John van Opstal Auditory System and Gaze Control 2: Physics of Sound

The Auditory System and Human Sound-Localization Behavior

Short Answers to the Exercises of Chapter 2

Problem 2.1
The thermal speed of gas molecules follows from the kinetic gas theory:
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with m the molecular mass, n the number of moles, and M the total mass of the gas
within the volume. Substitute the ideal gas law in the expression for the adiabatic
velocity by using the same trick to show that:
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Problem 2.2

a. Any function of the type s(x,t) = f(x + v - t) is a solution of the one-

dimensional wave equation:
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You can demonstrate this by first introducing ¢ = x &+ v - t. The perturbation is then a
function of one variable, s(x,t) = f(¢). You may then show from the definition of
s(x,t) = f(x £ v-t) (and the chain rule) that
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b. Test of the superposition principle: if s;(x, t) and s,(x, t) are both a solution of the
wave equation, then s;,(x,t) = as,(x,t) + bs,(x, t) is also a solution can be
demonstrated by substitution.

Problem 2.3
Substitute s(x,t) = X(x) - T(t) into the wave equation:
d%s B 2[X(x)-T(®)] 1 0?[X(x) -T()]
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Since X only depends on x, and T only depends on t, this becomes:

1 d?x 1 d>T
X dx? T-v? dt?
and note that this should hold for all x and #! This requirement can only be met if both
the left- and right-hand sides are equal to an arbitrary constant, and will yield
harmonic solutions provided this constant is negative. So, write the constant as a

negative square: —k?, which yields Eqn. 2.30.
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Problem 2.4
Eqn. 2.32 gives the general spatial-temporal harmonic solution of the wave equation.
The spatial component of the solution:

(00

X(x) = Z [Aj cos kx + By, sin kx]
k=1

Demand that it is constrained by fixed boundary conditions at x=0 and x=L,. Thus,
X(0)=X(Lo) =0
This yields
kLy=n-m for n€ 1,2,3,...
You may now finish the solution.

Problem 2.5

(a) We concentrate on the spatial component of the solution with open boundary
conditions. In that case the ends are free to move and undergo no net force in the
transversal direction. That means that the spatial derivatives in x=0 and x=L, are

Zero:

).
—(0) = kB =0

0X _
a(LO) = —kAj sinkLy =0

which fully determines the solution as

X(x) = i [Ak cosﬂ]

(b) For mixed boundary conditions (fixed at x=0 and open at x=L,) the spatial solution
reads:

X(x) = 2n+ 1)nx]

2L,

NgE

[Bk cos
k

0

(c) For periodic boundary conditions the ends are joined: they have the same
amplitude at all times, and the same spatial derivative. You can now show that
kLy =2nm for n=1,23,...

- 2nmx . 2nmx
X(x) = Z [Ak cos — + By, sin I ]
k=1 0 0

Problem 2.6
Also the inhomogeneous wave equation:

PO 5 :%<B(x) ' <Z_asc>>

can be solved by assuming spatial-temporal separability (see Problem 2.3). In
this case the requirements become:

10°7__,_ 1 d (dx
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Now suppose harmonic solutions for the spatial and temporal functions and
show that this only works for the temporal function, but not for the spatial
function, unless B and p are constants.
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Problem 2.7
The wave equation for this inhomogeneous string is described by:
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Separation of variables (try: s(x, t) = A(x) cos(wt + @)) then yields the following
differential equation for the spatial eigenmodes:

Byx? d?A

m dx?

X X
= —w?A(x) = 'Ansatz:A(x) = AOJ:sin (k -1n—)
a a

Substitute the Ansatz and show that it is a solution, provided the following dispersion
relation, w(k), holds:

B

_0[_k2 — 1] = —wz

m 4
Problem 2.8
(a) The general form of the standing waves solution can be written as:

s(x,t) = [Asin(kx) + Bcos(kx)] - cos(wt — @)

in which k = 2m/A, and v = A - f. However, there are two different domains to consider,
because of the different mass densities of the rope. Therefore,

for —L<x<0: sq(xt)=[Aqsin(k1x) + Bjcos(k1x)] - cos(w1t— 1)
forO0 <x < +L: sp(xt) = [Apsin(kpx) + Bpcos(kpx)] - cos(wpt — @)

You can solve this problem by setting appropriate boundary conditions at x = £L and
at the transition in x = 0. In x = 0 the wave function, s(x, t), and the spatial derivative,
ds/ox have to be continuous (massless point, no net force).

(b) Substitution of the constraint from (a) gives:
—L<x<0: s.(x1t)=A[sin(wx/v,) + tan(wL/v;) cos(wx/v,)] - cos (wt)
0<x<+L: s,(xt)= A? [sin(wx/v,) — tan(wL/v,) cos(wx/v;)] - cos (wt)
1

(c) x=0 is a node when s4(0,t)=s,(0,t)=0 for all t. This requires that the constraint

wlL wlL
V4 tan (—) = —v, tan (—) =0
U1 U2
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Problem 2.9
The kinetic energy flux (energy per m?) in the gas cylinder (mass density p) is
determined by:

A=cT 2
N
T at
0

where s(x,t) = saxcos (wt — kx).The total kinetic energy is found by multiplying the
solution with the cylinder’s cross section:

A
Ky = przsfnaxl

Problem 2.10
Intensity relates to pressure (p) and impedance (Z) through
2
=2
Z

Define the incident intensity as |;, the reflected intensity is I, and the transmitted
intensity as |, then: I=li-I;
The relative reflected intensity equals R?, and thus
I, =(1-R?»-I; and I, =R?-I;
it follows immediately that
1—2Z,/7;\° 4 47,/7Z,
T (1 + Zz/Zl> YT+ 2,/2,)?

Problem 2.11

To show:
T

2
¥f sin(nwt) - sin(mwt) dt = 6,y

0
you use sinpsing = %[cos(p—q)—cos(p+q)] and distinguish the two conditions:

n+m
n=m

In the same way you show that sine and cosine are always mutually orthogonal,

regardless their frequency:
T

2
?f sin(nwt) - cos(mwt) dt = 0
0
by using the identity sinpcosq = %[sin(p+q)+sin(p—q)]

Problem 2.12
Using the orthogonality relations, we can now derive the Fourier series. So, the
series read:

a
ft) = ?0 + Z a, cos(nwyt) + by, sin(nwyt) with wy = 27/T

nz1
First, we take the time average of f(t) over the full period, T:
T
1f (t)dt
7|/
0

which shows that the constant term is the time-average of the function. Then multiply
f(t) with cos(mwt) and take the time average:
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to immediately obtain the even Fourier coefficients:
T

2
a, = ?f f(t) - cos(nwyt) dt
0
Likewise, by multiplying f(t) with sin(mwt) and taking the time average yields b.

Problem 2.13
f(t) =t?>—tontheinterval 0 <t <1

a) Odd expansion: on the interval -1<t<0 the function should be defined such that
f(t)=-f(-t), i.e

f(t) = —(t? + t) ontheinterval — 1 <t < 0 and the period of the function is T=2.

Because the function is odd, all a,=0, and one can find the Fourier series by

calculating the b, coefficients:

0 n = even
b, {

8
—W n = odd

and the Fourier series finally reads:

8 1
f(t) = - F 2 msin[(Zn + 1)mt]
n=0

b) Even expansion: on the interval -1<t<0 the function should be defined such that
f(t)=f(-t), i.e.: f(t) = (t*> + t) on the interval — 1 <t < 0 and the period of the
function is T=1. Because the function is even, all b,=0, and one can find the Fourier
series by calculating the a, coefficients: a,, = (n%)z and a, = —§ (check!)

The even Fourier series is:

f©) = —g 2 > cos(2mnt)

¢) The odd expansion converges faster than the even expansion
Problem 2.14

b) You only calculate the even coefficients, as all b,=0. You find:
ao =1/c

a, = (nn)z (1 — cos(nm/c))

c) For the limit that c—= you obtain a flat Fourier spectrum:
1
c

a, ® — = ag = constant

Problem 2.15

Note that the initial condition at t=0 is an odd function, but beware: the period of this
function is not 2D = 5 but 2D = 2!

You only need to calculate the b,. The Fourier series can thus be written as:

s(x,t) = sin(x) cos(5t) + sin(2x) cos(10t)



