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The Auditory System and Human Sound-Localization Behavior
Short Answers Exercises Chapter 8: Asessing Spatial Performance

Exercise 8.1:

(a) x = x1 + x2 where x1 and x2 are uncorrelated random variables. The probability that the

summed random variable has some value x is given by the pdf P (x), and is determined by

the product (because of the independence) of two pdf’s: P1(s) that x1 has some value s,

and that x2 then has value (x− s):

P (x) = P1(s) · P2(x− s)

Since s was chosen arbitrarily, we have to sum over all possible values for s, to obtain:

P (x) =

∫ ∞
−∞

P1(s) · P2(x− s)ds ≡ P1(x) ? P2(x)

(b) The two pdf’s are

P1(x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
and P2(x) =

1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
The convolution for the sum of x = x1 + x2 then yields

P (x) =
1

σ22π

∫ ∞
−∞

exp

(
− s2

2σ2

)
· exp

(
−(x− µ− s)2

2σ2

)
ds

We write

P (x) =
1

2πσ2

∫ ∞
−∞

exp

(
− s2

2σ2

)
· exp

(
−(x− µ)2

2σ2

)
· exp

(
− s2

2σ2

)
· exp

(
(x− µ)s

σ2

)
ds

which is

P (x) =
1

2πσ2
exp

(
−(x− µ)2

2σ2

)
·
∫ ∞
−∞

exp

(
−s

2 − (x− µ)s

σ2

)
ds

The integral can be readily calculated to yield

P (x) =
1

2σ3
√
π3

exp

(
−(x− µ)2

4σ2

)
which is a Gaussian with a standard deviation of σ

√
2

(c) Now, the two pdf’s are

P1(x) =
1

σ1
√

2π
exp

(
− x2

2σ2
1

)
and P2(x) =

1

σ2
√

2π
exp

(
−(x− µ)2

2σ2
2

)
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The convolution for the sum of x = x1 + x2 then yields

P (x) =
1

2πσ1σ2

∫ ∞
−∞

exp

(
− s2

2σ2
1

)
· exp

(
−(x− µ− s)2

2σ2
2

)
ds

which reduces to

P (x) = γ·exp

(
−(x− µ)2 ·

{
2σ2

1

σ2
2(σ2

1 + σ2
2)
− 1

2σ2
2

})
= γ·exp

(
−(x− µ)2 ·

{
3σ2

1 − σ2
2

2σ2
2(σ2

1 + σ2
2)

})
with γ a constant scaling factor. This again describes a Gaussian with mean µ, but now

with variance

σ2 =
2σ2

2(σ2
1 + σ2

2)

3σ2
1 − σ2

2

Note that when σ1 = σ2 this expression reduces to the answer in (b):

σ = σ1
√

2

Exercise 8.2:

The standard Gaussian is defined as

φN(x) ≡ 1√
2π
· e−

x2

2

whereas the general Gaussian for ∆r is

φG(x) ≡ 1

(σ
√

2)
√

2π
· e−

(∆r−µ)2

2·(σ
√

2)2

By introducing the transformation

x =
∆r − µ
σ
√

2

the general Gaussian is mapped onto the standard Gaussian.

So, here the question is whether

1

(σ
√

2)
√

2π

∫ ∞
0

exp

(
− (s− µ)2

2(σ
√

2)2

)
ds =

1√
2π

∫ µ/σ
√
2

−∞
exp

(
−x

2

2

)
dx

We rewrite the left integral, as follows: name x ≡ s−µ
σ
√
2
, then ds = σ

√
2dx and for s = 0 we

obtain x = −µ/σ
√

2. So, the integral becomes

1√
2π

∫ ∞
−µ/σ

√
2

exp

(
−x

2

2

)
dx =

1√
2π

∫ µ/σ
√
2

−∞
exp

(
−x

2

2

)
dx

because of symmetry with respect to x = 0. In short,

PC(∆r > 0) = ΦG

(
d′√
2

)
with d′ ≡ µ

σ

Exercise 8.3:
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(a) From the figure below (adapted from Fig. 18.2) we see that the probability for a ’false

alarm’ (noise exceeds the criterion β, without a signal) is given by

PFA = ΦG(−β/σ)

Likewise, the probability for a ‘hit’ (signal exceeds the criterion) is given by

PH = ΦG((µ− β)/σ)

Taking the difference of the inverses eliminates the criterion:

Φ−1G (PH)− Φ−1G (PFA) =
µ− β
σ
− −β

σ
=
µ

σ
≡ d′

(b) The likelihood ratio, LR, is given by the probabilities of SN vs. N at the chosen criterion,

β:

LR ≡ fSN(β)

fN(β)
=

exp
(
− (µ−β)2

2σ2

)
exp

(
− β2

2σ2

)
and using the result from (a) this gives

LR = exp

(
−1

2

{
[Φ−1(PH)]2 − [Φ−1(PFA)]2

})

(c) When LR = 1, the probabilities at the criterion are the same, and hence, the cumulative

tails of the two probability functions will be identical too. Therefore, in this situation,

PH + PFA = 1
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Exercise 8.4:

Pick a point P on any of the ROC curves, and draw the line perpendicular to the diagonal to Q.

Then D(β) = PQ. The length of the line from the origin to P depends on β and is given by

R(β) =
√

ΦH(β)2 + ΦFA(β)2

The line OR makes an angle φ(β) with the horizontal axis. This angle is given by

φ(β) = arctan

(
ΦH(β)

ΦFA(β)

)
The diagonal makes an angle of π/4, so that the angle between R(β) and the main diagonal is

∆φ(β) = φ(β)− π/4. Now we have the triangle OPQ within which the line PQ is determined

by

D(β) = R(β) · sin(∆φ(β))

Exercise 8.5:

(a) From R(ε) = p+ q · T (ε) + r · T (α) + s · T (α)T (ε) we simply introduce the drift bias and

drift gain as:

∆r ≡ r · T (αMAX) and ∆s ≡ s · T (αMAX)

which immediately leads to Eqn. (8.33).

For the azimuth components we apply a similar regression model:

R(α) = k +m · T (ε) + l · T (α) + n · T (ε)T (α)

for which we introduce the drift bias and drift gain as

∆m ≡ m · T (εMAX) and ∆n ≡ n · T (εMAX)

(b) When (∆m,∆n) = (0, 0) and (∆r,∆s) = (0, 0) we obtain the standard linear regression

of
R(α) = k + l · T (α)

R(ε) = p+ q · T (ε)

which yields a rectangular grid in Fig. 8.18A. When the biases (k, p) = (0, 0) this grid is

centered on (0,0), and when the gains (l, q) = (1, 1) the grid is a square with edges along

the 30 deg boundaries.

The effect of the drift biases (∆m,∆r) is: when ∆m > 0 the vertical center line of the

grid runs oblique with a positive slope. When ∆r > 0 the central horizontal line of the

grid runs oblique with a positive slope.
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The effect of the drift gains (∆n,∆s): when ∆n > 0 the length the vertical edge line of

positive azimuths is longer than the edge line for negative azimuths, with a gradual decay.

When ∆s > 0 the horizontal top edge for upward elevations is longer than the horizontal

bottom edge for downward elevations, with a gradual decay.

(c) If the drift gains, (∆n,∆s) are both zero, the grids will be rectangular, where the sides

are determined by the gains (l, q). If the drift biases are zero the lines of constant target

elevation will run horizontal, and the lines of constant azimuth will all run vertical. The

center lines will cross at the overall bias, at (k, p)

Exercise 8.6:

In the two different models of Fig. 8.19, here in extended format of Fig. 8.16,

azimuth information enters the system either at the spectral input stage, where the

spectral information from both ears is combined (WM model), or at the spatial stage

where the elevation estimates of both ears interact (MW model).

Exercise 8.7:

The transfer (we take only the left ear) from left ear headphone to the eardrum is described by

the following transformation in the frequency domain (Fig. 8.20):

Y2,L(ω;α, ε) = M(ω) ·HL(ω) ·X2,L(ω;α, ε)

and from the free-field to the eardrum of the left ear:

Y1,L(ω;α, ε) = M(ω) ·HRTFL(ω;α, ε) · L(ω) ·X1(ω)
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A good simulation requires that Y2,L = Y1,L, so that

HL(ω) ·X2,L(ω;α, ε) = HRTFL(ω;α, ε) · L(ω) ·X1(ω)

and the transfer of free-field to headphone signals is determined by

TL(ω;α, ε) ≡ X2,L(ω;α, ε)

X1(ω)
=
HRTFL(ω;α, ε) · L(ω)

HL(ω)


