
John van Opstal Auditory System and Gaze Control 7: Acoustic Localization Cues 1

The Auditory System and Human Sound-Localization Behavior
Short Answers Exercises Chapter 7: Acoustic Localization Cues

Exercise 7.1:

This exercise refers to the double-pole coordinates shown in Figure 1.7A, where the iso-elevation

and iso-azimuth lines are indicated as parallel small circles on the unit sphere. For a target in

the frontal hemifield at fixed azimuth α0 deg, the iso-azimuth circle on the sphere has radius

cos(α0). For straight ahead, α0 = 0, the radius is 1.0, and the target’s elevation angles can run

over the full range from [−π/2,+π/2]. At the far-lateral positions, α0 = ±π/2, the radius is

zero, and hence all elevation angles are confined to zero deg. At the intermediate azimuths, the

allowed elevations will run from [−π/2 + α0,+π/2− α0]. Indeed, this behavior is described by

sin ε ∈ [− cosα0,+ cosα0]

Exercise 7.2:

When the maximum ∆x equals precisely one full wavelength of the tone, λ m, the azimuth angles

at straight ahead and at ±90 deg will all yield the same interuaral phase difference (IPD) of zero

deg, and hence these three locations will be ambiguous for sound localization.

The maximum L-R phase difference is determined as

∆ΦMAX = 2π · r · (π/2 + 1) · f ≈ 0.0046 · f rad

For f < 1335 = fMAX Hz there is never an ambiguity as the IPD remains below 2π. However,

for higher frequencies, the IPD may (or may not) exceed 2π, depending on the actual (unknown)

azimuth angle. For a general azimuth angle in the frontal hemifield it is

∆Φ(α) = 2π · r · (α + sin(α)) · f with α ∈ [−π/2,+π/2]

When the phase difference is 3π (path-length difference 3λ/2 there will be 4 ambiguous azimuth

angles between [−π/2,+π/2], at 4π there are 5, and so on:

∆x = nπ for n ≥ 2 ⇒ N(α) = (n+1) at [−π/2,−π/2+
π

n+ 1
, · · · , π/2− π

n+ 1
,+π/2]

Each increment in the number of ambiguous azimuths occurs at frequencies

f(n) = n · c

2 · r · (1 + π/2)
= n · 667 Hz with n ≥ 2
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Exercise 7.3:

(a) The cross-correlation function between xL(t) and xR(t) = xL(t − ∆T ) is (suppose a

periodic signal with period T ):

ΦLR(τ) =
1

T

∫ T

0

xL(t) · xR(t+ τ)dt =
1

T

∫ T

0

xL(t) · xL(t−∆T + τ)dt = ΦLL(τ −∆T )

which is the delayed auto-correlation function.

(b) We take xL(t) = A sin(ω0t), with period T = 2π/ω0:

ΦLR(τ) =
A2ω0

2π

∫ 2π/ω0

0

sin(ω0t) · sin(ω0(t−∆T + τ)dt

We find:

ΦLR(τ) =
A2

2
· cos(ω0(τ −∆T ))

(c) The half-wave rectified tone is described in the following way

xL(t) =


sin(ω0t) 0 ≤ t ≤ π/ω0

0 π/ω0 ≤ t ≤ 2π/ω0

Note that

xR(t) = xL(t−∆T ) =


6= 0 ∆T − τ ≤ t ≤ π/ω0 + ∆T − τ
= 0 π/ω0 + ∆T − τ ≤ t ≤ 2π/ω0 + ∆T − τ

from which we have to adapt the integration boundaries (only where the two functions

overlap and are unequal to zero). For example, in case ∆T > τ :

ΦLR(τ) =
A2ω0

2π

∫ π/ω0

∆T−τ
sin(ω0t) · sin(ω0(t+ τ −∆T ))dt

etc. The figure shows a calculation for a sine (blue) and the rectified sine (blue) with

Matlab routine Chapter7-Exc7-3.m.
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Cross correlation for f0 = 100 Hz and a delay of 3 ms

Exercise 7.4:

Let’s first make an estimate of the electrical conduction properties of axons. An axon is described

as a cylinder of fluid, surrounded by a (partially-)insolating membrane. Current can flow inside the

axon through the fluid, and across the membrane. Charge can accumulate across the membrane,

which is responsible for the resting potential difference. If the axon has a radius r, membrane

thickness a � r and length L, it will have an intra-axon resistance (from the ionic fluid inside

the axon) that is proportional to its length, and inversely proportional to its cross-section:

Ra(L) = ρa ·
L

πr2

with ρa the specific resistance of the internal fluid (in Ωm). The membrane capacitance is

proportional to the membrane surface, and inversely proportional to the distance of the charged

plates:

Cm(L) = ε0εm ·
2πrL

a
≡ 2πrL · cm

with cm the specific membrane capacity in F/m2. Let’s suppose that myelinated axons have their

nodes of Ranvier at 1 cm distances, so that action potentials ‘jump’ from node to node in 1 cm

steps. The velocity with which they travel is then estimated by

vAP ≈
∆L

τm
=

0.01

τm

in which the membrane time constant is determined by

τm = Ra(∆L) · Cm(∆L) =
2ρa∆L

2cm
r
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so that the speed is

vAP ≈
1

2ρacm∆L
· r ∝ r

So now substitute some numbers (extracted from Hobbie; take myelinated axon):

∆L ≈ 0.01 m

r ≈ 3µ m

ρa ≈ 40 Ωm

cm ≈ 0.13µ F/m2

from which we estimate

vAP ≈ 30 m/s

For an azimuth angle at α0 deg the interaural time difference is given by

∆T =
∆xHead

c
=
rHead · (α0 + sin(α0))

c

with rHead ∼ 0.1 m and c ≈ 343 m/s this is

∆T = 2.9 · 10−4 · (α0 + sin(α0))

E.g., for an azimuth angle of 10 deg this time difference becomes a length difference of

∆LAxon = 8.7 · 10−3 · (0.17 + 0.17) = 3 mm

Exercise 7.5:

This requires some geometry calculations to determine the difference in distance from the two

ears to the sound source, and the fact that sound intensity is inversely proportional to the squared

distance to the source (as the head is acoustically transparent, this is the only factor for a reduction

in intensity).

The coordinates of the source in the horizontal plane (say, forward/lateral) re. center of the head

are

[xS, yS] = [R cos(α0), R sin(α0)]

As the right ear and left ear have coordinates

[xre, yre] = [xre, 0] = and [xle, yle] = [−xre, 0]

the coordinates of the source re. the right ear are

[xSr, ySr] = [R cos(α0)− xre, R sin(α0)]



John van Opstal Auditory System and Gaze Control 7: Acoustic Localization Cues 5

and to the left ear they are

[xSl, ySl] = [R cos(α0) + xre, R sin(α0)]

So the acoustic distances of the source to the left and right ear are given by

DSr =
√
R · (R− 2 · xre cos(α0)) and DSl =

√
R · (R + 2 · xre cos(α0))

The intensity of the source at the right/left ear is then

Ir =
I0

D2
Sr

and Il =
I0

D2
Sl

and hence, the intensity difference is written as

∆I =
I0

R
· 4xre cos(α0)

R2 − 4x2
re cos2(α0)

The numbers are R = 0.7 m, α0 = 45 deg, and xre = 0.075 m, leading to

∆I =
I0

0.7
· 4 · 0.075 · 0.71

0.49− 4 · 0.0752 · 0.5
≈ 0.63 · I0 ≈ I0 − 2 dB

(the intensity difference scales with the absolute source intensity).

Exercise 7.6:

The two pinna reflections give rise to two different delays, ∆T1 = 2∆x1/c and ∆T2 = 2∆x2/c,

and the total signal in the ear canal, with the two (unattenuated) reflections is:

p′(t) = p(t) +

∫ ∞
0

p(t− τ −∆T1)dτ +

∫ ∞
0

p(t− τ −∆T2)dτ

In the frequency domain this becomes

P ′(ω) = P (ω) · (1 + exp(−iω∆T1) + exp(−iω∆T2))

and the transfer characteristic becomes

H(ω) =
P ′(ω)

P (ω)
= (1 + exp(−iω∆T1) + exp(−iω∆T2))

The HRTF corresponds to the amplitude characteristic, which is

G(ω) =
√
Re(H)2 + Im(H)2

and this yields

⇒ G(ω) =
√

3 + 2 cos(ω∆T1) + 2 cos(ω∆T2) + 2 cos(ω(∆T1 −∆T2))

An example of this amplitude characteristic is shown in the figure:
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Red: two-delay model of the pinna for ∆T1 = 0.0004 s and ∆T2 = 0.00073 s. Black:

one-delay model for ∆T1 (Eqn. 7.33); blue: one-delay model for ∆T2. Note that

the first notch of the blue curve is shifted to a lower frequency than the black curve

(f1 = 1/(2∆T2) = 685 Hz, vs. f1 = 1/(2∆T1) = 1250 Hz), and that the first notch

of the two-delay model lies between these two single-reflection notches.

The figure was generated with Matlab function Chapter7-Exc7-6.m

(Note that the two example delays are quite long: for a total path-length difference of 3 cm the

delay would be 0.00009 s, leading to a first notch at 5.7 kHz).

Exercise 7.7:

Suppose that the reflection is modified by a particular linear filter, given by r(τ). We then rewrite

Eqn. 7.31 as follows

p′(t) = p(t) +

∫ ∞
0

p(t− τ −∆T ) · r(τ)dτ

which in the frequency domain becomes (and take K(ω) ≡ FT [r(τ)] = Re[K(ω)] + i ·
Im[K(ω)] ≡ R(K) + i · I(K)) reads:

P ′(ω) = P (ω) · (1 +K(ω) · exp(−iω∆T ))

and the amplitude characteristic becomes (see also the previous exercise)

G(ω) =
√

1 + ||K(ω)||2 + 2R(K(ω)) · cos(ω∆T ) + 2I(K(ω)) · sin(ω∆T )

(note that for K(ω) = 1 this reduces indeed to Eqn. 7.33).



John van Opstal Auditory System and Gaze Control 7: Acoustic Localization Cues 7

Exercise 7.8:

The sensory spectrum is a convolution of the HRTF with the sound source spectrum, which in

the frequency domain reads

YS(ω; εS) = HRTF (ω; εS) · S(ω)

Taking the logarithm (and representing log-frequency, Ω =2 logω, like in the cochlea), this reads

as

ŶS(Ω; εS) = ˆHRTF (Ω; εS) + ˆS(Ω)

We now take the spectral correlation of the sensory signal with a particular (stored) HRTF, which

corresponds to some elevation angle, ε:

CŶ (ε; εS) = C[ŶS(Ω; εS), ˆHRTF (Ω, ε)]

and by applying the definition of Eqn. 7.37, we obtain

CŶ (ε; εS) =
σHS

σY
· C[ ˆHRTF (Ω; εS), ˆHRTF (Ω; ε)] +

σS
σY
· C[ ˆHRTF (Ω; ε), Ŝ(Ω)]

or, in short notation,

CŶ (ε; εS) =
σHS

σY
· CH(ε; εS) +

σS
σY
· CS(ε)

And if the second term is zero (source spectrum does not resemble an HRTF), then the correlation

is maximum for that HRTF that resembles the true HRTF (provided the HRTFs are all unique).

Exercise 7.9:

Suppose that the sound source is positioned at elevation location ε0, which is the physical sound

position. Then the speaker will always generate a spectral imprint on the sensory spectrum, which

is given by

S(ω) = H(ω; ε0) ·X(ω)

We have seen that if the source spectrum is uncorrelated with the stored HRTFs, the subject will

perceive the sound at ε0. However, if we shape the source spectrum such that it does correlate

well with some other elevation angle, say ε∗, in the following way:

X∗(ω) =
H(ω; ε∗)

H(ω; ε0)
·X(ω)

then the sensory spectrum will become

S∗(ω) = H(ω; ε0) ·X∗(ω) = H(ω; ε0) · H(ω; ε∗)

H(ω; ε0)
·X(ω) = H(ω; ε∗) ·X(ω)

and according to the spectral correlation model, the subject will now perceive the sound source at

ε∗! In this way, a fixed single speaker can generate all possible perceptual elevation angles! Note
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that this is not possible for azimuth.... To simulate different azimuth angles with fixed speakers,

you need at least two speakers with systematically varying relative intensities and timings.

Exercise 7.10:

We approximate this problem by simple ray-tracing: first-reflection sounds thus come from one

single point on each of the four walls, floor and ceiling, that is found by equal incident-reflection

angles between source-wall-ear. Eqn. 7.49 then reads

pEar(t) =
p0

(
t− r

c

)
r

+
6∑

n=1

{
1

r1nrn2

·
∫ ∞

0

wn(τ)p0

(
t− r1n

c
− rn2

c
− τ
)
dτ

}
in which r is the shortest distance from the sound source to the center of the head, r1n is the

distance from the sound source to wall n and rn2 the distance from the wall to the center of the

head. These distances are taken to a point that is the reflective midpoint of the source - wall -

head triangle. Finally wn(τ) is the filter (dampening) of wall n.


