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The Auditory System and Human Sound-Localization Behavior
Short Answers to the Exercises of Chapter 4: Nonlinear Systems

Exercise 4.1:
(a) With the input given by z(t) = sin(w;t) + sin(wst), the output is found to be:

y(t) = a - (sin(wit) + sin(wyt)) + b - (sin(wit) + sin(wat))® + ¢ - (sin(wt) + sin(wst))?

Collecting terms yields the following 13 frequency components with their amplitudes (n.b.:
all at phase 0 (positive) or 7 (negative)):

frequency | amplitude
0 b
wy | (a+5c/4)
wy | (b+5c/4)
2wy —b/2
2wy —b/2
W1 — Wo b
w1 + wo b
w1y + 2ws —3c/4
wy — 2ws —3c/4
wy + 2wy —3c/4
wy — 2wy —3c/4
3wy —c/4
3ws —c/4

(b) The Matlab script is found on the Book's web page as Chapterj-Ezc4-1.m

Exercise 4-2:

(a) The function y(t) = log(z(t) + 1) is defined on |z(¢)| < 1, for which the Taylor expansion
thus yields

4 [e.@]

e R D I

n=1

The associated Volterra kernels for this nonlinear function are thus determined by:

(-1

kn(Th T2, 7Tn) = HZ:ICS(Tk)
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(b) For the exponential function y = exp(x(t)), the Volterra series reads
1
ko =1 and ky(m, 79, -, ) = ﬁﬂzzlg(m)

(c) The cosine function y(t) = cos(x(t)) is expanded as

(="
(2n)!

ko=1 and k,(m, 72, -, 7) = Hi’;lé(ﬂg) forn>1

Exercise 4-3: .
(a) The following holds: [ f?(x)-dz < oo (f(z) is an absolute integrable function on the

interval [0,77). We substitute the orthogonality condition, to find:
T N T N
Iy = / f2(x)dx—22an/ f(x)wn(x)da:JrZai
0 n=1 0 n=1

We rewrite:

IN_/ #2(2) da:+2[an /f )W, (© dxr EN:Uf 2)wn (1 da:}

n=1

We thus have to minimize this term, which happens when:

= /OT f(z)wy(z)dx

(b) The miminum integrated error is:

T N
Ly (miny :/0 f(ax)de = al
n=1

And the following must hold

N T
Sai< [ P
n=1 0

This is the so-called Bessel inequality. When the orthogonal basis set is complete, it
follows that

A, i) =0
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Exercise 4-4:

The general second-order inhomogeneous Volterra functional reads:
Galz(t), P] = koo + /000 kio(T) - x(t — 7)dT + /OOO /000 koo (1, 72) - x(t — 1) - x(t — To)dmdTe
and the first two Wiener functionals are
Go = ho and Gi[z(t), P] = /OO hi(7) - x(t — 7)dT
0

We have to determine koo, k12(7) and koo(71,72). We demand orthogonality by setting the

expectation values of the inner products to zero:
GO'GQZO and Gl'GQZO
It then follows (using the autocorrelation properties of GWN, Ewn. 4.16):
0

Gslz(t), P = /OOO /Ooo ho(T1,72) - 2(t — 71)x(t — mo)dmidry — P - / ho(T, T)dT

Exerxise 4-5:

The first-order Wiener functional is:
Gilhy; x(t), P] = /hl(T) cx(t — 7)dT
and the third-order Wiener functional reads:

Gslhs;x(t), P) = [ [ [ ha(mi, 72, m3)x(t — 1) - 2(t — To)a(t — 73)dTidTedTs
=3P - [ [ h3(m1, 72, T2)x(t — 71)dTidTs

We calculate the expectation value of the inner product:

Grlhy;(t), Pl - Gslhs; 2(t), P]

and note that the two terms of G; - G5 will contain a double product and a four-product of GWN

samples. It follows that

G1 . Gg = 3P2//hl(Tp>h3(Tp,Tq,Tq)dTpqu — 3P2//h1<7'1)h3(7'1,7'2,7'2)d7'1d7'2 = 0

Exercise 4-6:
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The output of the system in Fig 4.5 is described as follows:

y(t) = a-w(t)+b-w(t)
= fooo ag(t) - x(t — 7)dT + fooo fooo bg(11)g(m2)x(t — 71)x(t — 7o)dTidTs

from which the Volterra kernels are given by:

]i]o 0
ki(1) = ag(T)
ka(m1,7m9) = bg(11)g(2)

The Lee and Schetzen method (Eqns. 4.30-4.31) applies crosscorrelation between input and
output to determine the Wiener kernels. This is how this works (we omitted all odd-numbered

products in x(t), as these yield zero):
ho = Ely(t)] = Pb / (n)dn
0

(o) = S Ely(t)a(t — 0)] = aglo)

ha(o1,02) = g El(y(t) — ho)x(t — 01)z(t — 02)]
- bg(a1)g(o2)

Indeed, the first-order and second-order Volterra and Wiener kernels are identical.

Exercise 4-7:

The fourth Hermite polynomial with respect to a GWN signal with power P reads:
Hey = 2* — 6P2* + 3P°
From the analogy in Eqn. 4.18, the fourth-order Wiener functional can thus be constructed:

Gylhg; 2(t), P) = ffffh4(71,72,73,7'4) 0 w(t — 7)dT, +
—6P [ [ [ ha(71,72, 73, 73)2(t — T1)x(t — T2)dT1dTodTs +
+3P2ffh4(7'1,7'177'2,7'2)d7'1d7'2

Exercise 4-8:
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From Fig. 4.11, we obtain the following relationships:

y(t) = I fo ak(o)h(T)x(t — o — 7)dodr +
+ fooo fooo fo bk(a)h(m h(Tz)x(t —0—m)2(t — o —n)dodrdr

For the Wiener kernels we take x(t)=GWN, power P and mean zero.
Taking the expectation value of the output yields the zero-order Wiener kernel (we leave out the

odd-numbered products in x(t)):

ho = Ely(t)] = P -b- [/Ooo h(T)dTr : [/OOO k(a)da]

The first-order Wiener kernel is found by cross-correlation:
hi(\) = aP - /Ooo k(o)h(A — o)do
Finally, we find the second-order Wiener kernel from the third-order cross-correlation:
Gyez (A1, A2) = Ely(t)z(t — A)x(t — Ao)]

Corrected for the average, hg, the second-order Wiener kernel is given by:

—ho)zx O [T
h2(A17 )\2) = %T?LOZ) = 5/0 k(U)]’L(O’ — )\1)h(0’ — /\2>d0'

Exercise 4-9:

In Fig. 4.13 we calculate:

ult) = / gt —r)dr and y(t) = [u())?

/ / 7'1 7'2 t—7'1) (t—Tg)d’TldTQ

from which it follows that kg = 0, k1(7) = 0 and k, (71,72, -+, 7,) = 0 for n > 3, and

so that

ko(T1, 1) = A? - exp(—k(11 + 72)) - sin(mm) - sin(mn,)
with A = 6.67, k = 0.08 and m = 0.3.

Exercise 4-10:
For this exercise, the reader is referred to the Matlab section for Chapter/-Fxc/-10.m
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Exercise 4-11:
We use the ‘hint’ to determine the n-th order expectation value of the output y(t) (or: the n-th
order autocorrelation function of y(t)), which is given by taking the following time-average:

y(t—al)---y(t—an):/g /o () h(m)xx(t —m —o1) - x(t — 7, — op)d7y - - - dTp

We assume that x(t) is a Gaussian process, with average zero. For odd values of n, i.e., when it

can be writtenasn =2m + 1 for m =0,1,2,3,- -, we see that

y(t — o)yt —o2) - y(t — o2mi1) =0

For even values of n, when we write n = 2m, the following holds (using Eqn. 4.16):

Yt —o1) -yt — o9m) = Xyt — 7 — 0)y(t — 75 — ;)

We conclude that also y(t) has to be a Gaussian process!



