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The Auditory System and Human Sound-Localization Behavior
Short Answers Exercises Chapter 10: Midbrain Colliculus

Exercise 10.1:

We use dA = r ·dr ·dφ and dN = r′dr′ ·dφ′. A possible transformation that fulfills the separability

condition is the one in which φ = φ′, so that

dA

A
=
r · dr
A

=
dN

N
=
r′dr′

N

The surface of a receptive field equals πσ(r)2 and we could also propose (from measurements)

that σ(r) = kr, so
r · dr
πr2

=
dr

παr
=
r′dr′

N

In other words,
N · dr
παr

= r′dr′

Integrate:
N

πα
ln(C · r) =

1

2
r′2 +D

which gives with C ≡ r−10 and D ≡ −N2
0 the given mapping for the radius:

r′ =

√
N2

0 +
2N

πα
ln
r

r0

Problem 10-2

(a) For a=(1,0) the mapping becomes:

u = ln(
√

(x+ 1)2 + y2) and v = arctan

(
y

x+ 1

)
For large eccentricities this function approaches the ’original’ mathematical complex-log

function for which u = lnR en v = arctanφ. The v-coordinate runs between −π/2 en

π/2, and spokes of constant directions are mapped as parallel horizontal lines in neural

space. Circles of constant radius are mapped as parallel vertical lines for which the spacing

decreases logarithmically with the radius of the circles.

However, for small eccentricitities both horizontal and vertical mapped lines bend towards

the origin of the coordinate system in (0,0).

The vertical meridian (φ = ±90o) is represented in neural space by:

u±90 = ln(y + 1) and v±90 = arctan(±y)
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The spokes at an angle of ±30,60 deg are

u = ln(
√

(x+ 1)2 + (tan(π/6) · x)2) and v = arctan

(
tan(π/6)x

x+ 1

)
u = ln(

√
(x+ 1)2 + (tan(π/3) · x)2) and v = arctan

(
tan(π/3)x

x+ 1

)
Because at small eccentricities the iso-eccentricity and iso-direction lines no longer intersect

and 90 deg angles, the mapping is not conformal. For example, you may show that the

tangent of the (positive) vertical meridian in the fovea image point is given by

∂v

∂u
|(u,v)=(0,0) → φ = π/4

(b) The inverse mapping is given by

x = cos(v) (exp(u)− 1) and y = sin(v) exp(u)

Problem 10-3:

The SC afferent mapping function in Cartesian coordinates becomes

u = Bu · ln
√

(x+ A)2 + y2

A
and v = Bv · arctan

(
y

x+ A

)

Problem 10-4:

The inverse mapping is computed as

y = A sin(v/Bv) · exp(u/Bu)

and

x = A[cos(v/Bv) · exp(u/Bu)− 1]

These formulae express how a particular cell in the motor map of the SC (at location u, v) is

connected to the horizontal (x) and vertical (y) pulse generators in the brainstem, such that a

population of cells centered around the map location will encode a saccade vector (R,Φ).

Problem 10-5:

The active population in the motor map is a 2D Gaussian. The volume of a 2D normalized

Gaussian (mean zero, standard deviation σ0) is found as

2πσ2
0
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Multiplying by the number of spikes at the peak, N0 and the cell density ρ0 per mm2 gives

NTOT = 2πN0 · ρ0 · σ2
0

for the total number of spikes from the population.

An educated guess for the number of spikes within a single neural plane of the population:

σ0 ∼ 0.5 mm. Inter-cell distance ∼ 20µm, yielding for ρ0 ∼ 2500/mm2 and N0 ∼ 20, so

that

NTOT ∼ 2π · 20 · 2500 · 0.25 = 78, 540 spikes/layer

However, if we assume a homogeneous 3D distribution of SC cells, in which there are about 50

of such planes (i.e., extending 1 mm in depth), this number of spikes becomes gigantic:

NTOT,3D ∼ 2π · 20 · 2500 · 0.25 · 50 = 3, 927, 000 spikes/saccade

Problem 10-6:

The population is centered on u0 and extends from u0 ± 0.5 mm. The efferent mapping for a

1D colliculus map is given by

u = Bu ln
R + A

A
⇔ R = A ·

(
exp

u

Bu

− 1

)
and exp

u

Bu

=
R

A
+ 1

Thus, the range of the movement field is given by

∆R = A ·
(

exp
u+ 0.5

Bu

− exp
u− 0.5

Bu

)
= 2(R + A) · sinh

(
0.5

Bu

)
which is proprtional to R.

Asymmetry of the movement field is found by the relation ∆R1/∆R2 with either the distance

from center to the small and large saccade edges, respectively. Note that these can be found

immediately, by replacing the ±0.5 in the above expressions by zero for the two points:

∆R1 = (R + A)

(
1− exp

−0.5

Bu

)
and ∆R2 = (R + A)

(
exp

0.5

Bu

− 1

)
so that

∆R1

∆R2

=
1− exp(−0.5/Bu)

exp(0.5/Bu)− 1
≈ 0.30

0.43
< 1

Problem 10-7:

The slight anisotropy of the afferent saccade map is caused by the different scaling factors in

front of the anatomical coordinates u and v, found by fitting the microstimulation results of

Robinson: Bu = 1.4 mm and Bv = 1.8 mm/rad).
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We assume that the center of the population for a horizontal saccade scatters (through noise in

the neural computations) around the point image in the afferent mapping of the target location:

(u0, v0) = (u0, 0). We further assume that the scatter in the motor map has a circular uncertainty

domain with radius r. This means that the centers of the neural populations vary within u ∈
[u0 − r, u0 + r], v ∈ [−r, r].
How is this circular domain in the motor map transformed by the efferent motor mapping func-

tion of the previous exercise? Focus on only five important points: (u0, 0), (u0 − r, 0), u0 +

r, 0), (u0,−r), (u0,+r) in the afferent map, and determine ∆r and ∆Φ with the efferent map-

ping formulae (here 3 points are calculated for you):

(x0, y0) = (A · [exp u0

Bu
− 1], 0)

(x1, y1) = (A · [exp u0−r
Bu
− 1], 0)

(x2, y2) = (A · [exp u0+r
Bu
− 1], 0)

The maximal distance between saccade end points along the horizontal meridian is therefore:

x2 − x1 ≡ ∆x = A · [exp
u0 + r

Bu

− exp
u0 − r
Bu

] = 2A exp
u0
Bu

sinh
r

Bu

(where 2 sinhx ≡ exp(x) − exp(−x), the hyperbolic sine function). Along the perpendicular

direction a similar expression will be found.

y4 − y3 ≡ ∆y = 2A exp
u0
Bu

sin
r

Bv

Note that because of the anisotropy in the mapping (Bu 6= Bv) it follows that ∆x 6= ∆y, which

means that the saccade end points lie within an elliptically shaped scatter cloud. You have to

show that
∆x

∆y
=≥ 1

The longest axis of the ellipse is along the radial direction of the saccade vector (in our example

this the x-direction). If the mapping would be isotropic the saccade scatter would have been

circular!

Note also that the radius of the scatter cloud increases ∝ expu0/Bu, and this is proportional to

the saccade amplitude R.

You may finally note that the center (u0, v0) of the SC population does not map to the center in

the saccade endpoint scatter cloud: the distances of the target image point (x0, 0) to the boarder

image points (x1, 0) and (x2, 0) are not equal. Verify that the following relationship holds:

∆x2
∆x1

=≥ 1
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Problem 10-8:

The transfer from SC output, SC(s), to eye position, E(s), is determined by the dynamic local

feedback in series with the pulse-step generator and plant. The SC input to the horizontal and

vertical eye-position output transfers is hence given by:

EH(s)

SC(s)
=

B cos Φ

s · (s+B · exp(−s ·∆T ))
and

EV (s)

SC(s)
=

B sin Φ

s · (s+B · exp(−s ·∆T ))

Problem 10-9:

Unfortunately, we can only explain the observed response patterns qualitatively and have to check

the validity by computer simulations, as the reasoning depends on the true activity profiles of the

SC cells (including, e.g., whether rostral and caudal cells may, or may not, have an equal excess

number of spikes after the normal saccade offset).

In case the mini-lesion is in the center of the population (like in Fig. 10.10A), the total

weighted sum of all remaining spike vectors will be in the correct direction of the intendend

goal (the center of the lesion) as upward and downward components will cancel, because of

symmetry. It’s less obvious that the amplitude of the total saccade remains virtually unaffected,

but note that the saccade amplitude deficit is compensated by the excess spikes (which would

normally NOT contribute to the saccade as the OPNs will be closed) from cells at caudal sites

and rostral sites. Apparently, the simulations with real recordings demonstrate that these excess

spikes balance to compensate for the deficit. That the saccade is also slower than normal (not

explained by the center-of-gravity model!) is understood from the fact that the most active cells

in the normal population now have vanished; normally, their contribution would dominate the eye

velocity because of their very high firing rates.

When the lesion is at a more caudal location in Fig 10.10A (i.e., a smaller saccade is planned),

the contribution from caudal cells (lage spike vectors) is removed; as a result, the overall saccade

will be too small and also slower.

When the lesion is at a more rostral location (a larger saccade is planned), the contribution

from rostral cells is removed, but the access spikes now have to come from caudal cells with

larger spike vectors. As a result, the saccade will overshoot.

Similar reasoning holds for the lesion to more medial and lateral sides.


