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Abstract—The way the human brain controls movements is a
widely studied subject. Considering the specific case of saccades,
the trajectories the brain tends to choose from an infinite number
of possible trajectories are highly stereotypical, in which non-
linear dynamic properties are observed. Also, the fact that the
eyes move in two degrees-of-freedom (DOF) from possible three,
provided by six extraocular muscles, is a motivating aspect for
studying these movements. The plane where the eyes move is
called Listing’s plane (LP). Seemingly, the brain considers a
particular kind of disturbance which plays an important role
in these properties of saccades, called signal-depentent noise
(SDN). Here, a study on how saccades are controlled in the
presence of SDN assuming the existence of internal feedback
is presented. Simulations are carried out in a 3D biomimetic
robot eye developed previously which was adapted to include
a more realistic muslce model, SDN and a feedback control
loop. Different methods are tested to obtain a valid linear
parameterization of the eye model, which is then used to control
stochastically the model using different optimization principles
used in the literature through optimal feedback control. The
non-linear dynamic properties were observed only under SDN
conditions. The trajectories are fully contained in LP only if the
final position is penalized for deviations to the LP. This fact is
irrespective of the type of noise used.

I. INTRODUCTION

Controlling human-like movements in such a sophisticated
system as the brain does, where both actuators and sensors are
biological mechanisms which carry in them such characteristic
properties is a challenging problem and there is then room
for plenty of research to be made. Here, the saccadic system
is studied and, more precisely, an attempt to understand
the reproduction of 3-dimensional eye movements is made
by approaching the biological structure as a robotic system
using engineering tools. The oculomotor systemis composed
by six extraocular muscles which act in pairs, the eyeball
and parts of the brain. It is responsible for all kinds of eye
movements, in which there is the clear objective of keeping the
point of interest centered in the fovea, the highest resolution
part of the eyeball. The saccadic movements are focused
here, as from the point of view of dynamics these are the
most challenging. Saccades are quick and precise movements
performed simultaneously by the eyes when an abrupt change
in the point of fixation is required. Remarkably, these follow
stereotypical trajectories which are confined to a plane where
torsion is O [7] - the Listing’s plane - and with a consistent
relationship between amplitude, duration and velocity [1] -

the main sequence. Several models have been developed to
describe the system - starting in one-dimensional open loop
models or with local feedback a number of more complicated
models were estabilished with the goal of mimetizing correctly
this class of eye movements.

To perform a saccade, the brain generates a control strategy
in which the goal is to achieve a more rewarding state. Simul-
taneously, the change in state produced by a motor command is
conditioned by a noise which grows with its size, called signal-
dependent noise (SDN) [12], [5]. Nowadays, the saccadic
system is thought to rely on a combination of planning and
correctionof the movements. Several research works reported
that, even though the brain preprograms our eyes’movement in
order to reach the goal when stimulated by a visual signal, the
generated trajectory mightchange midflight when the stimulus
moves. Since saccades are such fast movements, the feedback
information relies strongly on efferent copy of the motor
commands. The way uncertainty affects sensory inputs as well
as motor commands is acknowledged through learning which
makes it possible to tune the motor responses to different
sensory information.

We begin this work with a previously built mechanical
prototype of a biologically inspired eye with six muscles. This
system has, however, problems related with undesired effects
emerging from the mechanical implementation (e.g vibrations)
[11]. So, in order to proceed with the study of saccades, a
model was developed in Matlab/Simulink from the mechanical
prototype, which has allowed for the achievement of empirical
proof of the saccadic system using optimal control in open-
loop disregarding SDN, demonstrating that this framework
emulates saccades with Listing’s plane and main sequence
behaviour [17].

II. BACKGROUND
A. Oculomotor system

The oculomotor system, represented by the diagram in
figure 1, consists of two main parts. On one hand it has a
nonlinear plant - the eyes and their muscles - and on other
hand an optimal controller - inside the brain.

Theoretically, there would be six degrees-of-freedom (DOF)
in the plant. However, extraocular muscles act as ago-
nist/antagonist pairs. Because of this only three DOF are used
instead of the theoretically possible six.
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To perform saccades, a strategy is developed by the brain
in the superior colliculus [4], which uses its motor neurons to
generate a signal by firing a burst of action potentials. It has
been suggested in several models that the eye displacement is
encoded in the brainstem and is used as an internal feedback
signal.

Finally, there is another determinant factor in the oculomo-
tor system when it comes to saccades, the presence of signal-
dependent noise (SDN). This is a noise for which the standard
deviation increases with the mean of the signal at stake.

Fig. 1: The oculomotor system

B. Saccade Dynamics

1) Main sequence: The stereotypical relations between
duration and amplitude as well as between peak velocity
and amplitude for all healthy individuals form the main
sequence. Several research works have shown that the duration
of saccadic movements increase linearly with duration. On
other hand, it has also been shown by various researchers
that the peak velocity of saccades tends to increase linearly
with amplitude, reaching a saturation value for large saccades.
Later, studies have shown that there is also a typical rela-
tion between the movement amplitude and the asymmetry
of saccadic velocity profiles, which is measured by their
skewness[19].

These spatial-temporal relations which caracterize saccades
are illustrated in figure 2.
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Fig. 2: Non-linear dynamics of saccades - the main sequence.

2) Eye orientation: As previously stated, the six extraocular
muscles are mechanically arranged in such a way that the eye
has 3 DOF rotating torsionally when about z, vertically for
y and horizontally for z, from a primary position where all
these angles are 0. The Donder’s law states that the torsional
component of the eye orientation is a function of the vertical
and horizontal components, meaning that the eye has not three
but only two DOF.

A further specification of Donder’s law came with Listing’s
law, which states that with the head fixed and gazing at infinity
in the primary position, any eye orientation can be reached by
a single rotation about and axis in a plane orthogonal to the

line of sight - the Listing’s plane. Since we define the primary
position as the position where the angles relative to three axes
are zero, then Listing’s law means that the torsion remains
null in any other eye orientation and so, the Listing’s plane is
the set of orientations where there is no torsion. Nevertheless,
if the primary position is not an eccentric position, although
the orientation of the eye is still confined to a plane, this plane
is no longer orthogonal to the line of sight, but tilted in the
same direction of the line of sight half as much.

3) Curvature: Oblique human saccades exhibit almost per-
fectly straight trajectories, which suggests that the horizontal
and vertical components may have a common command
generator which is thus decomposed in these components. The
model used in this study is three-dimensional and considers
independent actuations in each of its dimension, intenting to
replicate humans saccades by leaving these factors uncon-
strained. So, it is important to study the curvature of the sac-
cades performed by the model in order to validate them. There
are several methods to measure the curvature of saccades.
Here, we will compute the correlation between velocity vectors
in horizontal and vertical components of oblique movements.
If the correlation is unitary, then the saccade is straight since
its velocity components are perfectly scaled versions of each
other. The goal is thus to have near-unitary correlation, but
never unitary, in order to mimic saccades correctly.

C. Signal-dependent noise

Signal-dependent noise is commonly present in biological
systems. This is a kind of disturbance in which the the standard
deviation grows linearly as a function of the mean activation
signal.

Regarding specifically the control of saccades, some re-
search has also been made on the effect of SDN. The reason
for the asymmetry in velocity profiles of saccades lies on the
neural strategy of control, which tries to minimize variability
[5] by producing large commands early in the movement
in order to let variability dissipate naturally throughout the
movement[14].

1) State-space representation: The state-space representa-
tion of a system consists of a mathematical model containing
its state variables and relating its inputs and outputs by means
of first-order differential equations. The equations below can
describe a discretized version of a system perturbed by additive
noise, €, and €y, and SDN, €, and ¢:

D = Ax®) 4 Bu® 4 )y 4,

y® = Hx® 0y 4¢, M
Here A represents the dynamic matrix, containing informa-
tion about the system’s dynamic properties, B represents the
input matrix which translates the influence of the input, u into
the dynamics and H is the output matrix, which transforms the
state x into sensory readings y. Note that m is the dimension
of vector u - number of elements in the motor commands
- and n is the dimension of vector x - number of elements
defining the state.



The terms of additive noise, ¢, and ¢,, are defined as
Gaussian random variables with zero-mean and variance @),
and @, respectively:

€x N (0, QT)

€y ™~ N (07 Qy)
where (), and @), are n X n and m x m diagonal matrices
with values ¢, and g, respectively in their diagonals.

The multiplicative noise terms are characterized with zero-

mean magnitude and a variance that depends on the motor
commands u and state x in the following form:
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One can state easily by analysing (1) that the noise introduces
quantifiable variability into the system.

D. Feedback in saccades

The problem of generating motor commands to make some
movement, like a saccade, is in some extent approached by
our brain as an optimal feedback control problem:

« The movement has a cost as does our plan;

e A forward model gives a prediction of the outcome
generated by some action;

o Some information about our state is retrieved during the
execution.

The influence of feedback in saccades has been proven
previously in different contexts [16] and in various models the
internal feedback signal has been represented as an efference
copy signal of position and/or velocity coming from the
brainstem [4], [8], [13]. The fact that saccades rely mostly on
an internal model while having such good performance makes
us infer that this model must be accurate. As stated previously
in II-C, SDN is critical in motor-planning [5] and has to be
considered therefore by this model - through learning the brain
is able to understand variability and its structure and how it
affects the movement.

1) Optimal Feedback Control: Optimal control deals with
finding the minima for a cost function of u, the action variable,
and x, the state variable:

J(u) =9 (z(T)) —I—/O L(x,u)dt 4)

where
te0,T]

x = f(x,u)

However, the study of optimal control endowed with feed-
back relies more strongly in the field of stochastic optimal
control for technical reasons - discrete spaces are proven to
converge in a reasonable amount of time, unlike the continuous
form. In order to understand the dynamics of these eye move-
ments (better explained in ??), some research has been made

regarding the neuronal strategy behind them. While it is well-
accepted that there is a trade-off between speed and accuracy
originated by SDN, since it explains the main sequence [6],
[4], [5], there is still some debate regarding other cost terms
such as energy consumption, which has been claimed to be
critical to the way the eye behaves in [9]. We have as base
framework the approach in which the brain develops a control
strategy regarding accuracy, energy consumption and speed:

J=Jp+Ju+Jp (5)

The first term in (5), J;, is responsible for penalizing the end-
point inaccuracy:
J, = xPTx(®) (6)

Here, T' is a n x n diagonal matrix, and its values define the
assigned penalization to each state-variable at the end of the
movement. The second term, on other hand, represents the
effort cost

p
Ju = u®TLu® (7)
k=0
Finally, the term J, describes the temporal discount of reward:
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To obtain an optimum feedback policy, we consider a cost
per time-step, a(k)

a(k) = u®T Lu® 4 x®TphLm 4 A o)

14 Bp
It is thus useful to define a function which gives us the
expected accumulated cost at each step - a function analogous
to the Bellman equation with the difference that we want to
minimize it:
U (xF)) = r71(i7)z{a(k) + E[ug (xFHD)x® u®]} (10)
u(k

For any time-step, k, its value is given by the cost at that
time-step o®) and the expected value of the state resulting
from applying the optimal policy since the system is endowed
with random disturbances. Todorov [18] proposed a form for
eq. 10 at each time-step:

vﬂ*(x(k), ;c(k)) — x(k)TW£k)x(k)+
(X(k) _ &(k))TWe(’“) (X(k) _ g((k’)) +w®
(11)
Here, the influence of SDN affects the optimization of v,
since it alters the variance in the model.
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(14)

We can easily see that control gains are inversely propor-
tional to the motor noise and the energy penalization term - if
the motor noise term is higher it is advantageous to produce
smaller motor commands, and the same applies to the energy
term.

E. Optimal Estimation

When controlling a system, the controller often does not
have access to the full state-space. State observers combine the
measured output of a system with the input which originated
it to provide an estimate of the system’s state.

That is the case of the Kalman filter (KF), which only
provides state estimates using observations and the available
information of an internal mathematical model of the device,
but also filters disturbances.

k klk—1) 17T klk—1) 77T
K —pklk=1) 1 (Hp(l H +Qy
+Y HDAWWT DT HT)~! (15)
K is the Kalman gain for time-step k, and P*/*~1 is the
prior state uncertainty. The state uncertainty is calculated in
the following form, according to the model’s dynamics:

pIk) = pklk=1) (1 _ gT (W)
PR = APFR AT 4 Q, + 3" BCuMu®TCl BT

(16)

The introduction of SDN in the system arises therefore a

problem - the Kalman gains at each time step are dependent

on the state and the motor command at the same time step.

To solve this problem, Todorov [18] has sugested an iterative
method for computing the Kalman gains.

III. EYE MODEL
A. Muscle model

The six extraocular muscles can be seen as three pairs of
agonist/antagonist muscles acting in three distinct directions,
xz, y and z. In this work, we assume that, when it comes to
force production, there are 3 identical agonistic systems which
receive a neuronal signal (activation) and transform it into a
force. The used model was taken from [15] and is as follows

arf+asf =u (17)

However, this muscle model would be incomplete if it didn’t
consider the antagonist component of the pair. In other words,
the antagonist muscle’s elasticity and the influence it has on the
system’s dynamics. In fact, it is this part of the model which
causes the coupling between the three dimensions in hand-
eye orientation displacement causes the antagonist muscles to
produce a force contrary to the sense of the displacement,

which is modelled as an elastic for each muscle. Further
explanation on the antagonist component of our muscle model
is presented in the following section.

B. 3D Biomimetic robot eye model

The initial model in hands is a model of a mimetic robot of
the eye where three motors are responsible for the movement
of six points, P; where strings are attached to replicate the
six extraocular muscles. By moving these insertion points,
tension is produced in these strings and therefore moving the
eye. This model is adapted to introduce a muscle model with
the agonistic properties described previously and antagonistic
behaviour modeled by the strings.

Texz (1)

J

Qi

Fig. 3: Biomimetic robot eye one-dimensional model. P;
represents the points where elastics are fixed, X; are points
through which the elastics pass and (); are the insertion points
of the elastics in the eyeball. These elastics represent the elastic
part of muscles which act in pairs. The force these muscles
produce is applied directly in the eyeball as an external force,

Text

When one of the muscles of each pair receives a neuronal
signal demanding that a force is produced, it contracts, ap-
plying a force in the eyeball, while the other is extended
and therefore creates a force in the direction contrary to the
movement, as represented in figure 3 In the three-dimensional
case, the forces created by the three muscle pairs form a torque
which we called 7.,

By introducing an input, a torque is created by the agonist
muscles, moving the eyeball. The displacement of the eye
originates a reaction on the antagonist muscles which create
a torque in the opposite direction. The sum of the applied
torques in the eyeball originates hence an angular acceleration
according to Newton’s 2nd law for rotations. By integrating it,
the angular velocity is obtained which can be further integrated
to obtain the new orientation of the eye. This procedure
describes the developed simulator, whose diagram is in figure.

In order to design a feedback loop for our nonlinear model
of the eye, it is necessary approximate its dynamic proper-
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Fig. 4: Diagram of the nonlinear 3D model of the human eye

ties. For this, two main approaches were considered - using
MATLAB/System Identification Toolbox and the analytical
linearization of the described system. These are explained in
detail below.

C. System Identification

Using Matlab’s System Identification toolbox, the model of
the robot was identified by loading in it a pseudo-random
binary signal and observing its output’s characteristics. The
input signal has some restrictions which have to be obeyed to
get a reasonable identification of the system. Here, the main
parameters to take into account were both the input’s period,
which can’t be too low to give the system time to stabilize
before changing the input value again, and the input range in
the 3 different channels.

In order to keep the relation between the hidden state, x
and the output, y, a a restriction about the values in the output
matrix had to be imposed:

100 0 0O
H=({0 0 1 0 0 O
000 O01PO0

This way, we can keep taking the values of i, x3 and x5
as the eye’s angular position components in the eye reference
frame axes z, y and z. However, there is no way to define the
remaining state variables as velocities, which is a requirement
if we want to apply sensor signal-dependent noise in the
system. Since this problem arose, the solution found was to do
something that suits us better not only regarding this problem
but also in the time efficiency of parameterizing the system
and the control of saccades in the nonlinear model itself -
the analytical linearization of the non-linear system at a given
point (X,y,z).

D. System Linearization

The state equations which rule the motion of the system
are nonlinear. Through Jacobian linearization of the system,
we can attain a linear approximation of the system for pertur-

bations, ¢, around some operating point using the following
method:

x = f(x,u)
+% 5x+if
dx

f(x,u) = f(xg, up) Tu

Xo,U0 Xo,U0 (18)
0X = X — Xg

fu=u-—ug

In the case of the operating point, (xg,up), being an equi-
librium point, we know that the system is not moving and
therefore we have

f(X()ﬂ.l()) =0 (19)

which leaves us with

dix —
b= dX %) _y
dt
Finally, substituting in (18) we arrive at a way of computing
the linearized state equation of the system around the equilib-

rium point (Xg, up)

(20)

. df df
=f = — 1) — 1)
X (X7 u) dX oo X+ du — u (21)
We have then:
e
£ v (22)
_ | du
- [4]
du

To compute these derivatives, some support from the MAT-
LAB/Symbolic Math Toolbox was used given the extensive-
ness of these calculations.

In the end, we get a linearization of the continuous system
which we want to control stochastically, so it has to be dis-
cretized. For this purpose, we use MATLAB/Control System
Toolbox function c2d() with zero-order hold method and a
sampling time of 0.001s.

E. Results

1) Muscle responses: The 1%t order agonist muscle system
response was tested for different values of v, with fixed ag =
1. We know from control systems theory that a first-order
system has settling time of 37, and 7 is the time constant,
given in this case by 7 = Z—; So, the with fixed ao, the
settling time is dependent on the value of «; alone - as its
value increases, the system becomes slower.

Analysing the response of the agonist and antagonist pair of
muscles and the resulting force we simulated a neuronal step
signal activating the lateral rectus - horizontal component in
the positive sense of the force - and inspected the produced
elastic torque.

As seen in figure 5, the step neuronal signal originates a
step response of the agonist muscle, simulating its contraction,
while the elastics produce a contrary torque stabilizing the total
torque produced by the pair of muscles over a time period of
roughly 130ms.
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Fig. 5: Agonist/antagonist action of the muscle model. Here,
Tezt TEpresents the lateral rectus as it simulates a contraction
(agonist) in the positive sense of the horizontal component of
the torque, while 7.;, simulates the action of the medial rectus
(antagonist). The action of both results in a pulse, 7qsc

2) Identification and Linearization: The linearization
around the equilibrium point (xg,up) was tested together
with the model obtained from system identification. Figure 6
shows the comparison between the nonlinear system and the
parameterization obtained from the two methods, performed
Matlab’s function compare().
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Fig. 6: Simulated response of IDS and LS superimposed in

their 3 dimensions - the percentages represent the normalized

mean squared goodness measure of each model in each

dimension, the values of the output, v, are expressed in radians

The fitness value is calculated by

szval(:ai) - CU(,’L)H
||xzval(:7 Z) - mean(‘rzval(:’ Z))H

fit(i) =1—

(23)

and it indicates how close are the systems’ outputs relative to
the measured output in the NLS, contained in zval. This result
suggests that the NLS is better identified by the linearization
than by Matlab’s System Identification Toolbox.

IV. OPTIMAL FEEDBACK CONTROL OF SACCADES

A. Control design

To perform a saccade to a certain goal orientation ysgs,
firstly the expected value of the cost, E[J(p)], is optimized
by minimizing the value function given by (11), for a fixed
movement duration, p. This process is repeated by searching in
the whole plausible space of p. The movement duration which
minimizes the cost is then selected, and the corresponding
gains are used in the control.

We have, at this moment, defined the optimal controller
and observer gains for each time-step, &, until the end of the
saccade, p. This means, however, that when the saccade has
reached its goal and the movement is over, k£ = p, we have no
optimal gains to use in the observer and the motor command
generator. Furthermore, it is necessary to introduce a reference
to the system so that the error converges to zero, and not the
state. So far, we have mentioned that the goal of a saccade is
a specified orientation, but it is not just the orientation we are
trying to control, but the whole state of the plant, x, which
consists not only of the orientation but also of the velocity.

Introducing a reference input in a feedback control loop is a
well-studied problem in control theory. To implement this, we
based ourselves on the explanation given in [3] on Reference
Inputs with Estimators. Having in hands a type 0 system -
a system in which the error will increase in steady-state -
the urge to introduce a reference command input, uyy arises
together with the state reference. These contributions are added
to the system employing two gains, N, and N,, which are
obtained based on the system’s dynamics

N, [A-1 B} 'Jo
N,| | H 0 I
By inputing the goal orientation in the system it is modified

by these gains, generating a reference state, s and a reference
motor command uy .

(24)

Hence, this implies that at the end of the movement, as the
feedback loop is not defined and thus will play no role in the
control, the system is controlled only by the reference input.
Since we are studying fundamentally the saccadic movement
and not the subsequent period of fixation, the noise is removed
at the end of the movement, p, for simplification purposes.

The final system has the following equations:

k<p

x*+) = Ax® 4 Bu® + ug 4 eP)) + ¢,

y® = Hx® +¢) +¢,

gk = Ax®) 4 AK®) (y®) _ g®)) 4 Bu® + ug)
u+D = D) (g (kD)

k>p
xFHD) = Ax(F) 4 Bug + €,

y ¥ = Hx® 4 ¢,
(25)



Approach | Cost terms | Signal-dependent noise
1 AED -
2 AED v
3 AD -
4 AD v

TABLE I: Different approaches considered in the formulation
of the optimal feedback control problem.

B. Optimal control approaches

As stated previously, the parameters which the brain tries
to optimize when performing movements is a widely studied
subject, but very few of these studies considered the specific
case of optimal feedback control of saccades with SDN.
However, there have been studies on this subject [14], [2]
which are used here as the main background. In both these
works, the cost assigned to saccades was considered to depend
on three different aspects - Accuracy, Energy and Duration
(AED).

J=Jdy+ Ju+Jp (26)

In the framework of stochastic feedback control, this trans-
lates into the cost per step described by equation (9).

However, when we include SDN in the model, the term
accountable for accuracy will have implicitly in it the influence
of motor commands since its expected value depends on
the variability of the state and the estimation error which is
endowed with motor multiplicative noise.

This gives us the hint that the brain might not be minimizing
effort but only endpoint accuracy and duration while consid-
ering the influence of SDN, as has been proposed previously
(5], [10]:

J=Js+Jp @7)

which, in the stochastic framework leads us to the cost per

step A3

1+ Bp

We call this approach AD as it optimizes accuracy and
duration, although with the presence of SDN we are implicitly
optimizing effort as well.

Table I summarizes the approaches considered in this thesis
to explain the control of saccades. In all these approaches it
is necessary to tune variables 7, A and  which play a role
in the cost functions. In the AED optimization approaches it
is necessary to consider another variable correspondent to the
effort penalization cost, L.

Moreover, to validate the correct behaviour of saccades in
each approach, it is necessary to define a set of metrics with
the human physiological ground which allow us to match the
obtained results with the normal human saccade behaviour.

a(k) = xOTTExF) 4 (28)

C. Saccade metrics

The factors to consider when evaluating the performance of
our system in emulating the behaviour of the human eye in
our system are the following:

« Main sequence - the stereotypical relation between am-

plitude and duration and between amplitude and peak
velocity of saccades must be observed.

o Skewness - as the duration of saccades gets longer,
their temporal velocity profiles tend to become more
asymmetrical, with the peak velocity being attained early
in the movement.

o Listing’s plane - the eye torsion is zero in head-fixed
saccades - v, = 0.

o Curvature - Oblique saccades exhibit curvature in their
trajectories.

D. Results

The values of variables 7', A and 3 were kept constant
through the different approaches, varying only the energy
penalty term, L and the motor noise matrix, C'. It is important
to note that the search for the optimal movement duration was
made in multiples of two sampling periods, and the sampling
period is At = 0.001s

1) Approach 1 - AED optimization without SDN: With the
multiplicative noise matrices C' and D to zero, and keeping
the additive noise variances with the values ¢, = 0.001 and
gy = 0.001, multiple saccades were simulated.

In figure 7, the relations between amplitude, duration and
peak velocity are displayed. As expected, the compromise
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Fig. 7: Approach 1 - Main sequence

between accuracy, duration and effort originates movements
with main sequence properties. Because the saccades have
randomly generated initial and goal orientations, there is some
variability in the velocity for movements with the same am-
plitude since the different directions lead to slightly different
costs.

Horizontal saccades of different amplitudes were performed
to check how their velocity profiles differ with amplitude.
Figure 8 shows the effect of the effort penalization in this
approach with the saturation on peak velocity, and the linear
increase in duration with saccade amplitude. As expected,
because this approach does not consider SDN, asymmetry in
velocity profiles is not observed.

The saccade with the most curved trajectory from the set of
oblique movements simulated has a correlation value between
horizontal and vertical velocity components is corr(wy,w,) =
0.996, which is very high, meaning that this saccade is almost
perfectly straight. The mean value of correlation in all the
trials is 0.9982.

2) Approach 2 - AED optimization with SDN: In this
approach signal-dependent noise was added to the simulator,
with ¢; = 0.01 for ¢ = 1,2, 3, i.e with equal noise magnitudes
in the 3 input dimensions. All other conditions were the same.
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The main sequence plots, seen in figure 9, have the desired
shapes, demonstrating the linear relation between amplitude
and duration (9a) and the saturating relation between ampli-
tude and peak velocity (9b). However, these have differences
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Fig. 9: Approach 2 - Main sequence

when compared to the main sequence relations obtained in
approach 1, where multiplicative noise was inexistent — the
slope of the amplitude, duration is bigger and the peak velocity
attains lower values for the same amplitudes. These differences
reflect the influence of multiplicative noise in the system.
By introducing this kind of disturbance , the system finds it
more advantageous to produce lower motor commands, which
results on a bigger movement duration and analogously in
lower maximum velocities during each saccade.

The temporal velocity profiles in figure 10 show the lower
saturation values on the peak velocity as well as the in-
creased difference between the durations of different amplitude
saccades, confirming the conclusions attained by analyzing
the main sequence plots. Also, it is noticeable that in high
amplitudes the velocity profiles show asymmetry with the peak
velocity being attained before half of the movement duration.
This result confirms the expectation that the asymmetry in
temporal velocity profiles is originated by SDN.

e Curvature The saccade obtained in the most curved
trajectory trial has the correlation value corr(w,,w,) = 0.975.
The mean value of correlation is roughly the same as in
approach 1, but the trials in approach 2 have greater variability
also in the correlation between velocity components given the
introduction of SDN. In fact, the saccade presented here is
more realistic relatively to the ones performed by humans.
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E. Approach 3 - AD optimization without SDN

Approach 3 was experimented by removing the cost term
on effort (L = 0), thus optimizing accuracy and duration. As
in approach 1, SDN was set to zero and saccades with random
initial and goal orientations were simulated.

The main sequence dependencies are in this approach, as
expected, not followed. Analysing figure 11, although the
duration seems to increase linearly with amplitude, the relation
between amplitude and peak velocity is strange - bigger
velocities are attained in lower amplitude saccades and in
larger movements given the complete disregard on the values
of the motor commands in this approach since there is no
effort penalization nor signal-dependent noise implicitly in the
accuracy term.
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Fig. 11: Approach 3 - Main sequence

The temporal velocity profiles in figure 12 reflect this
same effect, with the maximum velocity of the saccade being
reached as soon as the movement begins as a result of the
system finding itself in the state with the biggest value of error,
to which the motor commands are proportional (see equation
25). Approach 3 fails to replicate both the non-linear dynamics
and the temporal velocity profiles of human saccades.

The most curved saccade simulated here has the lowest
correlation between velocity components in all the approaches,
with the reasonably lower value of 0.8744. This is most
likely caused by the fact that motor commands are not being
minimized and the produced velocities are thus more irregular
as seen in figure 12.

E Approach 4 - AD optimization with SDN

Finally, we added SDN to the system and experimented it
optimizing accuracy and duration cost terms in several random
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saccades. The results are presented below.

As in approaches 1 and 2, the nonlinear dynamic properties
of saccades are respected in this case as shown in figure 13.
Although the effort is not constrained, the addition of motor
signal-dependent noise is enough to make the main sequence
relations similar to approach 2, where effort was minimized.
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Fig. 13: Approach 4 - Main sequence

The obtained plots of velocity profiles for different ampli-
tude horizontal saccades are shown in figure 14. These are very
similar to the ones obtained using approach 2, presenting an
increased asymmetry in bigger amplitude movements as well
as peak velocity saturation, as expected since this approach
also considers the influence of SDN.
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e Curvature The curvature of the performed saccades is
here very similar to what has been observed in Approach 2,
confirming once more that these two approaches are highly
connected. Both the minimum correlation trial and the mean

of correlations have almost the same values: 0.973 and 0.986
respectivelly.

By matching the results obtained in this approach to the ones
presented for approach 1 and 2, we can take the conclusion
that, elegantly, the minimization of endpoint accuracy in a
system endowed with noise that depends on the square of the
motor commands, uZ2, produces the same realistic saccadic
movements as optimizing effort, confirming the hypothesis
suggested in [5], [10] which motivates this thesis. Moreover,
all the approaches considered optimal feedback control and
positive results were obtained in this framework, which is
consistent with our assumption that the oculomotor system
relies on a feedback loop.

G. Torsion constraint

We experimented recording torsion values from several sac-
cades in two different conditions using approach 4 - regarding
its final value and removing this weight in cost function.

v (deg)
v (deg)

v,(deg) v,(deg)

(a) Torsion vs. Vertical compo-
nent

(b) Torsion vs. Horizontal com-
ponent

Fig. 15: XY and XZ planes obtained for several saccades
constraining the endpoint value of torsion

The results obtained have shown that the eye stays in
Listing’s plane if its final orientation is constrained in this
plane.

After removing the weight on torsion the results were, as
expected, far from good - the torsion values are much higher
in this case, and the eye does not move in a plane.
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Fig. 16: XY and XZ planes obtained for several saccades
disregarding the endpoint value of torsion

The results in figure 16b suggest tha this is apparently
related with the coupling between the 3 dimensions in the
model, especially the torsional and horizontal components,
which results in highly coupled gains for u, and u, and thus
the torsion values vary much in the favour of horizontal gains



when it is not constrained. It is necessary, however, to do more
research on this topic to confirm this hypothesis.

V. CONCLUSIONS
A. Discussion

Firstly, we used Matlab’s System Identification Toolbox to
obtain a linear parametrization of the model. However, this
method was far from perfect, and another approach was taken
by analytical linearization of the model, which proved to fit the
needs of this work better considering the range of orientations
near the equilibrium point where the system is linearized - It
is both faster and more accurate than Matlab’s toolbox.

After scrutinizing the performance of each approach in the
different criteria, we concluded that the minimization of effort
is redundant in the presence of SDN, as expected from an
analytical perspective - in both cases, it is u? which is being
minimized. While in the absence of SDN it is necessary to
minimize effort to obtain realistic saccades, in its presence,
minimizing accuracy and duration is sufficient.

The results obtained on the Listing’s plane analysis were
inconclusive. By assigning a weight to the final torsional
values, in an almost perfect Listing’s plane emerged. By
removing the weight on this component, however, the system
stopped using exclusively 2 DOF, moving on the torsional
dimension as well. This seems to be a consequence of using
feedback controlling saccades in this system, with coupling
between the 3 pairs of muscles but more research on this topic
has to be made to confirm this hypothesis.

B. Future Work

Concerning possible future work to be done, it is important
to mention the development of a model which can be used
in the vicinity of other points and not just the equilibrium
(x0,u9), which can be done using the scripts developed in
this thesis for the system linearization as a starting point.

Furthermore, the post-saccadic period of the simulation is
a topic to be explored, which can be done by including the
fixation period in the optimization.

Also importantly, the way the brain controls torsion in a
feedback framework should be analysed into further detail.
Moreover, the project in which this thesis is integrated, ORI-
ENT I, aims to build a fully autonomous robot using audiovi-
sual information to coordinate eye-head gaze orientation. So,
after concluding the eye system, further work is planned on
developing an auditory system and the integration of these two
systems with a head-neck joint.
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