

The Auditory System and Human Sound-Localization Behavior

Short Answers to the Exercises of Chapter 2

Problem 2.1

The thermal speed of gas molecules follows from the kinetic gas theory:

$$v_{Therm} = \sqrt{\frac{k_B T}{m}} = \sqrt{\frac{nRT}{M}}$$

with m the molecular mass, n the number of moles, and M the total mass of the gas within the volume. Substitute the ideal gas law in the expression for the adiabatic velocity by using the same trick to show that:

$$\frac{p_0}{\rho} = \frac{k_B T}{m}$$

Problem 2.2

a. Any function of the type $s(x, t) = f(x \pm v \cdot t)$ is a solution of the one-dimensional wave equation:

$$\frac{\partial^2 s}{\partial x^2} = \frac{1}{v^2} \cdot \frac{\partial^2 s}{\partial t^2}$$

You can demonstrate this by first introducing $\xi \equiv x \pm v \cdot t$. The perturbation is then a function of one variable, $s(x, t) = f(\xi)$. You may then show from the definition of $s(x, t) = f(x \pm v \cdot t)$ (and the chain rule) that

$$\frac{\partial^2 s}{\partial x^2} = \frac{d^2 f(\xi)}{d\xi^2} = \frac{1}{v^2} \cdot \frac{\partial^2 s}{\partial t^2}$$

b. Test of the superposition principle: if $s_1(x, t)$ and $s_2(x, t)$ are both a solution of the wave equation, then $s_{12}(x, t) \equiv as_1(x, t) + bs_2(x, t)$ is also a solution can be demonstrated by substitution.

Problem 2.3

Substitute $s(x, t) = X(x) \cdot T(t)$ into the wave equation:

$$\frac{\partial^2 s}{\partial x^2} = \frac{\partial^2 [X(x) \cdot T(t)]}{\partial x^2} = \frac{1}{v^2} \cdot \frac{\partial^2 [X(x) \cdot T(t)]}{\partial t^2}$$

Since X only depends on x , and T only depends on t , this becomes:

$$\frac{1}{X} \cdot \frac{d^2 X}{dx^2} = \frac{1}{T} \cdot \frac{d^2 T}{dt^2}$$

and note that this should hold for all x and t ! This requirement can only be met if both the left- and right-hand sides are equal to an arbitrary constant, and will yield *harmonic* solutions provided this constant is *negative*. So, write the constant as a negative square: $-k^2$, which yields Eqn. 2.30.

Problem 2.4

Eqn. 2.32 gives the general spatial-temporal harmonic solution of the wave equation. The spatial component of the solution:

$$X(x) = \sum_{k=1}^{\infty} [A_k \cos kx + B_k \sin kx]$$

Demand that it is constrained by fixed boundary conditions at $x=0$ and $x=L_0$. Thus,

$$X(0) = X(L_0) = 0$$

This yields

$$kL_0 = n \cdot \pi \quad \text{for } n \in 1, 2, 3, \dots$$

You may now finish the solution.

Problem 2.5

(a) We concentrate on the spatial component of the solution with open boundary conditions. In that case the ends are free to move and undergo *no net force* in the transversal direction. That means that the spatial derivatives in $x=0$ and $x=L_0$ are zero:

$$\begin{aligned} \frac{\partial X}{\partial x}(0) &= kB_k = 0 \\ \frac{\partial X}{\partial x}(L_0) &= -kA_k \sin kL_0 = 0 \end{aligned}$$

which fully determines the solution as

$$X(x) = \sum_{k=1}^{\infty} \left[A_k \cos \frac{n\pi x}{L_0} \right]$$

(b) For mixed boundary conditions (fixed at $x=0$ and open at $x=L_0$) the spatial solution reads:

$$X(x) = \sum_{k=0}^{\infty} \left[B_k \cos \frac{(2n+1)\pi x}{2L_0} \right]$$

(c) For periodic boundary conditions the ends are joined: they have the same amplitude at all times, and the same spatial derivative. You can now show that

$$\begin{aligned} kL_0 &= 2n\pi \quad \text{for } n = 1, 2, 3, \dots \\ X(x) &= \sum_{k=1}^{\infty} \left[A_k \cos \frac{2n\pi x}{L_0} + B_k \sin \frac{2n\pi x}{L_0} \right] \end{aligned}$$

Problem 2.6

Also the inhomogeneous wave equation:

$$\rho(x) \cdot \frac{\partial^2 s}{\partial t^2} = \frac{\partial}{\partial x} \left(B(x) \cdot \left(\frac{\partial s}{\partial x} \right) \right)$$

can be solved by assuming spatial-temporal separability (see Problem 2.3). In this case the requirements become:

$$\frac{1}{T} \frac{\partial^2 T}{\partial t^2} = -k^2 = \frac{1}{X(x)\rho(x)} \cdot \frac{d}{dx} \left(B(x) \cdot \left(\frac{dX}{dx} \right) \right)$$

Now suppose harmonic solutions for the spatial and temporal functions and show that this only works for the temporal function, but not for the spatial function, unless B and ρ are constants.

Problem 2.7

The wave equation for this inhomogeneous string is described by:

$$\frac{B_0}{\rho(x)} \frac{\partial^2 s}{\partial x^2} = \frac{\partial^2 s}{\partial t^2} \quad \text{from which} \quad \frac{B_0 x^2}{m} \frac{\partial^2 s}{\partial x^2} = \frac{\partial^2 s}{\partial t^2}$$

Separation of variables (try: $s(x, t) \equiv A(x) \cos(\omega t + \phi)$) then yields the following differential equation for the spatial eigenmodes:

$$\frac{B_0 x^2}{m} \cdot \frac{d^2 A}{dx^2} = -\omega^2 A(x) \Rightarrow \text{'Ansatz': } A(x) = A_0 \sqrt{\frac{x}{a}} \sin\left(k \cdot \ln \frac{x}{a}\right)$$

Substitute the Ansatz and show that it is a solution, provided the following dispersion relation, $\omega(k)$, holds:

$$\frac{B_0}{m} \left[-k^2 - \frac{1}{4} \right] = -\omega^2$$

Problem 2.8

(a) The general form of the standing waves solution can be written as:

$$s(x, t) = [A \sin(kx) + B \cos(kx)] \cdot \cos(\omega t - \phi)$$

in which $k = 2\pi/\lambda$, and $v = \lambda \cdot f$. However, there are two different domains to consider, because of the different mass densities of the rope. Therefore,

$$\begin{aligned} \text{for } -L \leq x \leq 0: \quad s_1(x, t) &= [A_1 \sin(k_1 x) + B_1 \cos(k_1 x)] \cdot \cos(\omega_1 t - \phi_1) \\ \text{for } 0 \leq x \leq +L: \quad s_2(x, t) &= [A_2 \sin(k_2 x) + B_2 \cos(k_2 x)] \cdot \cos(\omega_2 t - \phi_2) \end{aligned}$$

You can solve this problem by setting appropriate boundary conditions at $x = \pm L$ and at the transition in $x = 0$. In $x = 0$ the wave function, $s(x, t)$, and the spatial derivative, $\partial s / \partial x$ have to be continuous (massless point, no net force).

(b) Substitution of the constraint from (a) gives:

$$\begin{aligned} -L \leq x \leq 0: \quad s_1(x, t) &= A [\sin(\omega x / v_1) + \tan(\omega L / v_1) \cos(\omega x / v_1)] \cdot \cos(\omega t) \\ 0 \leq x \leq +L: \quad s_2(x, t) &= A \frac{v_2}{v_1} [\sin(\omega x / v_2) - \tan(\omega L / v_2) \cos(\omega x / v_2)] \cdot \cos(\omega t) \end{aligned}$$

(c) $x=0$ is a node when $s_1(0, t) = s_2(0, t) = 0$ for all t . This requires that the constraint

$$v_1 \tan\left(\frac{\omega L}{v_1}\right) = -v_2 \tan\left(\frac{\omega L}{v_2}\right) = 0$$

Problem 2.9

The kinetic energy flux (energy per m^2) in the gas cylinder (mass density ρ) is determined by:

$$\bar{K}_\lambda = \frac{1}{2} \rho \int_0^{\lambda=cT} \left(\frac{\partial s}{\partial t} \right)^2 dt$$

where $s(x, t) = s_{\max} \cos(\omega t - kx)$. The total kinetic energy is found by multiplying the solution with the cylinder's cross section:

$$K_\lambda = \frac{A}{4} \rho \omega^2 s_{\max}^2 \lambda$$

Problem 2.10

Intensity relates to pressure (p) and impedance (Z) through

$$I = \frac{p^2}{Z}$$

Define the incident intensity as I_i , the reflected intensity is I_r and the transmitted intensity as I_t , then: $I_t = I_i - I_r$

The relative reflected intensity equals R^2 , and thus

$$I_t = (1 - R^2) \cdot I_i \quad \text{and} \quad I_r = R^2 \cdot I_i$$

it follows immediately that

$$I_r = \left(\frac{1 - Z_2/Z_1}{1 + Z_2/Z_1} \right)^2 \quad \text{and} \quad I_t = \frac{4Z_2/Z_1}{(1 + Z_2/Z_1)^2}$$

Problem 2.11

To show:

$$\frac{2}{T} \int_0^T \sin(n\omega t) \cdot \sin(m\omega t) dt = \delta_{nm}$$

you use $\sin p \sin q = \frac{1}{2}[\cos(p-q) - \cos(p+q)]$ and distinguish the two conditions:

$$\begin{aligned} n &\neq m \\ n &= m \end{aligned}$$

In the same way you show that sine and cosine are always mutually orthogonal, regardless their frequency:

$$\frac{2}{T} \int_0^T \sin(n\omega t) \cdot \cos(m\omega t) dt = 0$$

by using the identity $\sin p \cos q = \frac{1}{2}[\sin(p+q) + \sin(p-q)]$

Problem 2.12

Using the orthogonality relations, we can now derive the Fourier series. So, the series read:

$$f(t) = \frac{a_0}{2} + \sum_{n \geq 1} a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \quad \text{with} \quad \omega_0 = 2\pi/T$$

First, we take the time average of $f(t)$ over the full period, T :

$$\frac{1}{T} \int_0^T f(t) dt$$

which shows that the constant term is the time-average of the function. Then multiply $f(t)$ with $\cos(m\omega t)$ and take the time average:

to immediately obtain the even Fourier coefficients:

$$a_n = \frac{2}{T} \int_0^T f(t) \cdot \cos(n\omega_0 t) dt$$

Likewise, by multiplying $f(t)$ with $\sin(m\omega_0 t)$ and taking the time average yields b_n .

Problem 2.13

$$f(t) = t^2 - t \text{ on the interval } 0 \leq t \leq 1$$

a) Odd expansion: on the interval $-1 \leq t \leq 0$ the function should be defined such that $f(t) = -f(-t)$, i.e.:

$f(t) = -(t^2 + t)$ on the interval $-1 \leq t \leq 0$ and the period of the function is $T=2$. Because the function is odd, all $a_n=0$, and one can find the Fourier series by calculating the b_n coefficients:

$$b_n = \begin{cases} 0 & n = \text{even} \\ -\frac{8}{(n\pi)^3} & n = \text{odd} \end{cases}$$

and the Fourier series finally reads:

$$f(t) = -\frac{8}{\pi^3} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^3} \sin[(2n+1)\pi t]$$

b) Even expansion: on the interval $-1 \leq t \leq 0$ the function should be defined such that $f(t) = f(-t)$, i.e.: $f(t) = (t^2 + t)$ on the interval $-1 \leq t \leq 0$ and the period of the function is $T=1$. Because the function is even, all $b_n=0$, and one can find the Fourier series by calculating the a_n coefficients: $a_n = \frac{1}{(n\pi)^2}$ and $a_0 = -\frac{1}{3}$ (check!)

The even Fourier series is:

$$f(t) = -\frac{1}{6} + \frac{1}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{(n)^2} \cos(2\pi nt)$$

c) The odd expansion converges faster than the even expansion

Problem 2.14

b) You only calculate the even coefficients, as all $b_n=0$. You find:

$$a_0 = 1/c$$

$$a_n = \frac{2c}{(n\pi)^2} (1 - \cos(n\pi/c))$$

c) For the limit that $c \rightarrow \infty$ you obtain a flat Fourier spectrum:

$$a_n \approx \frac{1}{c} = a_0 = \text{constant}$$

Problem 2.15

Note that the initial condition at $t=0$ is an odd function, but beware: the period of this function is not $2D = 5\pi$ but $2D = 2\pi$!

You only need to calculate the b_n . The Fourier series can thus be written as:

$$s(x, t) = \sin(x) \cos(5t) + \sin(2x) \cos(10t)$$