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The Auditory System and Human Sound-Localization Behavior
Short Answers Exercises Chapter 5: Cochlea

Exercise 5.1:

(a) The traveling wave solution for dry water is proposed to be:

ψy(x, y, t) = A cos(ωt− kx)
(
eky − e−2kh · e−ky

)
ψx(x, y, t) = A sin(ωt− kx)

(
eky + e−2kh · e−ky

)

You verify the validity of these solutions by substitution into the required conditions:

~∇~ψ = 0 and
∂ψy
∂x
− ∂ψx

∂y
= 0

(b) In the deep-water wave approximation h� λ, from which the factor exp(−2kh) ↓ 0.

(c) In the shallow-water approximation, h � λ and y � λ, so that exp(−2kh) ≈ 1 − 2kh,

exp(ky) ≈ 1 + ky and exp(−ky) ≈ 1− ky.

Exercise 5.2:

(a) To find the dispersion reslation for gravitational waves, use the property of harmonic oscil-

lations, described on page 122:

ω2 = g ·
[
∂ψy
∂x

]
y=0

/ [ψx]y=0

and substitute the wave functions ψx and ψy in the solution of the traveling waves.

(b) Again, for deep water the exponentials in the solution can be neglected, and you find

ω2 ≈ gk

The phase velocity is:

vϕ =
ω

k
etc.

and the group velocity is

vg =
dω

dk
= etc.

When the phase velocity and group velocity are unequal, the wave shape of a pulse, con-

sisting of multiple frequencies (wave lengths) will change. This happens in dispersive media

(speed depends on the wave length).
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(c) For shallow water, take h� λ, and thus approximate, to find:

ω = k ·
√
gh

from which the phase velocity and group velocity result to be equal.

Exercise 5.3:

(a) The pressure from the surface tension is given by the product of the surface tension co-

efficient, T and the convec curvature. The curvature, K, is inversely proportional to the

curvature radius, R0, which in turn is determined by the shape of the wave function, ψy(x):

K ≡ 1

R0

=
∂2ψy

∂x2[
1 +

(
∂ψy

∂x

)2
]3/2

(this formula can be found in any calculus book, or Wikipedia). We assume here that the

wave function has a sinusoidal shape, so we can take ψy = A sin kx. You then readily find

the curvature:

K ≈ −k2ψy

We here assumed that the wave length is sufficiently large, so that we may approximate

1 + k2 ≈ 1. As a result, the downward directed pressure from the surface tension is:

p(x) = Tk2 · ψy(x)

Following the same procedure as done for the gravity waves, you calculate the net force

from the surface tension, by looking at a small volume with length ∆x (small re. λ),

height ∆y, and length L (for this, you ignore the contribution of gravity). The force in the

x-direction on this small volume element is given by the surface L∆y times the pressure

difference p(x+ ∆x)− p(x):

Fx = −L∆y · [p(x+ ∆x)− p(x)]

= −∆V · Tk2 ·
[
∂ψy

∂x

]
y=0

= −(∆M)Tk
2

ρ
·
[
∂ψy

∂x

]
y=0

(Newton) = (∆M) · ∂2ψx

∂t2

The dispersion relation at the surface (y = 0) then is:

ω2 =
Tk2

ρ
·
[
∂ψy
∂x

]
y=0

/
[ψx]y=0
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in which you insert the solutions ψy and ψx for the surface tension waves:

ω2(k) =
Tk3

ρ
· tanh(kh)

The total combined effects of gravity and surface tension gives the sum of their contribu-

tions:

ω2(k) =

(
gk +

Tk3

ρ

)
· tanh(kh)

Square symbols: phase velocity; circular symbols: group velocity; both are shown as

function of wave length (on log-log scale). The phase velocity is minimal at λ = 1.7

cm, the group velocity at λ ≈ 4 cm.

(b) In the deep-water approximation you neglect the right-hand factor:

ω = k

√
g

k
+
Tk

ρ

so that the phase velocity is given as

vϕ =
ω

k
= etc.

The group velocity you get from

vg =
dω

dk
= etc.
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Phase- and group velocities are then found to be equal when:

k =

√
gρ

T
and λ = 2π

√
T

ρg

From the literature it is found that the surface tension of water is T = 72 dyne/cm =

0.072 N/m. This yields:

λ = 2π

√
0.072

1000 · 9.81
= 1.7 cm

(c) The table below is generated with Matlab function Chapter5-Table-Exc5-3.m (see Matlab

resources)

λ (cm) f (Hz) vϕ (cm/s) vg (cm/s) vg
vϕ

0.1 673.8 67.4 100.8 1.5

0.25 172.0 43.0 63.6 1.5

0.5 62.7 31.4 44.5 1.4

1.0 24.7 24.7 30.7 1.2

⇒ 1.7 13.6 23.1 23.1 1.0⇐
2.0 11.6 23.2 21.4 0.9

4.0 6.8 27.2 17.7 0.7

8.0 4.5 36.1 19.6 0.5

16 3.1 50.3 25.7 0.5

32 2.2 70.8 35.6 0.5

100 1.2 125.0 62.5 0.5

200 0.9 176.7 88.4 0.5

400 0.6 249.9 125.0 0.5

800 0.4 353.4 176.7 0.5

1600 0.3 499.8 249.9 0.5

3200 0.2 706.8 353.4 0.5

6400 0.2 999.6 499.8 0.5

Note that for λ = 1.7 cm the phase velocity of the waves reaches a minimum (and note

that the group velocity is minimal at a different wave length!)

This specific wave length of 1.7 cm separates two different ’regimes’ for water waves (see

figure).
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Exercise 5.4:

x=0

1
h2

y=−h1

y=−h2

y=0

h

(a) We deal with reflection and transmission in x = 0 when the impedances for x < 0 and

x > 0 differ. For the impedance the following holds: Z = ρ · vϕ. The density of the water

is the same throughout, so we only have to look at the velocities in the two compartments.

These are found from the dispersion relation:

ω2 = gk · tanh(kh) ⇒ vϕ =

√
gλ

2π
tanh(kh)

In the deep-water case (λ � h, so thats hk → ∞) and we can take tanh(kh) ≈ 1. In

other words: ω2 ≈ gk. For the velocity we thus find:

vϕ =
ω

k
= etc.

Note that the velocity depends on wavelength (dispersive), but not on depth! Thus, the

velocities are the same in both compartments. As a consequence, the impedances are equal,

and the reflection coefficient will be zero, and the transmission T = 1. The wave passes

the step in depth unperturbed.

(b) For the shallow case λ � h, and therefore you may approximate tanh(kh) ≈ kh. Now,

the dispersion relation is ω2 ≈ ghk2, and the velocity:

vϕ =
ω

k
= etc.

The velocity is independent of wave length (non-dispersive), bue it does depend on the

depth. As a consequence, the impedances in the two media will differ and there will be

reflection at x = 0. The reflection coefficient is given by:

R =
Z1 − Z2

Z1 + Z2

=

√
h1 −

√
h2√

h1 +
√
h2

and this positive as h1 > h2. For the transmitted wave we obtain

T =
2Z1

Z1 + Z2

=
2
√
h1√

h1 +
√
h2
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Exercise 5.5:

(a) Suppose that the LT of x(t) is given by X(s), then the delayed signal becomes:

Y (s) = X(s) · e−s∆T

The transfer function for a delay is therefore H ≡ Y/X:

H(s) = exp(−s∆T )

In the frequency domain we have: substitute s = jω:

H(ω) = exp(−jω∆T )

which has an amplitude characteristic |H(ω)| = 1 ∀ω and phase characteristic Φ(ω) =

−ω∆T .

(b) For the transfer function of the total feedback system we obtain:

H(s) =
A exp(−s∆T )

1 + sT + A exp(−s∆T )

The loop gain is given by the product of all systems in the loop:

L(s) =
A exp(−s∆T )

1 + sT

for which the amplitude characteristic is:

|L(ω)| = A√
ω2 + T 2

and the phase characteristic:

Φ(ω) = −ω∆T − arctan(ωT )

Unstable behaviour of the system occurs when Φ(ω0) = −180o and |L(ω0)| > 1. It is

convenient to try to approximate this numerically. Figure 5.26 illustrates the situation by

showing the Bode plots for the two subsystems.

(c) Lowering A or increasing T brings the gain below 1 and the instability disappears.

Note that if ∆T � T , the phase curve of the delay moves rightward, and the gain of the

system remains below 1 (0 dB), preventing instability. However, when the delay approaches

the time constant T the situation becomes problematic! In the CNS such situations could

occur.
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Exercise 5.6:

(we saw this exercise before, in a slightly different form, in 4.1)

(a) With the input given as p(t) = cos(ω1t) + cos(ω2t), the output is found to be:

q(t) = a · (cos(ω1t) + cos(ω2t)) + b · (cos(ω1t) + cos(ω2t))
2 + c · (cos(ω1t) + cos(ω2t))

3

Note that cos2(x) = 1
2

+ 1
2

cos(2x) and 2 cos(x) cos(y) = cos(x+ y) + cos(x− y),

and that

(cosx+ cos y)3 = cos3 x+ 3 cos2 x cos y + 3 cosx cos2 y + cos3 y

Collecting terms yields the following 13 frequency components with their amplitudes (n.b.:

all at phase 0 (positive)):

frequency amplitude

0 b

ω1 (a+ 5c/4)

ω2 (b+ 5c/4)

2ω1 b/2

2ω2 b/2

ω1 − ω2 b

ω1 + ω2 b

ω1 + 2ω2 3c/4

ω1 − 2ω2 3c/4

ω2 + 2ω1 3c/4

ω2 − 2ω1 3c/4

3ω1 c/4

3ω2 c/4

The ‘F’-percept is due to the third-order nonlinearity.

(b) When p(t) = A cos(ω1t), all terms containing ω2 disappear, and the amplitudes of the

remaining signals are:

q(t) = A · b/2 + A · (a+ 3c/4) · cos(ω1t) + A · (b/2) · cos(2ω1t) + A · (c/4) · cos(3ω1t)

The spectrum now contains 4 frequency components.

Exercise 5.7:

We have to assess the (instability) of the equilibria of this system for different parameter values.

We take the radius r(t) ≥ 0 ∀t, and consider for the parameters a, µ the four different possibilities
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(> 0, < 0). Note that whenever ṙ < 0 the trajectories will always converge to the stable

equilibrium point for t→∞.

dr

dt
= r · (a− µr2)

dθ

dt
= ω0

with ω0 > 0 trajectories in the (x, y) plane follow a counter-clockwise motion.

Rewrite the first equation as
dr

dt
=
r

µ
· (a · µ− r2)

The equilibria are given by ṙ = 0:

r∗1 = 0

r∗2 =
√
aµ

You may now verify the trajectories from the Figure below, by looking at the different conditions

for the parameters.

A supercritical Hopf bifurcation at
√
aµ = 0


