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The Auditory System and Human Sound-Localization Behavior 
 

Short Answers to the Exercises of Chapter 2 
 
Problem 2.1 
The thermal speed of gas molecules follows from the kinetic gas theory:  

𝑣!!!"# =
𝑘!𝑇
𝑚

=
𝑛𝑅𝑇
𝑀

 

 
with m the molecular mass, n the number of moles, and M the total mass of the gas 
within the volume. Substitute the ideal gas law in the expression for the adiabatic 
velocity by using the same trick to show that: 

𝑝!
𝜌
=
𝑘!𝑇
𝑚

 

 
Problem 2.2 

a. Any function of the type 𝑠 𝑥, 𝑡 = 𝑓 𝑥 ± 𝑣 ∙ 𝑡  is a solution of the one-

dimensional wave equation:  

𝜕!𝑠
𝜕𝑥!

=
1
𝑣!
∙
𝜕!𝑠
𝜕𝑡!

 

You can demonstrate this by first introducing 𝜉 ≡ 𝑥 ± 𝑣 ∙ 𝑡. The perturbation is then a 

function of one variable, 𝑠 𝑥, 𝑡 = 𝑓(𝜉). You may then show from the definition of 

𝑠 𝑥, 𝑡 = 𝑓 𝑥 ± 𝑣 ∙ 𝑡  (and the chain rule) that  

𝜕!𝑠
𝜕𝑥!

=
𝑑!𝑓(𝜉)
𝑑𝜉!

=
1
𝑣!
∙
𝜕!𝑠
𝜕𝑡!

 

b. Test of the superposition principle: if 𝑠!(𝑥, 𝑡) and 𝑠!(𝑥, 𝑡) are both a solution of the  
    wave equation, then 𝑠!" 𝑥, 𝑡 ≡ 𝑎𝑠! 𝑥, 𝑡 + 𝑏𝑠! 𝑥, 𝑡  is also a solution can be  
    demonstrated by substitution. 
 
Problem 2.3 
Substitute 𝑠 𝑥, 𝑡 = 𝑋(𝑥) ∙ 𝑇(𝑡) into the wave equation: 

𝜕!𝑠
𝜕𝑥!

=
𝜕! 𝑋(𝑥) ∙ 𝑇(𝑡)

𝜕𝑥!
=
1
𝑣!
∙
𝜕! 𝑋(𝑥) ∙ 𝑇(𝑡)

𝜕𝑡!
 

 
Since X only depends on x, and T only depends on t, this becomes: 

1
𝑋
∙
𝑑!𝑋
𝑑𝑥!

=
1

𝑇 ∙ 𝑣!
∙
𝑑!𝑇
𝑑𝑡!

 
and note that this should hold for all x and t! This requirement can only be met if both 
the left- and right-hand sides are equal to an arbitrary constant, and will yield 
harmonic solutions provided this constant is negative. So, write the constant as a 
negative square: −𝑘!, which yields Eqn. 2.30.  
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Problem 2.4 
Eqn. 2.32 gives the general spatial-temporal harmonic solution of the wave equation. 
The spatial component of the solution: 

𝑋 𝑥 = 𝐴! cos 𝑘𝑥 + 𝐵! sin 𝑘𝑥
!

!!!

 

 
Demand that it is constrained by fixed boundary conditions at x=0 and x=L0. Thus, 

𝑋 0 = 𝑋 𝐿! = 0 
This yields 

𝑘𝐿! = 𝑛 ∙ 𝜋     for  𝑛 ∈ 1,2,3,… .. 
You may now finish the solution. 
 
Problem 2.5 
(a) We concentrate on the spatial component of the solution with open boundary 
conditions. In that case the ends are free to move and undergo no net force in the 
transversal direction. That means that the spatial derivatives in x=0 and x=L0 are 
zero: 

𝜕𝑋
𝜕𝑥 0 = 𝑘𝐵! = 0

𝜕𝑋
𝜕𝑥

𝐿! = −𝑘𝐴! sin 𝑘𝐿! = 0
 

 
which fully determines the solution as 

𝑋 𝑥 = 𝐴! cos
𝑛𝜋𝑥
𝐿!

!

!!!

 

 
(b) For mixed boundary conditions (fixed at x=0 and open at x=L0) the spatial solution 
reads: 

𝑋 𝑥 = 𝐵! cos
(2𝑛 + 1)𝜋𝑥

2𝐿!

!

!!!

 

 
(c) For periodic boundary conditions the ends are joined: they have the same 
amplitude at all times, and the same spatial derivative. You can now show that 

𝑘𝐿! = 2𝑛𝜋    for   𝑛 = 1,2,3,…. 

𝑋 𝑥 = 𝐴! cos
2𝑛𝜋𝑥
𝐿!

+ 𝐵! sin
2𝑛𝜋𝑥
𝐿!

!

!!!

 

 
Problem 2.6 
Also the inhomogeneous wave equation: 

𝜌 𝑥 ∙
𝜕!𝑠
𝜕𝑡! =

𝜕
𝜕𝑥 𝐵(𝑥) ∙

𝜕𝑠
𝜕𝑥  

can be solved by assuming spatial-temporal separability (see Problem 2.3). In 
this case the requirements become: 

1
𝑇
𝜕!𝑇
𝜕𝑡! = −𝑘! =

1
𝑋(𝑥)𝜌(𝑥) ∙

𝑑
𝑑𝑥 𝐵(𝑥) ∙

𝑑𝑋
𝑑𝑥  

              
Now suppose harmonic solutions for the spatial and temporal functions and 
show that this only works for the temporal function, but not for the spatial 
function, unless B and ρ are constants. 
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. 
 
Problem 2.7 
The wave equation for this inhomogeneous string is described by: 

  
𝐵!
𝜌(𝑥)

𝜕!𝑠
𝜕𝑥!

=
𝜕!𝑠
𝜕𝑡!

    from which    
𝐵!𝑥!

𝑚
𝜕!𝑠
𝜕𝑥!

=
𝜕!𝑠
𝜕𝑡!

 

Separation of variables (try: s(x, t) ≡ A(x) cos(ωt + φ)) then yields the following 

differential equation for the spatial eigenmodes: 

𝐵!𝑥!

𝑚
∙
𝑑!𝐴
𝑑𝑥!

= −𝜔!𝐴 𝑥     ⇒     'Ansatz': 𝐴 𝑥 = 𝐴!
𝑥
𝑎
sin 𝑘 ∙ ln

𝑥
𝑎

 

Substitute the Ansatz and show that it is a solution, provided the following dispersion 

relation, 𝜔(𝑘), holds:  

𝐵!
𝑚

−𝑘! − !
! = −𝜔! 

Problem 2.8 
(a) The general form of the standing waves solution can be written as:  

s(x, t)  =  [A sin(kx)  +  B cos(kx)]  ·  cos(ωt −  φ) 

in which k = 2π/λ, and v = λ · f. However, there are two different domains to consider, 

because of the different mass densities of the rope. Therefore, 

for − L ≤ x ≤ 0: s1(x, t) = [A1sin(k1x) + B1cos(k1x)] · cos(ω1t − φ1) 
for 0 ≤ x ≤ +L: s2(x, t) = [A2sin(k2x) + B2cos(k2x)] · cos(ω2t − φ2) 

 

You can solve this problem by setting appropriate boundary conditions at x = ±L and 

at the transition in x = 0. In x = 0 the wave function, s(x, t), and the spatial derivative, 

∂s/∂x have to be continuous (massless point, no net force).  

(b) Substitution of the constraint from (a) gives: 
 

−𝐿 ≤ 𝑥 ≤ 0: 𝑠! 𝑥, 𝑡 = 𝐴 sin 𝜔𝑥/𝑣! + tan 𝜔𝐿/𝑣! cos 𝜔𝑥/𝑣! ∙ cos (𝜔𝑡)

0 ≤ 𝑥 ≤ +𝐿: 𝑠! 𝑥, 𝑡 = 𝐴
𝑣!
𝑣!

sin 𝜔𝑥/𝑣! − tan 𝜔𝐿/𝑣! cos 𝜔𝑥/𝑣! ∙ cos (𝜔𝑡) 

 
(c) x=0 is a node when s1(0,t)=s2(0,t)=0 for all t. This requires that the constraint 
 

𝑣! tan
𝜔𝐿
𝑣!

= −𝑣! tan
𝜔𝐿
𝑣!

= 0 
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Problem 2.9 
The kinetic energy flux (energy per m2) in the gas cylinder (mass density ρ) is 
determined by: 

𝐾! =
!
!!

!"
!"

!
!"

!!!"

!

 

where 𝑠 𝑥, 𝑡 = 𝑠!"#cos (𝜔𝑡 − 𝑘𝑥).The total kinetic energy is found by multiplying the 
solution with the cylinder’s cross section: 

𝐾! =
𝐴
4
𝜌𝜔!𝑠!"#! 𝜆 

 
 
Problem 2.10 
Intensity relates to pressure (p) and impedance (Z) through 

𝐼 =
𝑝!

𝑍
 

Define the incident intensity as Ii, the reflected intensity is Ir and the transmitted 
intensity as It, then: It=Ii-Ir 
The relative reflected intensity equals R2, and thus 

𝐼! = 1 − 𝑅! ∙ 𝐼!      and   𝐼! = 𝑅! ∙ 𝐼! 
it follows immediately that 

𝐼! =
1 − 𝑍!/𝑍!
1 + 𝑍!/𝑍!

!

   and   𝐼! =
4𝑍!/𝑍!

1 + 𝑍!/𝑍! ! 

 
 
Problem 2.11 
To show: 

2
𝑇

sin 𝑛𝜔𝑡 ∙ sin 𝑚𝜔𝑡 𝑑𝑡 = 𝛿!"

!

!

 

you use sin 𝑝 sin 𝑞 =  !! !"# !!! !!"#(!!!)  and distinguish the two conditions: 
 𝑛 ≠ 𝑚 
 𝑛 = 𝑚  

 
In the same way you show that sine and cosine are always mutually orthogonal, 
regardless their frequency: 

2
𝑇

sin 𝑛𝜔𝑡 ∙ cos 𝑚𝜔𝑡 𝑑𝑡 = 0
!

!

 

by using the identity sin 𝑝 cos 𝑞 =  !! !"# !!! !!"#(!!!)  
 
Problem 2.12 
Using the orthogonality relations, we can now derive the Fourier series. So, the 
series read: 

𝑓 𝑡 =
𝑎!
2
+ 𝑎!

!!!

cos 𝑛𝜔!𝑡 + 𝑏! sin 𝑛𝜔!𝑡     with  𝜔! = 2𝜋/𝑇 

 
First, we take the time average of f(t) over the full period, T: 

1
𝑇

𝑓 𝑡 𝑑𝑡
!

!

 

which shows that the constant term is the time-average of the function. Then multiply 
f(t) with cos(mωt) and take the time average: 
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to immediately obtain the even Fourier coefficients: 

𝑎! =
2
𝑇

𝑓(𝑡) ∙ cos 𝑛𝜔!𝑡 𝑑𝑡
!

!

 

Likewise, by multiplying f(t) with sin(mωt) and taking the time average yields bn. 
 
Problem 2.13 

𝑓 𝑡 = 𝑡! − 𝑡 on the interval  0 ≤ 𝑡 ≤ 1 
 
a) Odd expansion: on the interval -1≤t≤0 the function should be defined such that  
    f(t)=-f(-t), i.e.: 
𝑓 𝑡 = −(𝑡! + 𝑡) on the interval  − 1 ≤ 𝑡 ≤ 0 and the period of the function is T=2. 
Because the function is odd, all an=0, and one can find the Fourier series by 
calculating the bn coefficients: 

𝑏! =
0 𝑛 = even

−
8
𝑛𝜋 ! 𝑛 = odd  

and the Fourier series finally reads: 

𝑓 𝑡 = −
8
𝜋!

1
2𝑛 + 1 ! sin 2𝑛 + 1 𝜋𝑡

!

!!!

 

 
b) Even expansion: on the interval -1≤t≤0 the function should be defined such that  
    f(t)=f(-t), i.e.:   𝑓 𝑡 = (𝑡! + 𝑡) on the interval  − 1 ≤ 𝑡 ≤ 0 and the period of the 
function is T=1. Because the function is even, all bn=0, and one can find the Fourier 
series by calculating the an coefficients: 𝑎! =

!
!" ! and 𝑎! = − !

!
 (check!) 

The even Fourier series is: 

𝑓 𝑡 = −
1
6
+
1
𝜋!

1
𝑛 ! cos(2𝜋𝑛𝑡)

!

!!!

 

 
c) The odd expansion converges faster than the even expansion 
 
Problem 2.14 
 
b) You only calculate the even coefficients, as all bn=0. You find: 

𝑎! = 1/𝑐 

𝑎! =
2𝑐
𝑛𝜋 ! (1 − cos 𝑛𝜋/𝑐 ) 

 
c) For the limit that c→∞ you obtain a flat Fourier spectrum: 

𝑎! ≈
1
𝑐
= 𝑎! = constant 

 
Problem 2.15 
Note that the initial condition at t=0 is an odd function, but beware: the period of this 
function is not 2𝐷 = 5𝜋 but 2𝐷 = 2𝜋! 
You only need to calculate the bn. The Fourier series can thus be written as: 
 

𝑠 𝑥, 𝑡 = sin 𝑥 cos 5𝑡 + sin 2𝑥 cos 10𝑡  
 


