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The Auditory System and Human Sound-Localization Behavior
Short Answers to the Exercises of Chapter 4: Nonlinear Systems

Exercise 4.1:

(a) With the input given by x(t) = sin(ω1t) + sin(ω2t), the output is found to be:

y(t) = a · (sin(ω1t) + sin(ω2t)) + b · (sin(ω1t) + sin(ω2t))
2 + c · (sin(ω1t) + sin(ω2t))

3

Collecting terms yields the following 13 frequency components with their amplitudes (n.b.:

all at phase 0 (positive) or π (negative)):

frequency amplitude

0 b

ω1 (a+ 5c/4)

ω2 (b+ 5c/4)

2ω1 −b/2
2ω2 −b/2

ω1 − ω2 b

ω1 + ω2 b

ω1 + 2ω2 −3c/4

ω1 − 2ω2 −3c/4

ω2 + 2ω1 −3c/4

ω2 − 2ω1 −3c/4

3ω1 −c/4
3ω2 −c/4

(b) The Matlab script is found on the Book’s web page as Chapter4-Exc4-1.m

Exercise 4-2:

(a) The function y(t) = log(x(t) + 1) is defined on |x(t)| < 1, for which the Taylor expansion

thus yields

y(t) = x− x2

2
+
x3

3
− x4

4
· · · =

∞∑
n=1

(−1)n+1x
n

n

The associated Volterra kernels for this nonlinear function are thus determined by:

kn(τ1, τ2, · · · , τn) =
(−1)n+1

n
Πn

k=1δ(τk)
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(b) For the exponential function y = exp(x(t)), the Volterra series reads

k0 = 1 and kn(τ1, τ2, · · · , τn) =
1

n!
Πn

k=1g(τk)

(c) The cosine function y(t) = cos(x(t)) is expanded as

k0 = 1 and kn(τ1, τ2, · · · , τn) =
(−1)n

(2n)!
Π2n

k=1δ(τk) for n ≥ 1

Exercise 4-3:
(a) The following holds:

∫ T

0
f 2(x) ·dx <∞ (f(x) is an absolute integrable function on the

interval [0, T ]). We substitute the orthogonality condition, to find:

IN =

∫ T

0

f 2(x)dx− 2
N∑

n=1

an

∫ T

0

f(x)wn(x)dx+
N∑

n=1

a2n

We rewrite:

IN =

∫ T

0

f 2(x)dx+
N∑

n=1

[
an −

∫ T

0

f(x)wn(x)dx

]2
−

N∑
n=1

[∫ T

0

f(x)wn(x)dx

]2

We thus have to minimize this term, which happens when:

an =

∫ T

0

f(x)wn(x)dx

(b) The miminum integrated error is:

IN(min) =

∫ T

0

f 2(x)dx−
N∑

n=1

a2n

And the following must hold

N∑
n=1

a2n ≤
∫ T

0

f 2(x)dx

This is the so-called Bessel inequality. When the orthogonal basis set is complete, it

follows that

lim
N→∞

IN(min) = 0
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Exercise 4-4:

The general second-order inhomogeneous Volterra functional reads:

G2[x(t), P ] = k0,2 +

∫ ∞
0

k12(τ) · x(t− τ)dτ +

∫ ∞
0

∫ ∞
0

k22(τ1, τ2) · x(t− τ1) · x(t− τ2)dτ1dτ2

and the first two Wiener functionals are

G0 = h0 and G1[x(t), P ] =

∫ ∞
0

h1(τ) · x(t− τ)dτ

We have to determine k02, k12(τ) and k22(τ1, τ2). We demand orthogonality by setting the

expectation values of the inner products to zero:

G0 ·G2 = 0 and G1 ·G2 = 0

It then follows (using the autocorrelation properties of GWN, Ewn. 4.16):

G2[x(t), P ] =

∫ ∞
0

∫ ∞
0

h2(τ1, τ2) · x(t− τ1)x(t− τ2)dτ1dτ2 − P ·
∫ ∞
0

h2(τ, τ)dτ

Exerxise 4-5:

The first-order Wiener functional is:

G1[h1;x(t), P ] =

∫
h1(τ) · x(t− τ)dτ

and the third-order Wiener functional reads:

G3[h3;x(t), P ] =
∫ ∫ ∫

h3(τ1, τ2, τ3)x(t− τ1) · x(t− τ2)x(t− τ3)dτ1dτ2dτ3
−3P ·

∫ ∫
h3(τ1, τ2, τ2)x(t− τ1)dτ1dτ2

We calculate the expectation value of the inner product:

G1[h1;x(t), P ] ·G3[h3;x(t), P ]

and note that the two terms of G1 ·G3 will contain a double product and a four-product of GWN

samples. It follows that

G1 ·G3 = 3P 2

∫ ∫
h1(τp)h3(τp, τq, τq)dτpdτq − 3P 2

∫ ∫
h1(τ1)h3(τ1, τ2, τ2)dτ1dτ2 = 0

Exercise 4-6:
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The output of the system in Fig 4.5 is described as follows:

y(t) = a · w(t) + b · w2(t)

=
∫∞
0
ag(τ) · x(t− τ)dτ +

∫∞
0

∫∞
0
bg(τ1)g(τ2)x(t− τ1)x(t− τ2)dτ1dτ2

from which the Volterra kernels are given by:

k0 = 0

k1(τ) = ag(τ)

k2(τ1, τ2) = bg(τ1)g(τ2)

The Lee and Schetzen method (Eqns. 4.30-4.31) applies crosscorrelation between input and

output to determine the Wiener kernels. This is how this works (we omitted all odd-numbered

products in x(t), as these yield zero):

h0 = E[y(t)] = Pb

∫ ∞
0

g2(τ1)dτ1

h1(σ) =
1

P
E[y(t)x(t− σ)] = ag(σ)

h2(σ1, σ2) = 1
2P 2E[(y(t)− h0)x(t− σ1)x(t− σ2)]

= bg(σ1)g(σ2)

Indeed, the first-order and second-order Volterra and Wiener kernels are identical.

Exercise 4-7:

The fourth Hermite polynomial with respect to a GWN signal with power P reads:

He4 = x4 − 6Px2 + 3P 2

From the analogy in Eqn. 4.18, the fourth-order Wiener functional can thus be constructed:

G4[h4;x(t), P ) =
∫ ∫ ∫ ∫

h4(τ1, τ2, τ3, τ4) · Π4
n=1x(t− τn)dτn +

−6P
∫ ∫ ∫

h4(τ1, τ2, τ3, τ3)x(t− τ1)x(t− τ2)dτ1dτ2dτ3 +

+3P 2
∫ ∫

h4(τ1, τ1, τ2, τ2)dτ1dτ2

Exercise 4-8:
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From Fig. 4.11, we obtain the following relationships:

y(t) =
∫∞
0

∫∞
0
ak(σ)h(τ)x(t− σ − τ)dσdτ +

+
∫∞
0

∫∞
0

∫∞
0
bk(σ)h(τ1)h(τ2)x(t− σ − τ1) · x(t− σ − τ2)dσdτ1dτ2

For the Wiener kernels we take x(t)=GWN, power P and mean zero.

Taking the expectation value of the output yields the zero-order Wiener kernel (we leave out the

odd-numbered products in x(t)):

h0 = E[y(t)] = P · b ·
[∫ ∞

0

h(τ)dτ

]2
·
[∫ ∞

0

k(σ)dσ

]
The first-order Wiener kernel is found by cross-correlation:

h1(λ) = aP ·
∫ ∞
0

k(σ)h(λ− σ)dσ

Finally, we find the second-order Wiener kernel from the third-order cross-correlation:

φyxx(λ1, λ2) = E[y(t)x(t− λ1)x(t− λ2)]

Corrected for the average, h0, the second-order Wiener kernel is given by:

h2(λ1, λ2) =
φ(y−h0)xx

2P 2
=
b

2

∫ ∞
0

k(σ)h(σ − λ1)h(σ − λ2)dσ

Exercise 4-9:

In Fig. 4.13 we calculate:

u(t) =

∫ ∞
0

g(τ)x(t− τ)dτ and y(t) = [u(t)]2

so that

y(t) =

∫ ∞
0

∫ ∞
0

g(τ1)g(τ2)x(t− τ1)x(t− τ2)dτ1dτ2

from which it follows that k0 = 0, k1(τ) = 0 and kn(τ1, τ2, · · · , τn) = 0 for n ≥ 3, and

k2(τ1, τ2) = A2 · exp(−k(τ1 + τ2)) · sin(mτ1) · sin(mτ2)

with A = 6.67, k = 0.08 and m = 0.3.

Exercise 4-10:

For this exercise, the reader is referred to the Matlab section for Chapter4-Exc4-10.m
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Exercise 4-11:

We use the ‘hint’ to determine the n-th order expectation value of the output y(t) (or: the n-th

order autocorrelation function of y(t)), which is given by taking the following time-average:

y(t− σ1) · · · y(t− σn) =

∫ ∞
0

· · ·
∫ ∞
0

h(τ1) · · ·h(τn)×x(t− τ1 − σ1) · · ·x(t− τn − σn)dτ1 · · · dτn

We assume that x(t) is a Gaussian process, with average zero. For odd values of n, i.e., when it

can be written as n = 2m+ 1 for m = 0, 1, 2, 3, · · ·, we see that

y(t− σ1)y(t− σ2) · · · y(t− σ2m+1) = 0

For even values of n, when we write n = 2m, the following holds (using Eqn. 4.16):

y(t− σ1) · · · y(t− σ2m) = ΣΠy(t− τi − σi)y(t− τj − σj)

We conclude that also y(t) has to be a Gaussian process!


