

The Auditory System and Human Sound-Localization Behavior

Short Answers to the Exercises of Chapter 4: Nonlinear Systems

Exercise 4.1:

(a) With the input given by $x(t) = \sin(\omega_1 t) + \sin(\omega_2 t)$, the output is found to be:

$$y(t) = a \cdot (\sin(\omega_1 t) + \sin(\omega_2 t)) + b \cdot (\sin(\omega_1 t) + \sin(\omega_2 t))^2 + c \cdot (\sin(\omega_1 t) + \sin(\omega_2 t))^3$$

Collecting terms yields the following 13 frequency components with their amplitudes (n.b.: all at phase 0 (positive) or π (negative)):

frequency	amplitude
0	b
ω_1	$(a + 5c/4)$
ω_2	$(b + 5c/4)$
$2\omega_1$	$-b/2$
$2\omega_2$	$-b/2$
$\omega_1 - \omega_2$	b
$\omega_1 + \omega_2$	b
$\omega_1 + 2\omega_2$	$-3c/4$
$\omega_1 - 2\omega_2$	$-3c/4$
$\omega_2 + 2\omega_1$	$-3c/4$
$\omega_2 - 2\omega_1$	$-3c/4$
$3\omega_1$	$-c/4$
$3\omega_2$	$-c/4$

(b) The Matlab script is found on the Book's web page as *Chapter4-Exc4-1.m*

Exercise 4-2:

(a) The function $y(t) = \log(x(t) + 1)$ is defined on $|x(t)| < 1$, for which the Taylor expansion thus yields

$$y(t) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$$

The associated Volterra kernels for this nonlinear function are thus determined by:

$$k_n(\tau_1, \tau_2, \dots, \tau_n) = \frac{(-1)^{n+1}}{n} \prod_{k=1}^n \delta(\tau_k)$$

(b) For the exponential function $y = \exp(x(t))$, the Volterra series reads

$$k_0 = 1 \text{ and } k_n(\tau_1, \tau_2, \dots, \tau_n) = \frac{1}{n!} \prod_{k=1}^n g(\tau_k)$$

(c) The cosine function $y(t) = \cos(x(t))$ is expanded as

$$k_0 = 1 \text{ and } k_n(\tau_1, \tau_2, \dots, \tau_n) = \frac{(-1)^n}{(2n)!} \prod_{k=1}^{2n} \delta(\tau_k) \text{ for } n \geq 1$$

Exercise 4-3:

(a) The following holds: $\int_0^T f^2(x) \cdot dx < \infty$ ($f(x)$ is an absolute integrable function on the interval $[0, T]$). We substitute the orthogonality condition, to find:

$$I_N = \int_0^T f^2(x) dx - 2 \sum_{n=1}^N a_n \int_0^T f(x) w_n(x) dx + \sum_{n=1}^N a_n^2$$

We rewrite:

$$I_N = \int_0^T f^2(x) dx + \sum_{n=1}^N \left[a_n - \int_0^T f(x) w_n(x) dx \right]^2 - \sum_{n=1}^N \left[\int_0^T f(x) w_n(x) dx \right]^2$$

We thus have to minimize this term, which happens when:

$$a_n = \int_0^T f(x) w_n(x) dx$$

(b) The minimum integrated error is:

$$I_{N(\min)} = \int_0^T f^2(x) dx - \sum_{n=1}^N a_n^2$$

And the following must hold

$$\sum_{n=1}^N a_n^2 \leq \int_0^T f^2(x) dx$$

This is the so-called Bessel inequality. When the orthogonal basis set is *complete*, it follows that

$$\lim_{N \rightarrow \infty} I_{N(\min)} = 0$$

Exercise 4-4:

The general second-order inhomogeneous Volterra functional reads:

$$G_2[x(t), P] = k_{0,2} + \int_0^\infty k_{12}(\tau) \cdot x(t - \tau) d\tau + \int_0^\infty \int_0^\infty k_{22}(\tau_1, \tau_2) \cdot x(t - \tau_1) \cdot x(t - \tau_2) d\tau_1 d\tau_2$$

and the first two Wiener functionals are

$$G_0 = h_0 \text{ and } G_1[x(t), P] = \int_0^\infty h_1(\tau) \cdot x(t - \tau) d\tau$$

We have to determine $k_{02}, k_{12}(\tau)$ and $k_{22}(\tau_1, \tau_2)$. We demand orthogonality by setting the expectation values of the inner products to zero:

$$\overline{G_0 \cdot G_2} = 0 \text{ and } \overline{G_1 \cdot G_2} = 0$$

It then follows (using the autocorrelation properties of GWN, Ewn. 4.16):

$$G_2[x(t), P] = \int_0^\infty \int_0^\infty h_2(\tau_1, \tau_2) \cdot x(t - \tau_1) x(t - \tau_2) d\tau_1 d\tau_2 - P \cdot \int_0^\infty h_2(\tau, \tau) d\tau$$

Exercise 4-5:

The first-order Wiener functional is:

$$G_1[h_1; x(t), P] = \int h_1(\tau) \cdot x(t - \tau) d\tau$$

and the third-order Wiener functional reads:

$$G_3[h_3; x(t), P] = \int \int \int h_3(\tau_1, \tau_2, \tau_3) x(t - \tau_1) \cdot x(t - \tau_2) x(t - \tau_3) d\tau_1 d\tau_2 d\tau_3 - 3P \cdot \int \int h_3(\tau_1, \tau_2, \tau_2) x(t - \tau_1) d\tau_1 d\tau_2$$

We calculate the expectation value of the inner product:

$$\overline{G_1[h_1; x(t), P] \cdot G_3[h_3; x(t), P]}$$

and note that the two terms of $G_1 \cdot G_3$ will contain a double product and a four-product of GWN samples. It follows that

$$\overline{G_1 \cdot G_3} = 3P^2 \int \int h_1(\tau_p) h_3(\tau_p, \tau_q, \tau_q) d\tau_p d\tau_q - 3P^2 \int \int h_1(\tau_1) h_3(\tau_1, \tau_2, \tau_2) d\tau_1 d\tau_2 = 0$$

Exercise 4-6:

The output of the system in Fig 4.5 is described as follows:

$$\begin{aligned} y(t) &= a \cdot w(t) + b \cdot w^2(t) \\ &= \int_0^\infty ag(\tau) \cdot x(t - \tau) d\tau + \int_0^\infty \int_0^\infty bg(\tau_1)g(\tau_2)x(t - \tau_1)x(t - \tau_2) d\tau_1 d\tau_2 \end{aligned}$$

from which the Volterra kernels are given by:

$$\begin{aligned} k_0 &= 0 \\ k_1(\tau) &= ag(\tau) \\ k_2(\tau_1, \tau_2) &= bg(\tau_1)g(\tau_2) \end{aligned}$$

The Lee and Schetzen method (Eqns. 4.30-4.31) applies crosscorrelation between input and output to determine the Wiener kernels. This is how this works (we omitted all odd-numbered products in $x(t)$, as these yield zero):

$$h_0 = E[y(t)] = Pb \int_0^\infty g^2(\tau_1) d\tau_1$$

$$h_1(\sigma) = \frac{1}{P} E[y(t)x(t - \sigma)] = ag(\sigma)$$

$$\begin{aligned} h_2(\sigma_1, \sigma_2) &= \frac{1}{2P^2} E[(y(t) - h_0)x(t - \sigma_1)x(t - \sigma_2)] \\ &= bg(\sigma_1)g(\sigma_2) \end{aligned}$$

Indeed, the first-order and second-order Volterra and Wiener kernels are identical.

Exercise 4-7:

The fourth Hermite polynomial with respect to a GWN signal with power P reads:

$$\text{He}_4 = x^4 - 6Px^2 + 3P^2$$

From the analogy in Eqn. 4.18, the fourth-order Wiener functional can thus be constructed:

$$\begin{aligned} G_4[h_4; x(t), P] &= \int \int \int \int h_4(\tau_1, \tau_2, \tau_3, \tau_4) \cdot \prod_{n=1}^4 x(t - \tau_n) d\tau_n + \\ &\quad - 6P \int \int \int h_4(\tau_1, \tau_2, \tau_3, \tau_3) x(t - \tau_1)x(t - \tau_2) d\tau_1 d\tau_2 d\tau_3 + \\ &\quad + 3P^2 \int \int h_4(\tau_1, \tau_1, \tau_2, \tau_2) d\tau_1 d\tau_2 \end{aligned}$$

Exercise 4-8:

From Fig. 4.11, we obtain the following relationships:

$$y(t) = \int_0^\infty \int_0^\infty a k(\sigma) h(\tau) x(t - \sigma - \tau) d\sigma d\tau + \\ + \int_0^\infty \int_0^\infty \int_0^\infty b k(\sigma) h(\tau_1) h(\tau_2) x(t - \sigma - \tau_1) \cdot x(t - \sigma - \tau_2) d\sigma d\tau_1 d\tau_2$$

For the Wiener kernels we take $x(t) = \text{GWN}$, power P and mean zero.

Taking the expectation value of the output yields the zero-order Wiener kernel (we leave out the odd-numbered products in $x(t)$):

$$h_0 = E[y(t)] = P \cdot b \cdot \left[\int_0^\infty h(\tau) d\tau \right]^2 \cdot \left[\int_0^\infty k(\sigma) d\sigma \right]$$

The first-order Wiener kernel is found by cross-correlation:

$$h_1(\lambda) = a P \cdot \int_0^\infty k(\sigma) h(\lambda - \sigma) d\sigma$$

Finally, we find the second-order Wiener kernel from the third-order cross-correlation:

$$\phi_{yxx}(\lambda_1, \lambda_2) = E[y(t)x(t - \lambda_1)x(t - \lambda_2)]$$

Corrected for the average, h_0 , the second-order Wiener kernel is given by:

$$h_2(\lambda_1, \lambda_2) = \frac{\phi_{y-h_0}xx(\lambda_1, \lambda_2)}{2P^2} = \frac{b}{2} \int_0^\infty k(\sigma) h(\sigma - \lambda_1) h(\sigma - \lambda_2) d\sigma$$

Exercise 4-9:

In Fig. 4.13 we calculate:

$$u(t) = \int_0^\infty g(\tau) x(t - \tau) d\tau \quad \text{and} \quad y(t) = [u(t)]^2$$

so that

$$y(t) = \int_0^\infty \int_0^\infty g(\tau_1) g(\tau_2) x(t - \tau_1) x(t - \tau_2) d\tau_1 d\tau_2$$

from which it follows that $k_0 = 0$, $k_1(\tau) = 0$ and $k_n(\tau_1, \tau_2, \dots, \tau_n) = 0$ for $n \geq 3$, and

$$k_2(\tau_1, \tau_2) = A^2 \cdot \exp(-k(\tau_1 + \tau_2)) \cdot \sin(m\tau_1) \cdot \sin(m\tau_2)$$

with $A = 6.67$, $k = 0.08$ and $m = 0.3$.

Exercise 4-10:

For this exercise, the reader is referred to the Matlab section for *Chapter4-Exc4-10.m*

Exercise 4-11:

We use the 'hint' to determine the n -th order expectation value of the output $y(t)$ (or: the n -th order autocorrelation function of $y(t)$), which is given by taking the following time-average:

$$\overline{y(t - \sigma_1) \cdots y(t - \sigma_n)} = \int_0^\infty \cdots \int_0^\infty h(\tau_1) \cdots h(\tau_n) \times \overline{x(t - \tau_1 - \sigma_1) \cdots x(t - \tau_n - \sigma_n)} d\tau_1 \cdots d\tau_n$$

We assume that $x(t)$ is a Gaussian process, with average zero. For odd values of n , i.e., when it can be written as $n = 2m + 1$ for $m = 0, 1, 2, 3, \dots$, we see that

$$\overline{y(t - \sigma_1) y(t - \sigma_2) \cdots y(t - \sigma_{2m+1})} = 0$$

For even values of n , when we write $n = 2m$, the following holds (using Eqn. 4.16):

$$\overline{y(t - \sigma_1) \cdots y(t - \sigma_{2m})} = \Sigma \Pi \overline{y(t - \tau_i - \sigma_i) y(t - \tau_j - \sigma_j)}$$

We conclude that also $y(t)$ has to be a Gaussian process!