John van Opstal Auditory System and Gaze Control 2. Physics of Sound

The Auditory System and Human Sound-Localization Behavior

Exercises Chapter 2

Problem 2-1: Verify Eqn. 2.23 for the speed of gas molecules under adiabatic

conditions.

Problem 2-2:
(a) Show that the homogeneous wave equation, Eqn. 2.25, indeed holds for
any function, s(x,?), that can be written as:
s(x,t) = s(x £vt)
This is a very important and fundamental result as it states that any wave shape
that travels at a constant velocity through the medium obeys the homogeneous

wave equation (and it is a non-dispersive medium).

(b) Verify the linearity condition (superposition of solutions) of the homogeneous

wave equation.

Problem 2-3: Show Eqn. 2.30 by substituting the harmonic traveling wave function

after separation of variables.

Problem 2-4: Demonstrate that the standing-waves of the fixed boundary conditions

for s(0,¢) = s(Ly,t) lead to the solutions given by Eqn. 2.36.

Problem 2-5:
(a) Follow a similar analysis as you did in Problem 2-4 to find the standing waves
under open boundary conditions: s(0,¢)= and s(Ly,t)= maximum.

(b) Same for mixed boundary conditions: s(0,2)=0 and s(L,t)= maximum.

(c) Same for periodic boundary conditions: s(0,2)=s(L,t) and g—i (0,t) = g—i (Lo, t).

Problem 2-6: The inhomogeneous wave equation, Eqn. 2.50, has harmonic temporal

solutions, but nonharmonic spatial solutions. Demonstrate this latter statement.
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* Problem 2-7: In some cases, the inhomogeneous wave equation, Eqn. 2.50, can be
solved analytically. Consider fixed boundary conditions at x=a and x=2a, and

substitute for the spatial dependence of the density and bulk modulus:

p) =5, B =B

Demonstrate that the standing waves described by Eqn. 2.51 (and illustrated in

Fig. 2.7) are indeed a solution of the inhomogeneous wave equation, Eqn. 2.50.

* Problem 2-8: A second example of an inhomogeneous standing wave problem is
the following: Consider a string of length L with mass density p; and tension B,
that is connected to a second string of the same length and tension, but with mass
density p,. Both strings are attached to walls that are 2L apart, so that standing

waves will arise for fixed boundary conditions (Figure 2.11).
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Figure 2.11 Inhomogeneous string, consisting of two equal-length (L) parts with
different mass densities, attached in the center at x=0, and fixed boundary conditions

at x=-L and x=+L.

(a) Show that the frequencies of the eigenmodes of this system obey the

following nonlinear relation:

wL wL
v, tan <—> = —v,tan <—>
U1 L7

(b) Find an expression for the standing wave solutions, s(x,?)

(c) Isitpossible that x=0 is a node? If so, when?
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Problem 2-9: Show that the total kinetic energy of a harmonic sound wave, described
by s(t) = Smax * €0s (wt), confined to a gas cylinder with cross section 4, taken over

a full wavelength, 2, is given by Eqn. 2.52:
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Problem 2-10: Verify the transmitted and reflected intensities, /r and I, respectively,

at the boundary of two media with acoustic impedances Z; and Z, respectively (see

Eqn. 2.52)

* Problem 2-11:

Show that sine and cosine obey the so-called orthogonality relations:

fcos(na)t) - cos(mwt) = f sin(nwt) - sin(mwt) =

0 0
T

and fsin(na)t) - cos(mwt) =0
0

67’1771

T
2

with T the period that is related to the angular frequency by w = 2?”

* Problem 2-12: Using the orthogonality relations of the previous exercise, you can
now demonstrate the validity of Eqns. 2.68 (the calculation of the discrete
Fourier spectrum).

Hint: to calculate ay, take the time-average of the left- and right-hand sides of
Eqn. 2.67. To determine the coefficients a,, b, multiply both sides of Eqn. 2.67

with cos(mwt) and sin(mwt), respectively, and take the time-overage.
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Problem 2-13: A Fourier series for a periodic function without boundary ~ and initial
conditions:

(a) Determine the Fourier series for f{#)=¢’-t, on the interval 0 <¢ < I: expand
the function such that it becomes an odd periodic function.

(b) Idem for the case where the function of (a) is made even.

(c) Approximate f(x) by the first three Fourier components of the series in (a)
and (b). Compare the predicted values of both series with the actual values
of the function in =[0.0, 0.2, 0.4, 0.6, 0.8, 1.0] and draw the results. Which

of the two Fourier series converges fastest to f{7)? Why?

Problem 2-14: Consider the following function, f(?) on the interval 0 <¢<1:

l1—ctfor 0<t<:
f@) = 1 © ¢ =>1isaconstant
0 for ;StSl

(a) Expand f(?) to an even function with period T=2. Draw this function.
(b) Write f{?) as a Fourier series and determine the Fourier coefficients.

(c) Explain what happens to the spectrum of f{z) as ¢ — oo

Problem 2-15: A Fourier problem with boundary and initial conditions. Consider a
string that has a length of 5w, which is fastened at x=0 and x=5n. The string obeys
the following wave equation:

2 2
with y(x,?) the transversal deflection of the string from equilibrium over the
interval x€[0,5n]. The following initial conditions hold for /=0:
y(x,0) =sin(x) - (1 4+ 2cos(x)) and y(x,0) =0 Vx

Determine y(x,?)



