (A)

Vo, o' € X @ W(x,2'|A) =
iz Aij

(42)

ij =

z;(A) =27 z;j(A) =a'?

W(x,z'|A) gives the fraction of non-self links in the network that connect a node with
features x to a node with features /. Clearly W (z,2'|A) = W (a', z|A) for all (z,2’). From
(42) follows also



35

e Definition: the assortativity a(A) relative to the discrete feature x in a non-directed
graph is the Pearson correlation between features of connected nonidentical node pairs,

Saarex Wz, a'|A)za’ — (Yoex W(z|A)x)’
Yaex W(z|A)2? — (Loex W(z|A)z)*
with the marginal distribution W(z|A) = > cx W(z,2'|A).

a(A) =

€[-1,1] (43)

If a(A) > 0 the linked nodes tend to have positively correlated features; if a(A) < 0 they
tend to have negatively correlated features. Note that this definition (43) therefore is sensible
only for features x whose values are ordered in a meaningful way — like height or age, but in
contrast to e.g. colour.
Upon summing (42) over z’ we see that the marginal W (z|A) is
1 N

W(rlA) = 3 Wiao'|4) = 5 320, )k A) (44)

r’eX =1
Using the joint distribution p(z,k|A) = N713, 4, i(A)0
nodes we can simplify the marginal of W to

kki(A) of features and degrees of

Wald) = 3 (e klA) (45)

4.5. Modularity

Sometimes the prominent structure of a network is modularity, see e.g. Fig 22. In such
graphs nodes connect preferentially to other nodes that have the same module label — in fact
finding the optimal modules, i.e. the optimal assignment of a string (z1,...,zy) of module
labels to the nodes in the network, is a common problem in network applications. We can
now use the module membership label of each node as its feature in the sense above.

To quantify the extent to which a simple non-directed graph is modular, we compare
the number of ‘like-connects-to-like” connections (or intra-modular links) in the graph A to
what we would have found if the wiring had been completely random:

1
nr of intra—modular links in A :  Lipyga(A) = 3 ZAijémi,xj (46)
1#]
(where the factor % reflects the non-directed nature of the graph, we don’t want to count
the same link twice). In contrast, in a random graph A’ (which we will study more

rigorously later) with the same degree sequence k = (ky,...,ky) as the graph A we would

calculate the expectation value of the above quantity as (Linga(A')) = %Zi# (Aij000;) =

%Z#J»(A;j)éij, since there is assumed to be no relation between the labels x and the
adjacency matrix. Now

(Ay;) = P(A};=1|k).1+ P(A};=0|k).0 = P(Aj;=1[k) (47)



Figure 22. Examples of modular graphs. Here each node has a feature x; that represents
membership of a specific subset of nodes (its ‘module’; here the modules are shown colour-
coded). Nodes are more frequently connected to partners within the same module, as
opposed to partners from another module.

Here P(Aj; = 1|k) is the probability that in a random graph with degree sequence
k = (ki,...,ky) one will find nodes i and j connected. This must be proportional to
ki and kj, so we can estimate that (Aj;) ~ kik;/C. The value of C' then follows upon
summing both sides over i and j, giving (since A and A’ have the same degrees):
YA = O k)OO kj)/C  hence Nk = (Nk)*/C so C =Nk (48)
ij i j
This leads to our estimate (A};) = k;k;/Nk, and hence
kik;

ﬁ Ti,Tj (49)

1
nr of intra—modular links in A’ : Ly (A') & 3 Z
i#j
We can then define (apart from an overall scaling factor) our measure of modularity in terms
of the difference between the number of intra-modular links seen in A and the number we

would expect to find by accident in a random non-modular graph A’ with the same degrees:

e Definition: the modularity of a non-directed graph with adjacency matrix A is
1 ki(A)k;(A)

Q(A) = INE(A) ; (Aij - W)%,m (50)

The modularity obeys —3 < Q(A) < 5 (see exercises).



37

5. Processes on networks and their relation to spectral features

We often study networks because they are the infrastructure of some process. Here we
inspect simple dynamical processes for variables placed on the nodes of graphs, to find out
which network aspects impact on the processes that they support. This leads us to the
eigenvalue spectrum of the matrix A, and of the so-called Laplacian matrix of the graph.

5.1. Spin and voter models on networks

First definition — simple linear model. Imaging having a simple non-directed N-node graph
with adjacency matrix A. Each node ¢ represents an individual, and carries a continuous
variable s;, which represents e.g. a voting opinion (s; > 0: vote for party A; s; < 0: vote
for party B; s; = 0: undecided). Alternatively, we could think of the s; representing the
orientations of magnetic atoms (s; > 0: north pole up; s; < 0: north pole down).

e Dynamical equations:

Each individual ¢ gathers opinions (or magnetic forces) from his/her social circle 0,
which is its neighbourhood on the graph: 0, = {j < N| A;; = 1}, and has his/her
opinion s; driven by social pressure (the cumulative opinions) from the environment 0;:

(isi(t) = > 55(t) = Asi(t) = D (A — AD)y;s(t) (51)

JEO; J
A > 0 represents a decay parameter — in the absence of peer pressure, i.e. for nodes

—A_In vector form, with

without neighbours, so 9; = (), one would find s;(t) = s;(0)e
s(t) = (s1(t),...,sn(t)) equation (51) reads
d
&s(t) = (A - \D)s(t) (52)

e Solution of dynamical equations:
Equation (52) is linear, so easily solved. The matrix A is symmetric, so it has a complete
set of N orthogonal eigenvectors €, with k=1... N, which can be normalised such that

Vi Aeé" = e, Yk K . er. e = G (53)

Here {u1,...,un} are the N (not necessarily distinct) real-valued eigenvalues of A;
since they depend on A we should write px(A), but if there is no risk of ambiguity we
will drop the argument A to reduce clutter in formulae. We can use the N eigenvectors
as our new basis in IRY, and write for any s € RY: s = fozl oxe”. Hence also

s(t) = Y ou(n)e* (54)
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Inserting this into (52) gives

dt = k=1

> (iak(t))ék = > ou(t)(A— AD)e*

k=1 k=1

Z ((i"k(t))ék = Z or(t) (e — A)e" (55)

Taking the inner product on both sides of (55) with &, using (53), gives

d

&Ué(t) = (e — A)oe(?) (56)
The solution is evidently

oo(t) = oy (0)elre=Nt (57)

Eigenvalues of A with pr < A will have ox(t) — 0 and those with g, > A\ will have
or(t) — Zoo. Hence either |s(t)] — 0 or |s(t)] — oo as t — oo; the dynamical
variables evolve either to zero or to infinity. Hence, although this model (51) is well-defined
mathematically, it is not a good description of social or magnetic interactions.

Revised definition — spherical model. To cure the maladies of the previous model without
sacrificing its linearity, we can replace the constant A in (51) by a time dependent decay rate
A(t). If we define this A(¢) by the requirement that s*(t) = N for all ¢ > 0, so that the
divergencies of the previous laws can no longer occur, we obtain a so-called spherical model:

e Dynamical equations:
d 1
Vt>0: &s(t) = As(t) — A(t)s(t), A(t) = Ns(t) - As(t) (58)
The second equations follows upon setting s?(0) = N and demanding that < s%(t) = 0
for all t+ > 0. Again we switch to the new basis of eigenvectors {&"}, by substituting
s(t) = XN o(t)é" into (58), which now leads to the following equations, from which
we need to solve both the {ox(t)} and A(¢):

iak(t) = [ = A®]ow(t),  Al) = }szl pi(t) (59)

e Solution of dynamical equations:

The first equation in (59) is solved easily:
o(t) = op(0)et o 4" M) (60)
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Substitution into the second equation of (59) then gives an equation for A(¢):

—
2

NI 0 = T3 e} 0) (61)
k=1
d 2 [ldt’ A(t) d1 & 2t 2
—e"Jo TN ;;16 o;(0) (62)
2 [Tt A(¥) 1 I 2t 2
e”Jo :NZB 0. (0)+C (63)
k=1
t 1 N
[ar Ay =1og | Y emtat(0) +C (64)
0 N =
We find the constant C' by evaluating the above for ¢t = 0, using 3, 02(0) = N:
| N
1= v > 0:(0)+C  hence C=0 (65)
k=1

We thus obtain the following solution:

1d 1 Y SN et a2 (0)
M) = Z—1 - 2pt 2 — k=1 k
®) =538y ,; o (0)] S etal(0) o

o Asymptotic behaviour:

Let us assume, for simplicity, that we do not have the pathological case where the
initial vector s(0) was strictly orthogonal to one or more of the A-eigenvectors. So
01,(0) = & - 5(0) # 0 for all k. Let us also define the largest eigenvalue fimay:

— — < —
Hnax = MAX i, S {k < N| pty, = fimax} (67)
Multiply numerator and denominator of (66) by exp(—2umaxt) and take t — oo:

2 2 —Hmax 2

e M BT h(0) + Sy et 0
2
max 0

— Zkesl’[’ QO-k( ) = flmax (68)

Ykes 01(0)

We also know from (58) that, using standard linear algebra,
s(t) - As(t) - Az

)\(t) = 327(” S maxwelev? = Hmax (69)

with equality if and only if s(¢) is in the eigenspace of A with eigenvalue fip.x. We see
in (68) that our process (58) evolves towards an eigenvector of A with eigenvalue fiyax.

The second largest eigenvalue of A controls the timescale over which the evolution towards
stationarity takes place. If we make the simple choice 04(0) = 1 Vk for the initial conditions,
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we can write the solution A(t) at any time in terms of the so-called eigenvalue spectrum
{m,...,un} of A, since when 04(0) = 1 Vk our equation (66) simplifies to

% Zg:1 Mkem%t
% Soaly ekt
Apparently, the dynamics of such spherical collective processes on graphs depends critically

on the eigenvalue spectra of their adjacency matrices.

A(t) =

(70)

5.2. Diffusion processes and random walks - the Laplacian matriz of a graph

Diffusion processes on networks. Imaging again having a simple non-directed N-node graph
with adjacency matrix A. Each node i of the graph now contains a conserved resource z; € IR
(e.g. energy, water, food, money, etc), which can diffuse (or ‘leak’) away to its neighbours,
always from high to low levels. With ‘conserved’ we mean that, in contrast to the variables
in our previous dynamical models, if the amount of the variable increases at one node it
has to decrease somewhere else in compensation. The rate of diffusion between two nodes
is larger when their differences in resource levels are larger, as would be the case with e.g.
heat or water pressure.

S alt) = Xl(0) — 2(0] = X Ay (1) — k(A)() (1)

J€0;

This process can be written in terms of the N x N so-called Laplacian matrix L with entries

Lij, as S2,(t) = — 3 Lijz(t), where

Lij = ki(A) 65 — Ay (72)
In vector form, with z(t) = (21(¢), ..., z2n(t)), this becomes

(iz(t) = — Lz(t) (73)

This is again a linear equation, which can be solved similar to earlier examples by
transformation to the (complete) basis of eigenvectors of the symmetric matrix L, and ends
up giving a solution expressed in terms of eigenvalues and eigenvectors of L. We could again
worry about the possibility of exponentially diverging solutions, but we will see below that
all eigenvalues of L are nonnegative, so here this cannot happen. In fact we can show easily
from (71) that the total amount Z(t) = >, 2;(¢) is conserved over time:

C20) = Y (X Aus(t) — k(A)5(0) = S h(A)5() - Sh(A)z(0) =0 ()

i

Random walks on networks. Random walks on non-directed graphs are discrete versions of
diffusion processes. We define p;(t) € [0, 1] as the probability that the walker is at site j
at time t € IN. At each time step he moves to a new site i, selected randomly and with
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equal probabilities from the neighbours of j. Since there are k;(A) sites to choose from, the
probability to go to each one of these is k;j’l(A). Hence the dynamical equations are

P = 3 ) = X o) (75)

JEO; J

With the definition D;;(A) = k;(A)d;; this can be rewritten as p;(t+1) = Y;,(AD™");;p;(t),
and hence, upon defining p(t) = (p1(¢),...,pn(t)), we can write the solution at any time as

p(t) = (AD™")'p(0) (76)

We see that the stationary state solution p = (p1, ..., pn) of this equation can be written as
p = Dz, with (D — A)x = 0. Since D — A is the Laplacian matrix, we see that again the
Laplacian is the relevant matrix to describe the process.

The dynamical and asymptotic features of diffusion-type processes on graphs are
apparently controlled by the eigenvalue spectrum of the Laplacian matrix, rather than that
of the adjacency matrix. Note: the entries of the Laplacian matrix of a simple non-directed
graph are no longer binary, L;; € {0, —1} if ¢ # j, and L;; € IN.

5.3. Spectra of adjacency matrices

Properties of eigenvalue spectra of adjacency matrices. The previous pages showed why the
spectra of adjacency matrices and Laplacians are important, from the point of view of the
impact of topological features of graphs on the processes for which they are the infrastructure.
We now investigate the properties of these spectra, and get some feeling for which spectra
we might expect to find for real networks. We know from linear algebra that all eigenvalues
of symmetric matrices are real-valued, hence the above restriction to non-directed graphs.
Adjacency matrices of directed graphs will indeed normally have complex eigenvalues.

In the remainder of this subsection, let A be the adjacency matrix of a non-directed
N-node graph, and let pimin(A) and fimax(A) denote the smallest and the largest eigenvalue
in the set {u1(A),..., unv(A)}. Let u be the N-dimensional vector w = (1,1,...,1):

o Claim: pimin(A) < k(A)

Proof: A A
roo i (A) = mianRN:v T _u

u 1 -
22 = ul = NZAU =k(A)
ij

o Claim: fiyax(A) > k(A)

Proof: r-Axr u-Au 1 —
MmaX<A) = MaXgperN > u? = N Z Aij = k<A)
iJ

x2
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o Claim: fima(A) < maxj_; y k;j(A).
Proof:

Let u be an eigenvalue of A and @ € R the corresponding eigenvector. Define
r* = max; x;. If ¥ <0 (so all components of @ are non-positive) we replace x — —,
so that we will have * > 0 (note: since & # 0 this is always possible to achieve). Now
choose i to be a site with z; = 2*, and use x; < 2* for all j:

part =3 Ay,
;

T x*
poo= ZAij;i < ZAz‘j; = ki(A) < max;ji.n kj(A)
J J
Since this result holds for any eigenvalue p, we can indeed also state the above claim.

We can combine the above three inequalities into the following corollary:
fmin(A) < k(A) < pmax(A) < maxj_y y kj(A) (77)

e Definition: a non-directed N-node graph with adjacency matrix A in which all degrees
k;(A) are identical to ¢, i.e. k;(A) = ¢ for all 7, is called a g-reqular graph.

e Claim: the largest eigenvalue of the adjacency matrix A of a ¢-regular non-directed
N-node graph with adjacency matrix A is fimax(A) = q.
Proof: this follows directly from (77).

e Claim: the eigenvalue spectrum {u1(A),..., un(A)} of a simple non-directed N-node
graph obeys

1 N
v 2 H(A) =0 (78)
k=1
Proof:

We use the fact that for each symmetric matrix A there exists a unitary N x N matrix
U, i.e. one such that UU' = U'U = 1, such that A = UD(u)U", where D(p) is the
diagonal matrix with entries D(p);; = p;(A)d;;. Now

S = Spw), =[],

= Y [Ui(avut) T av] =3 [Utatlau]

=> {UTA[U] o YD (UNR(AY)Us = 303 (A Us(U s
k kg k ij
= > (AN, (UUY);; = > (A5 = > (A"

i i A
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Figure 23. Adjacency matrix eigenvalue distributions (i.e. histograms of the numbers
u1(A),...,un(A)) of three graphs shown and quantified in previous figures. Left:
eigenvalue distribution for the human protein interaction graph (see Figures 2 and 21).
Middle and right: eigenvalue distributions for the two graphs in Fig. 20. The middle
histogram refers to the graph with only weak degree correlations (top line in Fig. 20) and
the right histogram refers to the graph with strong degree correlations (bottom line in Fig.
20). The eigenvalue spectra of the last two graphs are seen to be significantly different, in
spite of their nearly identical degree distributions.

For ¢ =1 this gives + Y5 me(A) = & ; Ai = 0.
e Claim: the eigenvalue spectrum {u;(A),...,un(A)} of a non-directed N-node graph

obeys

L3 (4) = k(a) (79)

k=

—

Proof:

From the previous proof we know that for any integer ¢ > O0: %fo:l pe(A) =
L 57(A);. Upon choosing ¢ = 2 we find, using AY; = Ay for Ag; € {0,1}:

Z_: Z<A2 = 72"41]14]1

j

*ZAU Zk = k(A) (80)

1

2

Link between adjacency matriz spectra and closed path statistics. From the eigenvalue
spectrum of the adjacency matrix A of a non-directed graph one can also obtain the numbers
Ly(A) of closed paths of all possible lengths ¢ in this graph, since

e Claim: for any integer ¢ > 2 the eigenvalue spectrum {ui(A),...,un(A)} of a non-
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Figure 24. Adjacency matrix eigenvalue distributions (i.e. histograms of the numbers
u1(A),...,un(A)) of the three further graphs, to emphasise that the shape of these
distributions can vary considerably, which, via the quantities N~! >k ,ui(A), reflects the
different statistics of closed paths in these graphs. The Erdds-Rényi random graphs will be
the subject of a subsequent section of these notes.

directed graph with adjacency matrix A obeys

1 X, 1

N 1; py,(A) = NLZ(A) (81)
where Ly(A), defined in (15), gives the number of closed paths of length ¢ in the graph.
Proof:

From the proof of (78) we also know that for any integer ¢ > 2: + Y, ut(A) =
¥ (A" = ¥ Le(A).

e Claim: if the eigenvalue spectrum of the adjacency matrix A of a non-directed N-node

graph is symmetric, i.e. the histogram of eigenvalues is symmetrix with respect to
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reflection in the line g = 0, and hence N=' Y, f(ur(A)) = 0 for any anti-symmetric
function f(x), then this graph has no closed paths of odd length (no triangles, no
pentagons, etc).

Proof:

We use the previous result with £ = 2m + 1 and m € IN, and use the fact that the

2m+1

function f(z) ==« is anti—symmetric:

Lom+1(A Z 1" (A) =0

Some examples of adjacency matrix eigenvalue spectra for non-directed graphs that we have
already inspected earlier are shown in Fig. 23. Further examples are shown in Fig. 24, to
emphasise the large variability in spectra one should expect.

5.4. Spectra of Laplacian matrices

We saw that an alternative spectral characterisation of nondirected graphs, especially
relevant for graphs describing diffusive processes, is based on the eigenvalues of the so-called
Laplacian N x N matrix L = {L;;}, rather than those of the adjacency matrix A.

e Definition: the Laplacian matrix L of an N-node graph with adjacency matrix A is
defined by the entries

Lij = ki(A)di; — Ay (82)
Since the Laplacian is a symmetric matrix, it must have real-valued eigenvalues.

e (Claim: all eigenvalues of a Laplacian matrix L of a graph are nonnegative.
Proof:
We show that for any « € R" one will find = - Lz > 0:

x-Lx = le (kZ(A)(SZ] ”)x] Z iL'Zk ) — Z Al'jill'il'j
i ij

]

ZAU x; —i—x —2z,x;) = ZAU —z;) 2 >0

ij
Any eigenvector x of L with eigenvalue u < 0 would have given x - Lz = uz? < 0, in
contradiction with the above. Hence L cannot have negative eigenvalues.

e (Claim: the Laplacian matrix L of a graph always has at least one eigenvalue p = 0.

Proof:
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Figure 25. Laplacian matrix eigenvalue distributions orap(p) of the three graphs of Figure
24, which indeed show nonnegative eigenvalues only. It is clear the the eigenvalue spectra
of the adjacency matrix and of the Laplacian matrix sometimes will and sometimes will not
be similar. In the exercises we will find out why the Laplacian spectra in the middle and
right graph are of the same shape as their adjacency matrix spectra in Fig. 24.

Define w = (1,1,...,1), and show that it is an eigenvector with eigenvalue zero:

(Lu)i = Y Liju; = Y (ki(A)s

Ayl =E(A) —k(A)=0  (83)

e Claim: the multiplicity of the kernel of a Laplacian matrix L of a graph (i.e. the
dimension of the eigenspace corresponding to eigenvalue zero) equals the number of

disconnected components in the graph.

Proof:

Consider a vector & with eigenvalue zero. Using the identity - Lax = % i Aij( —x;)?
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derived in the previous proof, it follows that for such an eigenvector
0= > Ay(z; —x;)°
]

Hence V(i,7) : A;j; = 0 or x; = x;. For each connected component V' C {1,..., N} of
our graph we have thereby found an eigenvector V" € IR" with eigenvalue 0:

o' =1 if ieV

' =0 if i¢V

Imagine there was a further zero eigenvalue, with an eigenvector @ that is not one of

connected component V' : {

the above. Again we would find 0 = 37;; A;;(2; — ;). We can now decompose
0="> > Aylwi—u)’
V' igev?
Hence we would again get, for any connected component V': x; = z; for all 7,5 € V.
But that implies that @ is a linear combination of the eigenvectors above, which is
not possible. Hence the dimension of the kernel of L, i.e. the number of independent
eigenvectors with eigenvalue zero, is exactly the number of connected components.

The above features of the Laplacian matrix allow us to predict immediately the stationary
state of diffusion processes. For instance, from expression (??7) we may now conclude that
in the stationary state z(oo0) = limy_,o 2(1):

1
for each connected component V' . VieV': z(o0)= | > z(0) (84)
jev’
(see exercises for proof). In Fig 25 we show the eigenvalue spectra gpa,(it|A) of the matrices
shown earlier (with their adjacency matrix eigenvalue spectra) in Fig. 24.
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6. Random and pseudo-random graphs

6.1. Random graphs as ‘null models’

The need for ‘null models’. We have seen many ways to quantify network topologies. The
values we find for these quantifiers in a network, however, need to be interpreted. We need
to know what values we would have expected to find by default or typically. If we observe
that a graph has a Poissonian degree distribution, should we be excited? If we find that
the number of triangles in an N-node graph equals N/5, is this a large or a small number?
Which features of adjacency matrix spectra are common to most networks, and which are
informative and special? We lack a yardstick against which to measure what we see.

We can define ‘typical’ values as those that we would find in a ‘null model’, which we
define as a random graph that is otherwise similar to the network at hand. But how do
we define ‘similar’? Observations in a null model will depend on which features of the real
network we imposed upon its random counterpart — the devil is in the detail. For instance,
in constructing a measure for modularity, we compared observations in a network to what
we would expect from a randomly generated graph with the same degrees as the observed
one. We could have chosen other quantities than degrees to be copied to our null model ...

e Definition: a random graph ensemble {G, p} is defined as a set G of adjacency matrices
A, together with a measure p that specifies a probability p(A) for each A in G.

e Definition: ensemble averages of observable quantitative features f(A) of random graphs

(fy= > p(A)f(A) (85)
Acg

In this section we first define and study the simplest nontrivial random graph ensemble, the

are defined as

Erdos-Renyi model. Later we turn to more systematic ways of defining and constructing
random graph ensembles to serve as null models.

6.2. The Erdos-Reéenyi model

Definition and basic properties. The Erdés-Rényi (ER) model is the random graph ensemble
in which G is the set of all simple nondirected N-node graphs, and all links are drawn
independently, according to p(A4;; = 1) = p* and p(A;; = 0) =1 — p*, with p* € [0, 1]:

Q = {A S {0, 1}N><N| Aij = Aji and A“ =0 VZ,j S N} (86)
N
p(A) = H |:p*5Aij71 + (1 - p*)(SAij,O} ) (87)
1<j=1

We have to be careful to distinguish between averages that are defined for a single graph,
such as k(A), and averages over the ensemble, to be written as (...), which are average
values of graph features calculated over randomly generated graph instances A.
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e Claim: for graphs generated in the ER ensemble , the average value of the average
degree k(A) = N7'Y,; Aj; equals p*(N — 1).

Proof:
= 1 2 2
(R(A) = 32 p(A)5: 2 A = 30 P(A) = DA = 20 2 p(A)A,,
Aeg TS Aeg r<s r<s Aeg
2 N
- N Z Ars H [p*éAij,l + (1 - p*>5Aij,0]
r<s Aeg 1<j=1
2 ! 1
= N ( Z Ayrs [p*(SArs»l_’_(l_p*)(;Am,O]) H Z [p (5142] 1+ 1 —p )5,4” 0}
r<s  Ars=0 i<, (i,5)#(r,s) Aij=
25, 207 LN 1) = (N
=YL= L= NV - = (V-

Note: (k) is the average over the ensemble of the average degree k(A) of its graphs, i.e.
(k) =X Acg p(A)k(A). Individual random graphs A generated according to (87) will
generally have k(A) # (k).

e (Claim: the Erdos-Rényi ensemble assigns equal probabilities to all graphs with the same
number of links.

Proof:
Since A;; € {0,1}, the probabilities (87) can be written in the alternative form:

p(A) =TT [()4 (1 = p) 4] = ()t (1 = pr) PN D" M (s8)

i<j
Hence the dependence of p(A) on A can indeed be expressed fully in terms of the
number L(A) = 2, ; Aj; of links in A, via

p(A) _ (p*)L(A)(l . p*>N(N71)/27L(A) (89)

e Claim: the graph probabilities (87) of the ER ensemble can equivalently be written as

o) = T |+ (12 5 ) o) (90)

1<j=1

Proof: This follows directly from the above result (k) = p*(N — 1).

In the ER ensemble we control the likelihood of graphs via just one graph observable, which
can either be k(A) or the number of links L(A) (one follows from the other), and all graphs
with the same value for this parameter are equally probable. In spite of this superficial
simplicity, analysing this model turns out to be less than trivial.
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e Claim: the average clustering coefficient C; = (C;(A)) of any node 7 in graphs generated
from the ER ensemble (87), with the definition of C;(A) given in (14), is
(Ci(A)) =p"[1 = (L—p)" " = p"(N=1)(1—p")"7] (91)
Proof:
We use definition (14), and have to be careful to distinguish between k;(A) < 2 and

k;(A) > 2. To handle this implicit conditioning on the degree value we use the integral
representation of the Kronecker d-symbol (see 8.4), 0,,, = (271) 7 /7 dw e!("=m):

Z'r;és AZ’I‘AT’SAS’L >

)) = <Z(5k,ki<A>Ci< > <Z5kkA)k:(A)(k:(A)—1)

k>0 k>2
k>2 r#S
:Z 2 Z< du}lw(kZA”AAA>
s k(k—=1) 7= 2
- 2_ > [ M’“<AWATSAmHe . >
k>2 7“<s r,871 J#i
iw —iwA;, C —lwAg —iwA;;
Z k‘(k‘ 1) Z / < S<Ai7"e )(Awe ) H © >
k>2 r<s 7,571 J¢{isr,s}

So far we have only substituted definitions, and rearranged factors such that entries of
the adjacency matrix are grouped together. Now we do the actual ensemble averages.
The measure p(A) in the ER ensemble (87) factorises over the links, reflecting the fact
that they are indeed generated independently, which means that the average over p(A)
above simplifies to so the above can be reduced to the product of ensemble averages:

<A'r‘s (Aire—iwAir)( ’Lse_lwA“> H e—lwAz]> _ ATS><Aire—iwAw><Aise—iwAis> H <e—iwAij>

Jg¢tir,s} g¢{ir S}
:p*(p*e_‘“’)Q(p*e_‘“—i—l—p*)N_3 — (p*)?) 21w(p e 1w+1 —p )
Next we use Newton’s binomium formula to work out the quantity (p*e™“+1—p*)V=3:

(e () () T et} = e 3 (0 gy

j¢{ir,s}
_ Z ( ) £+3 —(€+2)1w<1 —p )N—3—€

We insert this into our expression for (C;(A)), use 3, ozl = 3(N—1)(N—2) , and
do some simple cleaning up:

(V=D =2) 7 do 048 (4D ] N3t
=3 "y L Zzg( 2) ) e (1)
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(N-1)(N=2) T N=3\, s N—3—¢ [T AW k-2
,;2 k(k—1) ;0( ()@ eom

At this stage we use the integral representation of the Kronecker delta-symbol to get
rid of the w-integral:

ey = X O S (Y0 s

_ I;_Q (N;<1k)(_]\1[)_2) ( ]]:]__23 )(p*)k—‘rl(l_p*)N—l—k

We now write explicitly the combinatorial factor, and clean up the various quantities

where possible:

= § DD O
— k‘(gifv__llz'k) (p* )kﬂ(l —p )N—1 k
:p* (Nk—1>(p )k(l p*)N—l—k

_ p ]; ( N )(p )k(l_p*)Nflfk _p*<1_p*>N71 _p*(N_l)p*(l_p*)N—Q

We then recognise that Newton’s binomial formula can be used to do the sum over ¢,
and proceed to our final result:

(Ci(A)) = p{1— (1=p)" = (N=1)p*(1=p")" 2} (92)

The above proof is a useful exercise in the use of various bookkeeping tools, such
us summation formulae from Calculus, Newton’s binomial formula, and the integral
representation of the Kronecker delta-symbol. These tools will continue to serve us.

6.3. The Erdds-Renyi model in the finite connectivity regime

We are usually interested in large networks with a finite average degree — these tend to be
found in the real world. Therefore many properties of the ER ensemble have been studied in
the so-called finite connectivity regime, starting from (90), where: N — oo with (k) finite.
It follows from a relation found earlier, namely (k(A)) = p*(N —1), that in this regime
p* = O(N~1). The probability for an individual link to be present must indeed scale as
O(N') in order to have on average a finite number of partners per node in the system. We
now investigate properties of the ER ensemble in this finite connectivity limit.
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e Claim: in the finite connectivity limit, i.e. for N — oo with (k) fixed, the degree
distribution of the Erdds-Renyi ensemble has the Poissonnian form

Jim (p(k|A)) = e " (k)* k! (93)
Proof:
Jim p(HA) = lim S p(HAP(AIE) (94)
~ Aeg

As always we manipulate all ensemble averages until they factorise over the bond
variables, since the entries of A are in the ER model distributed independently. Again we
use the symmetry and absence of diagonal elements of A, and the integral representation
of the Kronecker -symbol to achieve this:

Jm 1A = Jim (505 ) = Jim 3 [ SRR )
=y 3 [ e
= fim A3 [ )
= Jim, gy 3 [ et B b
SN I = Gt

— 1 1 dw 1wk <k> <k> —iwA(8is+055)
_Nhi%oﬁz/ 5 I 30 (Fogdan (0= p)an)e

Jj<s Ae{0,1}
— lim 72/ 1wl~c H 1 4+ <k> (e—IUJ((Su'HSz]) _ 1)}
N—oo N 27‘(’ i<s N-1

Next, since N — oo and (k) is finite, we can use the expansion 1+ 2 = exp(z — 32° +

O(x3)). We also note that e~ 515””) 1 = 0 unless either s =i or j = i or both, so

that 3", (e” i0ss+955) 1) = O(N) and Y esle —i0is+055) _1)2 = O(N) as N — oo. Hence
)2

) ) 1 dw (k) (e” i(8;5+8;5) _ 1)-1 (k (e*iw(5is+5i]~)_1)2+O(N—3)
lim klA)) = lim — / ek TT e 2 (N-1)2
) 1 dw ps & —iw(8is+955) _1yLo(N—1L
= Jim 37 [" SR Rl o)
N—oo N Z 2w
.1 dw jupt B S (e bis i) 1) o(N—1)
— JE— - 2N #5
]&:I%ONZ/ LMY

= lim 12/ diwe“"k"'%Zj;éi(e_i“—l)'FO(N_l)
27
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N =50, (k) =5 N =500, (k) =5 N =5000, (k) =5

02 B 02

0.1 A q 0.1 A

Figure 26. Comparison between the theoretical prediction (93) for the average degree
distribution of infinitely large ER graphs (triangles) and the observed distributions in
random samples from the ER ensemble, for N = 50, 500, 5000 (histograms). Clearly,
for N = 500 the differences between actual degree distributions and the N — oo formula
are already small, and for N = 5000 they are more or less negligible. This means that
asymptotic results are useful descriptions of large but finite graphs.

]_ dw —iw —1 dw —iw
— lim — / QW Jiwk Ry e =1+ _ (k) [ CY k(e
Z 27 x 2T
The last step is the remaining integral over w. It looks nasty, but is in fact simple.
Just expand exp((k)e ) as a power series, and use the integral representation of the

Kronecker delta again'
Z / dw 1w(k L)

fim (p(k] 4)) = o [ Woior 5o O e
27T >0 g' >0

N—oo

—(k) <k>z k /1.1
=€ 275]{5—6 <k> /kf
>0
In Fig 26 we see that this asymptotic result (i.e. a formula derived for N — o0) is accurate
already for large but finite graphs of size N ~ 10?2 — 10%. In other words: in the finite

connectivity regime, size N ~ 10> — 103 graphs appear to behave like infinite ones.

e Claim: in the finite connectivity limit, i.e. for N — oo with (k) fixed, the average
clustering coefficients of the Erdos-Renyi ensemble become

€A = e et] 1 o(v) (99)

Proof:
We substitute p* = (k)/(N —1) into (91) and expand the result for N — oo, using
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log(1+z) =2+ O(2?) and ¢ =1 + z + O(2?):

N—-1
_ <_>1 1— ef<k>+(9(N_1) _ <k,>ef(k>+(9(N—1)]
= <Nk>[1 —e ) — (k)efm} + O(N7?)

So in the finite connectivity scaling regime all clustering coefficients of typical Erdos-Rényi
graphs vanish for N — oo, and the number of triangles per node is order N~!. Using in
principle similar tools (but involving calculations that are more tedious), one can show that
large random graphs generated from the Erdos-Rényi ensemble (87) with fixed (k) will be
locally tree-like (i.e. have a vanishing number of short loops per node) and will on average
have vanishing degree correlations,

for all (k. k) lim (W(k,|A)) = [ lim (WA lm (WEIA)]  (96)
with W (k, k’|A) as defined in (36).

6.4. Generating functions

Many averages over the degree distribution p(k) of a graph or an ensemble of graphs can be
expressed in terms of the following generating function, calculation of which will reduce the
amount of work (and the likelihood or error) in our calculations:

e Definition: the generating function of the degree distribution is defined for x € [0, 1] as

Gr) = Y plk)a* (97)

k>0

We see that it obeys: LG(z) > 0, with G(0) = p(0) and G(1) = 1.

e (Claim: the degree distribution follows from its generating function via

. 1d*G(x)

(98)
Proof:

This follows directly from application of the Taylor expansion to the function G(z),
which tells us that G(z) = Y450 G (0)z".
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e Claim: all moments (k™) of the degree distribution, with m € IN, follow from the
generating function via

. d \m
(k) = tim (2 1) "Gla) (99)
Proof:
For m = 0 the claim holds trivially. We just work out the recipe on the right for m > 0:
Dy - (Y S et — (o) 5 e L
(:cdm) G(z) = (xda) Ig)p(k) = <xdx) ép(k)xdxa:
d \m-1 d \m—2
= (z— p(k)ka® = (2— p(k)k*2"
()™ St = (e )
= .. T - -
= (xd—) > p(k)k" " = p(k)k™x

Setting x — 1 then leads to the above claim.

Let us work out the generating function (97) for some simple degree distributions, with
average degree (k) = ¢ > 0:

e (Claim: the generating function of the degree distribution for regular random graphs,
where p(k) = 0y, is
G(z) = 27 (100)

Proof: this is trivial, in the sum over k£ we retain only the term k = q.

e (Claim: the generating function of the degree distribution for Poissonnian random
graphs, i.e. where p(k) = e~%¢*/k! with ¢ > 0 (like finitely connected ER ones) is
G(z) = e"91-2) (101)
Proof:

We do the sum over k in (106), using 350 y*/k! = e¥:

gk
G(z) =e? Z — = e 91" = o~ 1(1-7) (102)
>0 k!

e (Claim: the generating function of the degree distribution for random graphs with
exponential degree distributions, i.e. where p(k) = (+2)*/(1+¢q) with ¢ > 0, is

1
M)

(see exercises for proofs that this distribution obeys Y-, p(k) = 1 and Y, p(k)k = q).

(103)
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Proof:
We do the sum over k in (106), using 350 y* = 1/(1—y):
1 qr Nk 1 1
G(z) = =
(@) 1+qg;(1+q> 1+g1—qz/(1+q)
1 1

(104)

14+q—qzx - 1+4q(1—2x)
In the exercises we confirm for all three examples that they indeed obey G(0) =0, G(1) = 1,
and lim,_,; :L"d%G([E) =q.

6.5. The giant component in random tree-like graphs

Definition and general formula. We saw that in the finite connectivity regime the ER model
generates locally tree-like graphs. These have convenient mathematical features. The main
one is this: given the statistical features of a node 7, those of the k; nodes in its environment
0; can in leading order be taken as statistically independent, since each ‘branch’ of the tree
centred at ¢ is connected to each other branch only via node i. See Figure 27. Here we
investigate locally tree-like random graphs with a given degree distribution p(k).

We consider the largest connected component LCOC' of a graph G (see definition in
section 2), and define f as the fraction of the N nodes in the graph that is in the LLC, so

size of the largest component : |LCC| = fN (105)
Note that f is then also the probability that a randomly drawn node from G is in the LCC.

e Definition: a graph G has a ‘giant component’ if |[LCC| = O(N), i.e. if f > 0 and of
order O(1).

Clearly, having a giant component will have a significant impact on processes running
on the graph. Therefore we would like to calculate f. Since each randomly drawn node has
degree distribution p(k), we may use the following simple argument

1— f = Prob(randomly drawn node not in LCC)

= Zp(k).Prob(neighbours of randomly drawn node with degree k not in LCC')
k

Since the graph is tree-like, the only possible correlations among local topological features
of nodes in a generation g are those caused by their common ancestor (if any), so
Prob(k neighbours are not in LCC) = (1 — f)*, and hence we find that f is the solution of
the simple equation 1 — f = Y50 p(k)(1 — f)¥, or equivalently

f=1-G(A-/) (106)

where G(z) is the generating function (97). Since G(1) = 1 we see that f = 0 is always
a solution of (106), describing a graph with a non-extensive largest component, since the
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Figure 27. In locally tree-like graphs the number of short loops is vanishingly small, for the
vast majority of the nodes the local topology is that of a tree. Hence, starting from a node
i, we would find that the tree branches descending from 7 are nearly disconnected — they
connect only at site ¢. In this example p(k) = 0 3. With non-regular degree distributions
we will see local randomness in this environment.

relative size of the giant component is f/N. The next question is whether there are solutions
of (106) with f > 0.

The solution of equation (106) can be found graphically by intersecting the function
F(f) on the interval f € [0,1] with the diagonal, since this intersection has f = F(f), in
which

F(f)=1-G(1 =)

regular random graphs, (k) =q : F(fy=1—-(1-f)
finitely connected ER graphs, (k) =q: F(f)y=1-e/a (107)
exponential random graphs, (k) =q : F(f)=qf/(1+4qf)

(where we used the generating functions calculated in the previous subsection). We observe
that regular graphs are a special case. Here for ¢ = 1 all values f € [0, 1] obey f = F(q),
and for ¢ > 1 the value f =1 is always a solution of f = F(q).

The result of plotting the functions F(f) on f € [0,1] for the above choices for p(k),
and of solving numerically the equation f = F(f) for (k) = ¢ € [0,6] is shown in Figure
28. In all three cases the system undergoes a percolation phase transition at (k) = q = 1,
where the system switches from f =0 (for ¢ < 1) to f > 0 (for ¢ > 1). Exactly at (k) =1
the networks develop a giant component. The size of this component is largest for regular
graphs, and smallest for the exponential ones.

Unaversality of the percolation transition. It is no accident that in all three examples above
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Figure 28. Top row: shapes of the function F(f) for three random graph types with average
degree (k) = ¢: regular graphs with p(k) = 0y, finitely connected Erdds-Reyi graphs (for
large N) with p(k) = e~9¢* /k!, and exponential graphs with p(k) = (ﬁ)k/(l—l—q) Solid lines
in each panel: F(f) for q € {%, 1, %,2, 3,3}, from bottom to top. Dotted: the diagonal,
whose intersection point with F(f) marks the value f that gives the relative size of the
largest connected component in the graph. Bottom row: corresponding expected relative
sizes of the largest connected component (i.e. solutions of F(f) = f) in each of the there
random graphs, shown as a function of the average degree (k). In all cases a giant component

appears in the graphs at (k) = 1, which is interpreted as a percolation transition point.

the percolation transition occurs at the same point (k) = 1. The transition point correspond

to the value of (k) where the trivial solution f = 0 of F'(f) = f ceases to be unique, this event
is called a bifurcation of a new solution of (106). Figure 28 (bottom row) shows that, except

for the degenerate case of regular graphs, the transition is generally continuous, i.e. there

is no jump in the solution f when we vary (k). This prompts us to do a simple continuous

bifurcation analysis of (106) near f = 0, by expansion in powers of f:

F=1= S pm - =10 Y ()

k>0 k>0 £=0
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Figure 29. The fraction of node pairs (i,7) in randomly generated ER graphs that are
found to have a distance d;; < d, shown versus d. Here N = 1000 and (k) € [0,2]. One
observes clearly that there is a sharp transition at (k) ~ 1. For (k) < 1 the fraction of node
pairs at a finite distance from each other is vanishing small. For (k) > 1 this fraction all of
sudden becomes finite, which marks the emergence of the giant component in the graph.

— 1= ()

:1_{;@[)( kap ()+f2kzp (;)Jr@(f?’)}

= Y pR)k — 2 Y p(k) (""' 557+ O

k>1 £>2

= F(B) — 5 3 k(1) + O(f°)

- —if?Zp KE=1) +O(f?)
— 10— LR+ o) (108)

So our equation for f can be written as

P = (R) + g FRR=1) + O =0 (109)
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For sufficiently small f we may neglect the cubic term and conclude
(k)—1
&) — (k)

It can be shown (see exercises) that always (k%) > (k) unless we have a graph without

f=0 or f=2 (110)

links. Hence, as soon as (k%) — (k) < oo a new solution f > 0 bifurcates exactly when
(k) = 1, irrespective of the shape of the degree distribution p(k). Only for power law degree
distributions, where (k*) = oo, this bifurcation does not occur, and we have to evaluate
(106) in full to study whether and when a giant component may appear.

In Figure 29 we show that the predicted emergence of a giant component at a sharply
defined value of (k) is real, for numerically generated random Erdés-Renyi graphs of size
N = 1000, and with (k) € [0,2]. We plot the fraction of node pairs (i,7) (with ¢ # j)
that have a distance d;; < d, as a function of d. Clearly, there is a phase transition at
(k) ~ 1, where all of a sudden the typical distances between nodes in the graph become
finite, marking the creation of the giant component.

Note that all calculations in this subsection were based on the assumption that the
neighbours of any randomly picked node have degrees that are distributed independently.
Just giving the degree distribution of a graph is not enough, as we have already seen in e.g.
Figure 20; we need to specify the full ensemble probabilities p(A) to check when this assumed
degree independence holds. It is easy to construct graphs with (k) > 1 (see exercises for an
example of a regular graph with (k) = 2) without a giant component. For the Erdos-Renyi
ensemble, where we indeed have a fully specified p(A), a more precise calculation can be
done, and here (106) is indeed found to be exact in the limit N — oo.

6.6. Tailoring topologies via maximum entropy random graph ensembles

The ensemble (87,90) is the simplest nontrivial graph ensemble, and many of its properties are
consequently rather different from those observed in real networks. Hence using the graphs
produced by (87,90) as a statistical ‘null models’ to quantify the relevance of observations
that we make in real networks is pointless — if our null model is too simple nearly anything we
measure will seem special. So we need to think about this in a more sophisticated manner.
Given an observed network with adjacency matrix A*, we want to build random graph
ensembles {G, p} that generate graphs with adjacency matrices A that are similar to A*.
How do we define similar? We choose specific measurements €, (A*), with g =1... K, that
we want our graphs to inherit from A*, and demand that their values are either reproduced
by all graphs in the ensemble (via a hard constraint), or that they are reproduced on
average (via a soft constraint). See Figure 30. Abbreviating the set of chosen features

as Q(A) = (21 (A),...,Qx(A)), this gives

hard constraints: graphs must have the features Q(A*) individually,
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Q(A*) =Q(A) forall AeG with p(A)>0  (111)

soft constraints:  graphs must have the features Q(A*) on average,
QA = Y p(A)2(A) (112)
Aeg

Both (111) and (112) give us conditions, but they do not yet specify the probabilities p(A)
in full, for that we need information-theoretic arguments. We want to construct an ensemble
{G,p} that builds in the chosen features 2(A) but is otherwise strictly noninformative and
unbiased. Given a choice for the set G, this will be true only for the distribution p(A) that,
subject to the chosen constraints (111) or (112), maximises the Shannon entropy

Slp,Gl = — > p(A)logp(A) (113)
Acg

The Shannon entropy defines the information content of a typical sample from the
distribution p(A). If we choose any p(A) other than the one for which the entropy is
maximal (subject to the chosen constraints), we would already know something about our
graphs in addition to the information contained in our constraints. In other words: we would
introduce an ad hoc bias into our graph ensembles. We now show how maximisation of (140),
subject to the constraints, leads us to unique formulas for our tailored graph ensembles.

Tailored random graphs with hard constraints. If we go for (111), we need only define p(A)
for all graphs A that obey ©2(A) = Q(A*). All other graphs are forbidden. We choose
the collection of allowed graphs to be our set G, and we take the functions Q,(A) to be
integer-valued. Maximisation of (140) subject to the constraint }- 4 .,p(A) = 1, using
Lagrange’s method (see Appendix ?7), then gives the following equations that are to be
solved simultaneously for {p(A)}:

VAeG: 0= 5p(A) S, 6]+ A(1 —A%gp(A’))}
0

~ op(A) - EQMA,) osrA - AAZG:GMA/)}

0
= — A)l A A =-1 A)—1- 114
5 A [p(A)logp(A + Ap(A)| = —logp(A) A (114)
Hence logp(A) = —1 — X for all A € G, or p(A) = e '™*. Normalisation tells us that
> AcgP(A) = 1, hence e”'"* = |G|7". The end result is the following maximum entropy

ensemble, in which all graphs A that meet our constraints are equally probable
1
VA : AlQ) = — Z(Q) = 115
G A= S 2O =19 (115
Z(€) > 1 is the number of graphs in {0,1}"* that exhibit Q(A) = Q(A*). We could also
choose to work with the set G = {0, 1}V * of all N-node graphs, and forbid those graphs A
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4 N

all N-node graphs

~

01(A) = (A%)

4 Q5(A) = 0y(A%) \

J - J

Figure 30. Systematic tailoring of random graph ensembles, in order to generate random
graphs that resemble a given graph A*, by prescribing that a series of K measurements
Q,(A) give values identical to those found for A*. The larger K, the smaller the ‘box’
of graphs that meet all K imposed conditions, and the more similar the graphs in the
remaining box will be to A*. The probabilities p(A) assigned to all graphs A in each box
are determined via entropy maximisation.

that do not satisfy the constraints by assigning to them p(A) = 0. This gives||

00 *
: _ QA NAY _
Acg
Global constraints such as nondirectionality or simplicity can in principle be incorporated
via the quantities ©,(A), but it is often more transparent to build such constraints into the

definition of G. Ensembles of the type (116) are also called microcanonical ensembles.

Tailored random graphs with soft constraints. If we choose the soft constraints (112),
we have to build any global constraints into the set G, and maximise the entropy (140)
subject to 32 g.op(A) = 1 and 3 4.,p(A)Q2(A) = Q,(A") for all p = 1...K. The
Lagrange maximisation methods will now involve K + 1 Lagrange parameters {\,}, K of
which corresponding to the imposed constraints and with Ay representing the normalisation
requirement - 4., p(A) = 1. Our equations for {p(A)} become

vAEG: 0= [5Gl (1 - X b)) + 300,47 X p(4)9,(4)]
op(A) A'cg p=l A'cg

| We use the standard notation convention dxy =[], 02,4y,
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- aA [ = 3 p(A)logp(A) = X 3 p(A) =D N Y- p(A)Q(A)]
A'cg A'cg =1 Aleg

=~ 3(A) [p(A) logp(A) + Aop(A) + Z:l )‘MP(A)QM(A)]

1 logp(A) — o — 3T A,0,(4) (117)

Thus the solution of Lagrange’s equations takes the following form, after having determined
the value of A from the normalisation requirement - 4., p(A) = 1:

_\K A
e Eu:l)‘NQH( ) ZSZIA#QM(A)

VAeG: plA)= 7 , Z(Q) = AZ e (118)
€g
in which the parameters {\, ..., Ax} are found by solving the coupled equations
Vped{l,...,K}: Q. (A") = Z p(A)Q
Aeg
Z o~ Lo (A (4). (119)
Aeg

One can show that equations (119) have a unique solution, but solving them numerically
is nontrivial. Even for simple nondirected graphs it involves sampling a space of size
G| = 2VWV=1/2 Sometimes one can proceed analytically, if one chooses the Q,(A) wisely
and N is large. The ensembles (118) are also called exponential or canonical ensembles.

In the above derivations of the hard-constrained and the soft-constrained ensembles we
should in principle have included also the inequality constraints p(A) > 0 for all A € G
when maximising the Shannon entropy (140). However, it turned out in both cases that
even without imposing them explicitly, the inequality constraints are satisfied automatically
by the maximum entropy distributions. Hence they are obsolete.

Ensembles with constrained average degree. We first inspect ensembles of simple non-directed
graphs in which the only information we choose to carry over from the given graph A* is
the value k = N1 > A of the average degree, i.e. K = 1 and (A) = N1t > Aij.
It turns out that the maximum entropy ensemble of simple nondirected graphs in which
this average degree is imposed via a soft constraint is the Erdos-Rényi ensemble (87). See
exercises. Imposing the average degree as a hard constraint, in contrast, leads to the following
ensemble defined on the set G of all simple non directed N-node graphs:

1
p(A) = 0] 0S4, NFs = 05 Ay NE (120)
’ Acg
Each graph with average degree k is equally likely, but for this ensemble not to be empty

we need Nk € IN; this will automatically be the case if k = N=!' Y, k;(A*) for some N-node
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graph A*. The factor Z(k) gives the number of graphs in G with average degree k.

Ensembles with hard-constrained degree sequences. The natural next step up is to impose
instead of only the average degree the values of all N degrees k = (ki,...,ky); typically
these would be the degrees of an observed graph A*. If the degrees k are 1mp0sed as hard
constraints, so we allow only for graphs A for which k(A) = k, we obtain an ensemble on
the set G of simple non directed graphs that is called the ‘configuration model’:

1
p(A“C) = % 5k,k(A)’ Z(k) = lge:g 5’(3,’{3(44)' (121)

All graphs A that have the degree sequence k are equally probable, and all graphs that do
not have this degree sequence are assigned probability zero.

Ensembles with soft-constrained degree sequences. We obtain ensembles of simple nondirected
graphs with soft-constrained degree sequences from the general formulae (118,119) by
inserting the N degrees k;(A) for our observables ©,(A). We then find

e Zi\]:1 Ai Z;V:1 Aij
Z(k)

: = ¥ e DN A (122)
Aeg
We can rewrite the probability distribution, using the symmetry of A:

N N
e Zi,j:1 Aijhi efé Zi,j=1 Aij(Nit+Az) e Zi<j Aij(NitAz)

p(A) =

p(A) = R 7(%) = Z(k)
_ Z(1k> g o= Aij(NitX) Z<1k) g |:e_)\i_Aj5Aij,l + 5Aij,0:| (123)

The normalisation sum Z(k) then becomes

= S II[e ™ Moa,a+0a,0 =TT > [ M0a,1+0a,0]

Aeg 1<j 1<J AijG{O,l}
=TI [1 4] (124)
1<J

In combination we can now write

p(A) =TI [ - !

T—Ajé&j’l ‘|— T_M(;A“’O} (125)
1<j

I+e 1+e
Finally, the equations (119) from which to solve the {);} now become ky = 3~ g, p(A)ke(A)
for all £. This gives
—\
1
Ve {l,....N}: k=Y H[ 0+ i 04,0 ke(A)
Acqicj Lte I+e
eg’ J
e =X
Y

g 1
E AZ o I [ b+ 1oy o)

1<J
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—>\[ Ar

N
1
7;1 AerGZ{O 1) Ah[ e Ot ¥ m%o}

N o= A—An N 1
= T+ore—r Z:l 1+ eMetAr (126)

In the same manner one can impose further topological features (degree correlations, number
of loops, etc), via soft constraints, hard constraints, or even a mixture of the two.

7. Further topics

7.1. Graphicality of degree sequences

Not all degree sequences that one could write down are actually ‘graphical’: some choices
for {k1,...,kn} cannot be realised in nondirected networks without introducing self-loops
or multiple links. The simplest example of non-graphical degree sequences are those where
> k; is odd. Here we will only discuss a few results on graphicality, without proofs.

A sufficient condition for a degree sequence to be graphical is provided by the so-called
Erdos-Gallai theorem, which states that a degree sequence, with degrees ranked in decreasing
order, i.e. ky > ko > ... > ky, is graphical if >, k; is even and it satisfies the following
inequality for any integer n in the range 1 <n < N—1:

Zk < n(n—1)+ Z min{n, k;} (127)

i=n+1
Graphicality conditions can be violated quite easily. Degree sequences that are distributed
according to a power-law distribution of the form p(k) ~ k=7, over a broad range of values
bounded by ki < k < knax, are graphical for k. = N — 1 and kpy,;, = 1 only if v > 2. For
v < 2 only those degree sequences that scale with N as knax < N7 are graphical.

7.2. Watts-Strogatz and shifted-Poissonnian small-world networks

Various social experiments suggest that most people in the world are connected via only a
small number of ‘friends’ links — typically between 3 and 10. This phenomenon has been
called Siz Degrees of Separation (after an idea in a 1929 story from a Hungarian writer). We
can indeed see in Figure 29 that in large random graphs one needs just (k) ~ 2 to achieve
such short typical distances. However, in real-world social networks we expect that physical
distances constrain us - we expect on average to have more friends living near us than friends
at the other side of the globe. The ‘small world” networks aim to shed light on this question:
can we achieve the above short distances also in networks where most links are ‘local’?

The Watts-Strogatz construction. This non-directed network model interpolates between
a regular ring of N nodes with non-random links that are all short-ranged, and a random
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Regular Small-world

Increasing randomness

Figure 31. The Watts-Strogatz non-directed network model. Starting from a ring in which
each node is connected to its K > 2 nearest neighbours (shown on the left, here with K = 4),
one subsequently replaces a given fraction p of the original nearest neighbour edges with
randomly selected alternative edges (not necessarily between neighbours in the ring). The
total number of edges remains 1 NK, and the average connectivity is always k(A) = K.

graph. See Figure 31 for details of the construction. The relevant question is how the various
distance-related quantities in the graph depend on the fraction p of links that have become
random and long-range, as opposed to short-range.

Superposition construction. An alternative construction that is very similar but more easily
analysed mathematically is the following. Again all N nodes are initially placed on a ring.
We then (a) connect all nearest neighbours, and (b) superimpose on this an Erdés-Renyi
graph with average degree (k) = K — 2. Provided N is large and K is small, the likelihood
of a proposed random link coinciding with an existing nearest neighbour link on the ring is
negligible — if it happens we simply don’t add the random one. We then obtain the following
adjacency matrix A, built from the deterministic ring AP and the random ER graph A®:

_ 4D R D gk
Ay = Aij + Aij - Aij'Aij (128)
A?j = 0ij+1 mod N + 0551 mod N (129)
K—2 K—2
Ry _
p(A) = T (F=poasa + 0= =)o) 0

Inspection reveals (see e.g. Figure 32) that only a small fraction of the edges in the graph
need to be non-local to achieve the ‘small world’ effect.

7.3. Preferential attachment networks

Not all of the panels in Figure 18 are equally convincing straight lines, but the WWW, the
internet, and the power grid data do suggest power law degree distributions with powers in
the range that give scale-free graphs. Preferential attachment networks are models of graphs
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K =2.08, 2.10

K =2.06

| K =2.04
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K =2.02

| K =2.00

50

Figure 32. The fraction of node pairs (¢,j) that are found to have a distance d;; < d,
shown versus d, measured in small world graphs created by superimposing an Erdos-Renyi
graph with average degree K —2 upon a ring with nearest-neighbour interactions only. The
combined graph has expected average degree (k) = K. For K = 2 we would have only
short-range links. Here N = 1000 and (k) € [2.0,2.1], and each curve refers to a single
graph (hence there are fluctuations). One observes a relatively sharp transition — at around
K = 2.07 where there is still only a small fraction of ‘long-range’ links — to graphs with the
short typical distances that characterise the small-world effect.

that seek too provide a generative explanation for power-law degree distributions, which
strictly random graphs (such as Erdés-Reényi type graphs) would not give. One possible
explanation turns out to be that scale-free graphs result from growth processes in which new
links are more likely to be attached to nodes that already have a high degree. Although
usually attributed to Albert and Barabasi, the basic idea goes back to earlier studies.

The preferential attachment process is a stochastic growth process for a simple non-
directed graph, whereby at each step we add one node and one or more links in a very
specific way. There are many different versions, the one below is just the simplest:

initiation: create the first node 7 = 1, with no links.
iterate for ¢ =1,2,3,...:

e [ is the present number of nodes, add one new node ¢+1
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e generate randomly one link from the new node to one of the ¢ existing nodes.
The node to connect to is selected with probabilities

ki((—1)
Z§:1 kj(g_ 1)

Here k;(¢) is the degree of node j after ¢ steps of the process. We terminate if the size of

Vi </l: Prob(Aip=1)= (131)

the network is what we want it to be.

Next we show that it leads to a power-law degree distribution. Let us first summarise
a few facts regarding the number of nodes N and links L, and the degrees.

(i) At step ¢: we go from (N, L) = (¢,¢—1) to (N,L) = ({+1,7).

(i) After ¢ steps we have N = ¢+1 nodes and L = ¢ links.

(iii) The most recently created node always has degree 1, so kpy1(¢) = 1 for all ¢
(iv) The average degree after ¢ steps is £+1 S ki(0) =20/(0+1)

From (iv) we conclude that Z”l kj(¢) = 2¢ for all . Therefore the selection probability
(131) at step ¢ can be written as Prob(A; sy = 1) = k;((—1)/2((—1).

The degrees evolve stochastically, so we must introduce the probability p,(k|i) that
after step ¢ we will have k;(¢) = k. It is defined only for i < ¢+1, and we know that
pe(k|l+1) = dx1. At each step £ of the process, the degree of each node i < ¢ either stays the
same, this happens with probability 1 —Prob(A; 11 =1), or increases by one, which happens
with probability Prob(A;11=1). Hence

no degree increase at step £ degree increase at step £

: : : k L k=1
Vi<l:  pe(kli) = pe-1(kli) (1 - W—U) + pe-1(k—=1[0) (W—l)> (132)
Next we move to the overall degree distribution after ¢ steps, defined as
0r1
1
£+1 Zm £+1 Zm ki) €+1 (133)
Inserting (132) into the right-hand side of this latter expression gives
1< k k—1 1
- N0 —— (k—1Ji
rlh) = 77 2 e (M) (1 = 5gy) +pea (k=1 (6—1)}+€+16k1
( ko1 0 k=1 1¢
= 1— = —1(kl7) (k—1 —(5
il 2(5—1))52” R+ g Zm (k=110 + 70
14 k ¢ k-1 1
= 1— _ 1)+ — 134
il 2(6—1))7” )+ T ey D e (134)

So now we have a closed dynamical equation for the evolving overall degree distribution.
Let us check that the probabilities in our equation remain properly normalised. Suppose
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k>0 Pe—1(k) = 1. Summation over all £ in our equation gives:

¢ k 14 k—1 1
L=y )Pk (k=1 ——
l;)pe g_H];)( 2(5_”)29@ 1( )+€+1,§)2(€—1)p£ 1 )+€+1
14 14 1 /
I k+1)pe_1(k
£—|-1 €—|—1 2(€ 1)];:0 Pe— 1 ) g+12(€_1) kz>0( + )pf 1( )
14 1 1
- +
/ 1 (+12(0—1)  (+1
+1 T (135)

Hence normalisation is preserved, as it should. In the same manner one can confirm form
the dynamical equation (134) that the average degree after ¢ iterations is indeed given by
20/(€41) (see Exercises).

The final step is to find the asymptotic solution of (134). To do this we introduce a
real-valued time variable ¢, = /7, with 0 < 7 < 1, and adapt our notation according to
pe(k) = pr, (k). Our equation then becomes

(k) —pw_xk) PR, 11)pu (=) = gy () =
k

1
k —)
)Jr€+1'“1

pte<k) — Pty 1

= k—1) — ——— k) — k)+9o
T tg +T{2 1 T/tg pteil( ) 2(1—T/tg>ptlil( ) pté*l( )+ kl}
ptg<k) - ptg 7' k
—(k=1) — ———pt,—r (k) = pt,—- (k) + 6
T t4+r{2 1— T/t )Pt r(k=1) 2(1—1/t) " (k) = pre—r (K) + 01
(136)
We now take the limit 7 — 0 (assuming that it exists) and find
d 1 1
t2pe(k) = S (k=1)pe(k—1) = S (k+2)pi(k) + O (137)
Stationary solutions of this equation are apparently to be solved from
(k—1)p(k—1) — (k+2)p(k) 4+ 2051 =0 (138)
One can confirm (see Exercises) that this equation is solved by:
4
0) =0, k>0: k)= ———+—= 139

This is clearly a power law degree distribution, with p(k) ~ k=2 for large k. The average
degree is finite, but >, k*p(k) diverges, so the width of p(k) is infinite (see Exercises).
Variations on the above preferential attachment process include e.g. starting with more
than one disconnected node, or making multiple links at each iteration step.

7.4. Complexity — counting graphs

Graph complexity can be quantified as follows. A graph with features 2(A) is more complex
than one with features €'(A), if there exist fewer graphs with features £2(A) then graphs
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with features ©'(A). The more ‘unique’ are a graph’s characteristics, the more complex
is this graph. There is an intimate connection with the Shannon entropy of information
theory. The Shannon entropy of a discrete random variable  with probability distribution
p(z) is defined (apart from an overall constant In2) as S = — >, p(z) log p(z). The Shannon
entropy of a random graph ensemble with macroscopic characteristics €2(A) is

S(Q2) = - p(AlQ)logp(A|Q) (140)

A

For the hard-constrained ensembles (115) this gives S(Q2) = > 4 6y Q(A)Z_l(ﬂ) log Z(Q2) =
log Z(€2). With the definition of Z(£2) as given in (115) we then obtain

% I0.0A) = xp[S()] (141)

The left-hand side is exactly the number of graphs that have features Q(A) = Q, so we
can define the complezity of typical graphs with Q(A) = Q simply as the logarithm of this
number, i.e. simply as the Shannon entropy (140) of the ensemble. The same definition
(140) can then be used also for the soft-constrained ensembles (118).

Total number of N-node graphs. The total number of N-node graphs is simply the number
of ways we can choose the binary entries of the adjacency matrix. For directed graphs this
Z = 2N°_ for non-directed graphs we find Z = 23NN +1) and for simple non-directed graphs
we get Z = 2zNWV-1 " So in all cases log Z ~ $N? in leading order for large N. In the
finite connectivity regime, however, we allow only for a finite number of nonzero entries per
row and per column of the adjacency matrix. This reduces the number of possibilities. The
question is: by how much? Below we study this problem for simple-nondirected graphs,
similar results can be derived for directed ones (see also the exercises).

Sitmple non-directed graphs with specified average degree. Let us calculate the number of
N-node simple nondirected graphs that have average degree k, given that Nk € IN. This is
simply Z(k) in the ensemble (120). Upon writing the Kronecker symbol in Z(k) in integral
form, and upon choosing G to be the set of all simple non-directed graphs, we obtain

™ dw

k iwNE —iwS Ay
(k) = AE: 6]\”5:21-]- A5 = | _on © Nk/QAE: e i, i
€g G
Tdw N . T dw N .
— 77[_% elek/2 H Z e—lwAij — [ﬂ% elek/Q(l + e—lw)N(N—l)/Q

1<j A;;€{0,1}

mdw e A ON(N=1)/2)
ﬂ elek/Q Z ( ( )/ > e iwm

—r 27 0 m
) N(Ni:;)/2< N(Nn: 1)/2 >5m’Nk/2 _ ( N(]ka_/;)/2 ) (142)

This result can be understood easily, as it gives the number of possible ways in which one
can draw Nk/2 links from a set of N(NN — 1)/2 possible candidates.
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For large N and finite k& (the finite connectivity regime) we can inspect the leading
orders in N, using Stirling’s formula logn! ~ nlogn — n + O(logn) for n — co. If both n
and m are large (with m < n), this formula, together with log(1 + x) = z + O(z?), allows
us to write
log <(n—77711')'m') = logn! — logm! — log(n—m)!

~ nlogn — (n—m)log(n—m) — mlogm + O(log n,logm)

= n{ logn — (1—@) log(n—m) — mlogm} + O(logn,logm)
n n
:n{logn—(l—:’;)logn—(l—f)log(l—f};z1ogm}+(9(1ogn,1ogm)
m. n m m

=ny—log—+ — O(l 1 O(—

n{nogm+n}+ (ogn,ogm)+2(n3)

n m

= mlog p +m + O(log n,logm) + O(F) (143)

Application of this expansion to n = %N (N—1) and m = %N k then gives us
log N

N~ tlog Z(k) = ;klog[(]\f—l)/k] + ;k + O( N )
_ ;klog(N/k) + ;k + O(IOiN ) (144)

Thus for large N the leading order of the number of graphs with finite average degree k still
grows super-exponentially as Z (k) ~ exp(3kN log(N)+...). This means that one can never
hope to sample numerically the space of all such graphs, even for relatively modest sizes V.
For instance, working out the formula gives

N=32 k=2: Z(k)=~2710% (145)
N=50, k=2: Z(k)~4110" (146)

These are very big numbers (for comparison: the total number of atoms in the observable
universe is estimated to be somewhere between 107 and 10%2).

Sitmple non-directed graphs with specified degree distribution. The next stage is to impose

not only the average degree k, but the full degree distribution p(k). The calculation is not

fundamentally different from the previous one but does require some new tools (saddle-point

integration), so here we mention only the result:

log N
T

p(k)
p(k)log] ]+ O(
R
Here k = 3, kp(k), and m(k) = e *kF /k! (the degree distribution of Erdés-Renyi graphs with
average degree k). Comparison to (144) shows that, due to the prescribed degree distribution,
N~'log Z has been reduced by an amount which is the Kullback-Leibler distance (see
Information Theory) between p(k) and the degree distribution of an ER graph with the

o8 Z({p(R)}) = SFloa(N/F) +

. (147)

[\ \
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same k. We see that if we impose the degree statistics p(k) = 7(k) for all k, formula (147)
reduces to (144). Hence

Z({m(k)})

This tells us that, for large N, nearly all graphs with a given finite average degree k have a

Z({p(k)}) o= N X2, p(k) oglp(k) /x(k)}+O(log N) (148)

Poissonnian degree distribution.

Simple non-directed graphs with specified degree distribution and specified degree correlations.
We can in the same way prescribe further information beyond the degree distribution, such
as the degree correlation kernel W (k, k’). This turns out to give

jlvlog Z({p(k), W (k, K')}) = ;Elog(N//%) + ;l?: - Ekjp(k) log[f:(l,?)]
1 , W (k, &' log N
- ngw(k,k)log [W(k()W(l)f’)} ( ng ) (149)

Comparison to (147) shows that prescribing W (k, k') reduces the quantity N~!log Z further
by an amount which is proportional to the mutual information (see Information Theory) of
the degrees of connected nodes. We see that if we impose that degrees of connected nodes
are uncorrelated, i.e. W(k, k") = W (k)W (k') for all (k, k"), formula (149) reduces to (147).

Hence nearly all graphs with a given degree distribution p(k) have uncorrelated degrees.
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8. Appendices

8.1. Network software

The following software resources for imaging and/or analysis of networks, created within the
academic community, are free:

o (ytoscape: www.cytoscape.org

e Gephi: http://gephi.github.io

e R — with igraph package: www.r-project.org

e Pajek: vlado.fmf.uni-lj.si/pub/networks/pajek/

8.2. The Pearson correlation

The Pearson correlation of two random variables (u,v) with joint distribution P(u,v) is
defined as

(uv) — (u)(v)
C = 150
V() = (u)2)((2) — (v)?) o

It tests for statistical dependence in the form a (partially) linear relationship between u and

v. To get some intuition for this, let us work out two simple extreme cases:
e Statistically independent u and v
Now P(u,v) = P(u)P(v), and hence
(w) =Y P(u,v)uv = P(u)P(v)uv = (Z P(u)u) (Z P(v)v) = (u)(v)
Hence we obtain PC :“ B b
e Linearly related v and v
Suppose u = Av + ¢ for all combinations (u,v). Now we obtain
(wv) = (v(Av + ¢)) = Mv?) + c(v)
(w?) = (M +¢)?) = N2 (0?) + & + 2)c(v)
() =M+c)=ANv)+c
Inserting all this into formula (150) then leads to
oo ()~ ()
V(@) = 2)((2) = (0)?)
Av?) + c(v) — Mv)? — c(v)
- VA2(02) + 2 + 2Xc(v) — A2(0)2 — 2 — 2Ac(v)y/(v?) — (v)?
e - w)
A2 = (@2 (2) = (0

= sgn(\)
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Hence if u and v are perfectly positively linearly correlated we find PC = 1, and if they
are perfectly negatively linearly related we find PC = —1.

8.8. Properties of symmetric matrices

FEigenvectors and eigenvalues. We derive some properties of real symmetric N x N matrices
A. The eigenvalue polynomial det (A — A1) = 0 is of order N, so A will have N (possibly
complex) solutions A (where some may coincide) of the eigenvalue problem

Az = )z, x#0 (151)

We denote complex conjugation of complex numbers z in the usual way: if z = a+1ib (where

a,b € R), then z* = a —ib and |2|2 = z*z € R. The inner product on €V is @ -y = ¥, 27 y;.
e Claim: all eigenvalues of the matrix A are real.

Proof:

Take the inner product in (151) with the conjugate vector x*, which gives
N

N
ooajAgay =AY ol
=1

ij=1
We use the symmetry of A, and substitute A;; — %(Aij + Aj):
LY (Ay + Ay 15 Ay (aia + viaj)

N g2 N 12
2 Ximy |zl 2 iz |zl
Since (rjw; + xyx})" = 20} + xj1; = xiw; + 2325, the above fraction is real-valued.

A

e Claim: all eigenvectors of the matrix A can be chosen real-valued.
Proof:

We separate real and imaginary parts of every eigenvector:

1 1

x=Rexz+ilmx Rewzi(a}—i-w*) Imwzg(m—a}*)
i

with Re £ € RY and Im & € IR". Complex conjugation of (151) gives Ax* = \z*
(since A is real). Hence, if & is an eigenvector with eigenvalue A, so is *. By
adding/subtracting the conjugate equation to/from (151) it follows: if x and x* are
eigenvectors, so are Re & and Im x. Since the space spanned by @ and x* is the same as
the space spanned by Re  and Im x, we are always allowed to choose the real-valued
pair Re  and Im .

e (Claim: for every linear subspace L C RY the following holds:
if AL CL thenalso AL+ CL*

in which L+ denotes the orthogonal complement, i.e. RY = L & L*.
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Proof:

For each # € L and y € L' we find (z - Ay) = (y - Ax) = 0 (since Az € L and
y € L+). Therefore Ay € L+, which completes the proof.

e Claim: we can construct a complete orthogonal basis in IRY of A-eigenvectors.

Proof:
Consider two eigenvectors x, and x;, of A, corresponding to different eigenvalues:

A.’Ba = )\afBa AfBb = )\ba:b )\a 7& )\b
We now form:

0= (x,  Axp) — (xo - Azp) = (x, - Axp) — () - Ax,)

= Mp(Ta - @) — Aa(@p - Ta) = (Ao — X)) (@0 - )
Since A\, # ), it follows that x, - &, = 0. If all eigenvalues are distinct, this completes
the proof, since now there will be N eigenvalues with eigenvectors  # 0. Since these NV
eigenvectors are orthogonal, after normalization they form a complete orthogonal basis.
To deal with degenerate eigenvalues we need the third property above. If Ax = Az,

then Vy with -y = 0: (Ay)-x = 0. Having found an eigenvector for eigenvalue A (not
unique in the case of a degenerate eigenvalue), a new reduced (N —1) x (N —1) matrix
can be constructed by restricting ourselves to the subspace £+. The new matrix is again
symmetric, the eigenvalue polynomial is of order N — 1 (and contains all the previous

roots except for one corresponding to the eigenvector just eliminated), and we can repeat
the argument. This shows that there must again be N orthogonal eigenvectors.

Basis of eigenvectors and diagonal form. The final consequence of the above facts is that
there exist a set of N vectors {€'}, where i = 1,...,N and &' € IRY for all i, with the
following properties:

Aé' = \é', N € R, Ai >0, e el =4 (152)

We can now bring A onto diagonal form by a simple unitary transformation U, which we
construct from the components of the normalised eigenvectors e: U;; = é]. We denote the
transpose of U by U, U;rj = Uj;, and show that U is indeed unitary, i.e. U'U=UU"=1

(U = Y UMUn; = 3 &éla; = > bya; =
Iz j

J Jk
> (UUY) ;= ij UrUjpx; = ij eheka; = ij éie-x)=u
J J J

(since {&‘} is a complete orthogonal basis). From U being unitary it follows that U and U
leave inner products, and therefore also lengths, invariant:

(Uz) Uy)=x - UUy=z-y Uz Uy=xz-UU'y=zx-y
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We can see explicitly that U indeed brings A onto diagonal form:
(UTAU),; klzl Ul AUy = klzl i Al =\ Z éiél = \;oij (153)
Note that the inverse A~ of the matrix A exists, and can be written as follows:
(A7) = i A lerel (154)
k=1

To prove that this is the inverse of A, we work out for any & € IR" the two expressions
N

(AA 'x); Z A,kZAZ eke rj = Zéf(éé LX) =

kj=1 (=1 (=1

(again since {&‘} forms a Complete orthogonal basis), and

N
(A1 Ax); Z folé e Ay =Y éie - x) =

kj=1¢=1 =1

8.4. Integral representation of the Kronecker §-symbol

Here we show that for any n, m € Z the Kronecker ¢ can be written in the integral form

T d .
Som = | =2 giti=m)s (155)
—T 2w
To see this one simply does the integral on the right:
™ dw i(n—m)w ™ dw
n=m: — e = — =1
—T 27T —T 27T
nm: ™ dw l(mm)w _ /7r d—w(cos((n—m)w) + isin((n—m)w))
—T 27T —TT 27T
[ sin((n-m) — ——cos(n-m)w)] T =0
= — sin((n—m)w) — cos((n—m)w =
27'(' n—m n—m w=—"

8.5. The Landau order symbol
Let f(z) and g( ) be two functions of a variable x that is taken to zero, such that
lim,_,o f(x) = lim,_,0 g(z) = 0. We then define the order symbol O as follows:
f(z)=0(g(z)) for 2 =0 < (3C>0,e>0)(Vz|<e): |f(z)/g9(x)|<C
(156)

In words: asymptotically for x — 0, f(z) decays to zero equally fast or faster than g(z).
Similarly we could use it to characterise the behaviour of functions that diverge, such as

flz)=0(g(z)) for 2 >0 < (IC>0,X>0)(Vx>X): |f(z)/g9(x)<C
(157)

In words: asymptotically for z — oo, f(x) diverges equally fast or slower than g(z).
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9. Exercises

Tutorial 1

1.

Which if the three graphs below is simple? Which of them is directed? Give for each
these graphs the vertex set V' and the edge set E.

4
[ )
7 7 .5 5
-9 ] @ ® 2 N
2
11 8 9
® 1 2 3
5

Calculate the adjacency matrices for each of the three graphs above, upon relabelling
the nodes of the first graph such that its vertex set becomes V = {1,...,9}.

Use the adjacency matrices calculated in the previous exercise to prove that the first
of the three graphs has exactly four paths of length three and no paths of length 4 or

larger. Argue why we can be sure that the middle and right graphs will contain paths
of any length ¢ > 0.

Calculate all in-degrees and all out-degrees of the above three graphs.
Prove that in nondirected graphs always ki"(A) = k2" (A).
Prove that for non-directed graphs one always has k;(A) = (A?);.

Show that in any simple non-directed graph with adjacency matrix A one has C;(A) =
2T;(A)/ki(A)[ki(A) — 1], where T;(A) is the number of triangles in which node i
participates, and k;(A) is its degree.

Calculate the clustering coefficients for all nodes in the second and the third of of the
above graphs. Why would we not calculate them for the first graph?
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Tutorial 2

8. Define the neighbourhood 0; of a node i in a nondirected graph with adjacency matrix
A as follows: 0; = {j < N| A;; = 1}. Show that the order-2 generalised degrees can be
written as k;i(Q)(A) = Yjea k'(A). Calculate all order-2 generalised degrees kZ(Q)(A) of
the second and third graph above.

9. Prove that in directed graphs always L = 3, k*(A) = 3, k?"(A). Show that in a simple
non-directed graph one has L = {Nk(A).

10. Verify that the order-¢ generalised degrees in a nondirected graph with adjacency matrix
A can be written as

Show that the corresponding expressions for directed graphs are, with (AT)U = A
. N _ N
EOM(A) = (AT (A),  KTM(A) = (AT Tk (A)
j=1 j=1

11. Prove the matrix identity (I —yA)™" = Y207 A" Given any matrix norm |A| that
satisfies the usual conditions (i.e. |A| € R", |]ANA| = |)\||A] for any A € R, |A| =0 if
and only if A = 0, |[A' + A%| < |A'| + |A?|), show that there is always a sufficiently
small but nonzero value of v such that the series 3, 7 A" converges in norm.

12. Consider the N-node graph with N > 2 and the following adjacency matrix entries:
Aij = 0ij+1 mod N+ 0ij—1 moa n. Prove that for this graph

1 N-1 2mil(r—s)/N

N = 1 —2vycos(2ml/N)

rsef{l,...,N}: [(I—~A)].s=

(you may find the geometric series helpful in proving this, as well as the series
(1 =€)t =,50€™; see Calculus lectures).
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13. Calculate the closeness centrality and the betweenness centrality of nodes ¢ = 2 and

i = 3 in the second and the third of of the graphs in exercise (i).

14. Show that the definition of the Pearson correlation similarity 7;;(A) can be derived from

15.

16.

17.

18.

the definition of the Pearson correlation of two random variables (u, v), upon choosing
P(u,v) = % >k 5U7Aik5U,Ajk'
Let - y denote an inner product on IRY, so that it meets the defining criteria:
(i) (Ve,y,z€ RY): (x+y)-z2=z-2+y- 2
(i) (Ve -y e RMHVAER): = -\y) =z -y
(iii) (Ve -y e RY): z-y=y-=
(iv) (V& € RY): x-x >0, with equality if and only if = 0
Prove the Schwartz inequality: |z-y| < |z||y|. Hint: calculate |z+\y|?|y|? with A € IR,
and choose a clever value for A at the end.

Explain why the two expressions given for the cosine similarity o;;(A) of two nodes i and
jJ in a nondirected graph are identical. Show that |o;;(A)| < 1 and that 0;;(A) = 1 if
and only if 0; = 0;. Hint: define for each node ¢ the vector a) = (Aj, A, ..., Aiy) €
{0, 1}V, and write 0;;(A) in terms of the two vectors a) and a(J :

Explain why the two expressions given for the Pearson correlation similarity 7,;(A) of
two nodes ¢ and j in a nondirected graph are identical. Show that |7;;(A)| < 1. Hint:
define for each node i the vector a¥ with entries a,(f) = [Aix — % > A/ V/N, and write
7;j(A) in terms of a¥ and al¥)

Prove that the average in-degree Ein(A) N1, k"(A) and the average out-degree
Eout(A) N1, k9" (A) of any graph (directed or non-directed) are always identical.
Show that the total number of links in a directed graph can be written as either
L =YY kr(A) or L = SN, k%(A). Show that in simple nondirected graphs the
number of links is L = Nk(A), where k(A) = N7' Yoy k;(A) is the average degree.
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19. Prove the following identities for the density p(A) of a graph with adjacency matrix A:
A)/N
)/ (N+1) + ZAn‘/N(N—I—l)

i

directed graphs : p(A) =

k(
nondirected graphs : p(A) =k(A

simple nondirected graphs: p(A) =k(A)/(N-1)

20. Calculate the diameter d(A) and the degree distribution p(k|A) for the middle and the
right graph in question (i).

21. Consider the following degree distribution for an infinitely large non-directed graph:

p(k) = e79¢"/k! Vk € IN. Calculate the average degree (k) = Y ,50p(k)k and the
degree variance o7 = (k%) — (k).

22. Consider the following degree distribution for an infinitely large non-directed graph:
p(k) = Ce™® Vk € IN. Give a formula for the constant C. Calculate the average degree
(k) = Y p>op(k)k and the degree variance o} = (k*) — (k)?.

23. Consider the following degree distribution for an N-node non-directed graph: p(k) = 0
for k =0or k > N, and p(k) = Cyk™7 for 0 < k£ < N. Calculate Cy. For which ~
values is p(k) normalisable for N — 0o? Give formulas for (k) and the degree variance
0r = Ypso p(k)k* — (k)?. For which ~ values is (k) finite in the limit N — co? For what
values of « is the variance finite for N — 0o? Give an estimate of the average and the
variance for v = 2.5 and N = 10,000, using the approximation > k= ~ [Ndk k.

24. Calculate the degree distributions for the N-node graphs with the following adjacency
matrices (check carefully whether they are directed or non-directed, and use the correct
degree distribution definition in each case):

(a) Aijj = 0; 41 for j < N, and A;xy = 0.

(b) Aj; =1foralli,je{l,...,N}

(c) Aj;j=0foralli,je{l,...,N}

(d) A;; = 1ifeither¢,5 € {1,...,N/2} ori,j € {N/2+1,...,N}; A;; = 0 otherwise
() Ay =1foralli>1, A;; =0 for all other (z, 7).
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25.

26.
27.
28.

29.

30.

Show that the degree correlation ratio II(k, k’| A) of a ‘regular’ simple non-directed graph
A, i.e. one with p(k|A) = 6 for some k* € IN, is always equal to 1 for any (k, k).
Prove that Wy (k|A) = p(k|A)k™/k(A) and that Wy(K'|A) = p(K'|A)k*™ /k(A).

Prove the following general bounds for the modularity: —% <QA) < %

Assign the following module labels to the nodes of the right graph in exercise 1:
Ty = x9 = 1, 23 = x4 = x5 = 2. Calculate the graph’s modularity Q(A). Next
turn to graphs (b) and (d) in exercise 24. Assign the following module labels to the
nodes: x; = 1 for i < N/2 and x; = 2 for i > N/2 (take N to be even). Calculate the
modularity Q(A) for both graphs.

Show how the total number of triangles 7'(A) in a simple non-directed N-node graph can
be calculated directly from the spectrum {u;(A), ..., un(A)} of its adjacency matrix.
Calculate the adjacency matrix eigenvalue spectrum {p;(A), ..., un(A)} of the middle

graph in exercise (i). Use your result to calculate the average degree, and to prove that
this graph has no closed paths of odd length.
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31. Calculate the Laplacian matrix L of the middle graph in exercise 1, and its eigenvalue
spectrum. Hint: write L = 1+ B and first find the eigenvalues of B, where 1 is the unity
matrix. Use your result to prove that this graph has only one connected component.

32. Use the results of the previous exercise to solve the dynamical equations describing a
diffusion process on the middle graph in exercise 1, that starts with z;(t) = 2002 (i.e.
diffusion from the central node i = 2). Verify that your result makes sense for t = 0
and in the limit ¢ — oo. Verify that the quantity >, z;(¢) is conserved over time.

33. Show that for regular N-node graphs, i.e. those for which all N degrees k;(A) are
identical, one can express the Laplacian eigenvalue spectrum in terms of the adjacency
matrix eigenvalue spectrum. Give the mathematical relation between the two spectra
in explicit form.

34. Consider the N-node graph with the following adjacency matrix entries, with N > 2:
Aij = 0ij+1 mod N + 9ij—1 moa n- Calculate the adjacency matrix spectrum p(p|A) and
the Laplacian spectra and or.p (4| A). Hints: use the result of the previous exercise, and
try Fourier modes z;, = e“* as an ansatz for the eigenvectors. Confirm that the smallest

eigenvalue of the Laplacian is zero, and use the spectrum to determine the number of

connected components in the graph.
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35.

36.

37.

38.

39.
40.

For the Erdos-Reényi model we know that (k(A)) = p*(N —1). Calculate (k%(A)).
Calculate the variance 02 = (k*(A)) — (k(A))? in the finite connectivity regime, and
express it in terms of (k) for N — co. What can you conclude from the result?

Show for the following degree distribution that Y>,-qp(k) = 1 and Y4 p(k)k = ¢,
without using its generating function:

pk) = () (+a) (158)

Calculate the generating function G(z) for the following degree distribution, with
a € 1[0,1] and 1, g2 € IN:

p(k) = abpq + (1—a)e 25 /!
Confirm that the three generating functions for regular, Poissonnian, and exponential
random graphs all obey: G(0) = p(0), G(1) = 1, and lim,_,; x%G(x) = (k). Calculate
expressions for (k?) from the three generating functions.
Prove that (k%) > (k) for all graphs, with equality if and only if p(k) = 0 for all k& > 1.
Construct a large 2-regular graph, i.e. one with p(k) = 52 and large N, that does not
have a giant component. Prove your claim.
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41.

42.

43.

44.

45.

46.

Show that the distribution p(A) which maximises the Shannon entropy for the
set of simple nondirected graphs, subject to the soft average degree constraint

> AcgP(A)k(A) = (k) and subject to normalisation, is the Erdés-Rényi ensemble.
Show that the probabilities in the ensemble of simple nondirected graphs with soft-

constrained degree sequences can, for large N and finite degrees {k;}, be written as

(A1) =TT (55 + O nsa + (1= 325 + O3)) a0

Calculate the degree distribution of small-world graphs built by superimposing a
Poissonnian graph with average degree ¢ on a one-dimensional periodic ring, for N — oc.
You may assume that there are no common entries in the adjacency matrices of both.

Show that the distribution p(k =0) = 0 and p(k > 0) = 4/k(k+1)(k+2) solves the
preferential attachment equation £ (k—1)p(k—1) — 1(k+2)p(k) + 01 = 0.

Show that the previous distribution obeys > ~op(k) = 1 and (k) = Y50 kp(k) = 2.
Hint: find constants a, b, ¢ such that 1/k(k+1)(k+2) = a/k+b/(k+1)+c/(k+2) Vk > 0.
Calculate the leading orders in NV of the number of directed N-node graphs with average
degree k, in the finite connectivity regime where kN € IN and k < N.




