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The Auditory System and Human Sound-Localization Behavior 
 

Exercises Chapter 10 
 

Problem 10-1 Show that the following mapping function also satisfies the constraint 

of Eqn. 10.2: 

𝑇 𝑟 ≡ 𝑟! =
    

𝑁!! +
2𝑁
𝜋 ∙ 𝛼

∙ ln
𝑟
𝑟!

   and  𝑇 𝜙 ≡ 𝜙! = 𝜙 

with N0 and r0 arbitrary constants, and α the proportionality constant for receptive 

field size. Plot the iso-eccentricity and iso-direction lines in a 2D representation of 

this function. 

 

Problem 10-2  

        a  Draw a graph of the shifted complex-log function of Eqn. 10.6. Calculate and 

plot the images of the vertical meridians, and of iso-direction lines at ±30 and ±60 deg, 

as well as for a number of logarithmically spaced eccentricities. Is this map 

conformal? Why (not)? 

        b  Provide a prescription for the inverse mapping of this function: 

                                    𝑇!! 𝑢, 𝑣 = (𝑟,𝜙) 

 

Problem 10-3 Rewrite the SC afferent mapping function to (x,y) coordinates. 

 

Problem 10-4 Verify the expression for the inverse mapping function of Eqn. 10.11 

(the efferent map) that relates the horizontal (x), and vertical (y) saccade components 

(zo = (x,y)) to collicular neural coordinates, wo = (uo, vo). Also express the efferent 

map in polar coordinates. 

Problem 10-5 If the cell density in the SC motor map is taken constant, at ρ0 

cells/mm2, show that the total number of spikes from the SC population is given by 

                    𝑁!"! = 2𝜋 ∙ 𝑁! ∙ 𝜌! ∙ 𝜎!"!!  

Make an educated guess for NTOT. 
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Problem 10-6 Use Eqn. 10.12 to demonstrate that the width of the movement field 

(determined by the efferent mapping of 1.0 mm of SC space, symmetrically 

positioned around the center of a population at u0) increases linearly with R0. Also 

determine the asymmetry of the MF by taking the ratio between low-edge to peak vs. 

peak-to-high edge. 

 

Problem 10-7 Suppose that the center of the active Gaussian cell population in the 

SC determines the size and direction of the saccade vector endpoint. Assume that 

center location of the population is endowed with some noise, due to retinal 

uncertainty, so that will scatter from saccade to saccade in response to identical target 

presentations. Suppose that the SC scatter is bounded by a small circular region 

around the true center, with radius ε in the collicular complex-log map of Eqn. 10.9. 

Derive an expression for the distribution of saccade vectors as function of saccade 

amplitude that results from this scatter, and show that under these assumptions the 

anisotropy of the motor map is directly reflected in the saccade endpoint distributions.  

 

Hint: Place the scatter with its center on the horizontal meridian of the map and 

compute the resulting vectors for 5 points on this circle: the center, the horizontal 

meridian intersection points of the circle, and the two most up/down vertical points on 

the circle. These 5 points define the long and short axes of an elliptical distribution. 

 

Problem 10-8 Since the horizontal/vertical brainstem feedback circuits (with gain B, 

and feedback delay, ΔT) and the downstream PSGs of Fig. 10.6 are all linear systems, 

their total function can be replaced by single feed-forward models with identical 

input-output characteristics.  

Derive these characteristics, assuming simple, first-order plant models (time constant, 

T, and add a gain T in the direct path from PGs to motor neurons). 

 

Problem 10-9 Explain the deficits observed in the simulated saccade vectors with the 

model in Fig. 10.10A. 

 


