
John van Opstal            Auditory System and Gaze Control            2. Physics of Sound 

The Auditory System and Human Sound-Localization Behavior 
 

Exercises Chapter 2 

 
Problem 2-1: Verify Eqn. 2.23 for the speed of gas molecules under adiabatic  

      conditions.  

 
Problem 2-2:  

     (a) Show that the homogeneous wave equation, Eqn. 2.25, indeed holds for   

           any function, s(x,t), that can be written as:  

                                              s(x,t) = s(x ± vt) 

          This is a very important and fundamental result as it states that any wave shape  

          that travels at a constant velocity through the medium obeys the homogeneous  

          wave equation (and it is a non-dispersive medium). 

 

    (b) Verify the linearity condition (superposition of solutions) of the homogeneous  

          wave equation. 

 

Problem 2-3: Show Eqn. 2.30 by substituting the harmonic traveling wave function  

       after separation of variables. 

 

Problem 2-4: Demonstrate that the standing-waves of the fixed boundary conditions  

        for s(0,t) = s(L0,t) lead to the solutions given by Eqn. 2.36. 

 

Problem 2-5:  

(a) Follow a similar analysis as you did in Problem 2-4 to find the standing waves 

under open boundary conditions: s(0,t)= and s(L0,t)= maximum. 

(b) Same for mixed boundary conditions: s(0,t)=0 and s(L0,t)= maximum. 

(c) Same for periodic boundary conditions: s(0,t)=s(L0,t) and !"
!"

0, 𝑡 = !"
!"

𝐿!, 𝑡 .  

 

 

Problem 2-6: The inhomogeneous wave equation, Eqn. 2.50, has harmonic temporal  

      solutions, but nonharmonic spatial solutions. Demonstrate this latter statement. 
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* Problem 2-7: In some cases, the inhomogeneous wave equation, Eqn. 2.50, can be  

       solved analytically. Consider fixed boundary conditions at x=a and x=2a, and  

       substitute for the spatial dependence of the density and bulk modulus:  

𝜌 𝑥 =
𝑚
𝑥! , 𝐵 𝑥 = 𝐵! 

       Demonstrate that the standing waves described by Eqn. 2.51 (and illustrated in  

       Fig. 2.7) are indeed a solution of the inhomogeneous wave equation, Eqn. 2.50. 

 

* Problem 2-8: A second example of an inhomogeneous standing wave problem is  

       the following: Consider a string of length L with mass density ρ1 and tension B,  

       that is connected to a second string of the same length and tension, but with mass  

       density ρ2. Both strings are attached to walls that are 2L apart, so that standing  

      waves will arise for fixed boundary conditions (Figure 2.11).  

 

 
 

Figure 2.11 Inhomogeneous string, consisting of two equal-length (L) parts with 

different mass densities, attached in the center at x=0, and fixed boundary conditions 

at x=-L and x=+L. 

 

(a) Show that the frequencies of the eigenmodes of this system obey the 

following nonlinear relation: 

𝑣! tan
𝜔𝐿
𝑣!

= −𝑣!tan
𝜔𝐿
𝑣!

 

(b) Find an expression for the standing wave solutions, s(x,t) 

(c) Is it possible that x=0 is a node? If so, when? 
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Problem 2-9: Show that the total kinetic energy of a harmonic sound wave, described 

by 𝑠 𝑡 = 𝑠max ∙ cos (𝜔𝑡), confined to a gas cylinder with cross section A, taken over 

a full wavelength, λ, is given by Eqn. 2.52:   

 

     𝐾! =
!
!
∙ 𝐴 ∙ 𝜔 ∙ 𝑠max ! ∙ 𝜆                   

 

Problem 2-10: Verify the transmitted and reflected intensities, IT and IR, respectively, 

at the boundary of two media with acoustic impedances Z1 and Z2, respectively (see 

Eqn. 2.52) 

 

* Problem 2-11:  

        Show that sine and cosine obey the so-called orthogonality relations: 

          

cos(𝑛𝜔𝑡) ∙ cos 𝑚𝜔𝑡 = sin 𝑛𝜔𝑡 ∙ sin 𝑚𝜔𝑡 =
!

!

𝑇
2 ∙ 𝛿!"

!

!

 

and sin 𝑛𝜔𝑡 ∙ cos 𝑚𝜔𝑡 =
!

!

0 

         with T the period that is related to the angular frequency by 𝜔 = !!
!

 

 

 

* Problem 2-12: Using the orthogonality relations of the previous exercise, you can 

         now demonstrate the validity of Eqns. 2.68 (the calculation of the discrete    

         Fourier spectrum).  

         Hint: to calculate a0, take the time-average of the left- and right-hand sides of 

         Eqn. 2.67. To determine the coefficients an, bn multiply both sides of Eqn. 2.67  

         with 𝑐𝑜𝑠(𝑚𝜔𝑡) and 𝑠𝑖𝑛(𝑚𝜔𝑡), respectively, and take the time-overage. 
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Problem 2-13: A Fourier series for a periodic function without boundary ~ and initial  

     conditions: 

(a) Determine the Fourier series for f(t)=t2-t, on the interval 0 ≤ t ≤ 1: expand 

the function such that it becomes an odd periodic function.  

(b) Idem for the case where the function of (a) is made even. 

(c) Approximate f(x) by the first three Fourier components of the series in (a) 

and (b). Compare the predicted values of both series with the actual values 

of the function in t=[0.0, 0.2, 0.4, 0.6, 0.8, 1.0] and draw the results. Which 

of the two Fourier series converges fastest to f(t)? Why? 

 

Problem 2-14: Consider the following function, f(t) on the interval 0 ≤ t ≤ 1: 

  𝑓 𝑡 =
1− 𝑐𝑡  for   0 ≤ 𝑡 ≤ !

!

0  for   !
!
≤ 𝑡 ≤ 1

        𝑐 ≥ 1 is a constant 

(a) Expand f(t) to an even function with period T=2. Draw this function.  

(b) Write f(t) as a Fourier series and determine the Fourier coefficients. 

(c) Explain what happens to the spectrum of f(t) as 𝑐 → ∞ 

  

 

Problem 2-15: A Fourier problem with boundary and initial conditions. Consider a  

       string that has a length of 5π, which is fastened at x=0 and x=5π. The string obeys  

       the following wave equation:  

𝜕!𝑦
𝜕𝑡! = 25 ∙

𝜕!𝑦
𝜕𝑥! 

        with y(x,t) the transversal deflection of the string from equilibrium over the  

        interval x∊[0,5π]. The following initial conditions hold for t=0:  

  𝑦 𝑥, 0 = sin(𝑥) ∙ (1+ 2 cos(𝑥))   and   𝑦(𝑥, 0) = 0   ∀𝑥 

        Determine y(x,t) 

 

 


